SlideShare a Scribd company logo
1 of 51
GELOMBANG ELEKTROMAGNETIK
Bagaimana alat-alat berikut
bekerja?
Alat-alat tersebut bekerja menggunakan
gelombang elektromagnetik.
Apakah Gelombang Elektromagnetik ?
Gelombang elektromagnetik
adalah gelombang yang tidak
memerlukan medium untuk
merambat dan dapat
merambat dalam ruang hampa.
Beberapa Percobaan Gelombang Elektromagnetik
• Percobaan Oersted yang berhasil membuktikan : arus
listrik dalam konduktor menghasilkan medan magnet
disekitarnya (jarum kompas menyimpang bila di
dekatkan pada kawat yang dialiri arus listrik)
• Percobaan Faraday yang berhasil mebuktikan batang
konduktor yang menghasilkan GGL induksi pada kedua
ujungnya bila memotong medan magnet
• Percobaan Faraday yang menunjukkan perubahan fluks
magnetik pada kumparan menghasilkan arus induksi
dalam kumparan tersebut
Kebenaran Hipotesa Maxwell
tentang adanya gelombang
elektromagnetik pada
akhirnya dibuktikan oleh
“Heinrich Hertz”
Heinrich menemukan
cara menghasilkan
gelombang radio dan
menentukan kelajuannya
Sketsa gelombang elektromagnetik
Sifat-sifat gelombang elektromagnetik
1. Gelombang elektromagnetik dapat merambat dalam ruang
tanpa medium
2. Merupakan gelombang transversal
3. Tidak memiliki muatan listrik sehingga bergerak lurus dalam
medan magnet maupun medan listrik
4. Dapat mengalami pemantulan (refleksi), pembiasan
(refraksi), perpaduan (interferensi), pelenturan (difraksi),
pengutuban (polarisasi)
5. Perubahan medan listrik dan medan magnet terjadi secara
bersamaan, sehingga medan listrik dan medan magnet sefase
dan berbanding lurus
Spektrum GEM
adalah rentang semua radiasi elektromagnetic yang
mungkin yang dapat diukur dari frekuensi, panjang
gelombang dan energi photon yang terkandung.
SPEKTRUM GELOMBANG ELEKTROMAGNETIK
Urutan spektrum gelombang electromagnetik berdasar
Kenaikan frekuensi atau penurunan panjang gelombang:
1. Gelombang radio
Jangkauan frekuensi cukup luas, memiliki 2 jenis modulasi, yaitu AM
(jangkauan luas) dan FM (jangkauan sempit).
2. Gelombang mikro
Digunakan untuk alat-alat elektronik, alat komunikasi, alat memasak
(oven) dan radar.
3. Sinar inframerah
Dihasilkan oleh molekul dan benda panas, digunakan di bidang industri,
medis, dan astronomi (pemotretan bumi dari satelit).
4. Sinar tampak (cahaya)
Adalah sinar yang dapat membantu penglihatan kita. Perbedaan
frekuensi cahaya menimbulkan spektrum warna cahaya
5. Sinar ultraviolet
Dihasilkan dalam atom-atom dan molekul-molekul dalam loncatan
listrik. Matahari adalah sumber utama sinar ini. Dibidang industri
digunakan untuk proses sterilisasi.
6. Sinar X
disebut juga sinar Rontgen, sesuai penemunya. Sinar ini
dihasilkan akibat tumbukan elektron berkecepatan tinggi di
pemukaan logam. Dibidang kedokteran digunakan untuk
diagnosa dan terapi medis, sedangkan di bidang industri, siner x
digunakan untuk analisis struktur bahan.
7. Sinar gamma
Merupakan gelombang elektromagnetik dengan panjang
gelombang terpendek dan frekuensi tertinggi, dihasilkan dari inti
atom yang tidak stabil ataupun sinar kosmis. Daya tembus sangat
besar, mampu menembus pelat timbal.
GELOMBANG RADIO
Gelombang Radio
• Radio adalah bentuk level energi
elektromagnetik terendah, dengan kisaran
panjang gelombang dari ribuan kilometer
sampai kurang dari satu meter.
GELOMBANG MIKRO
Gelombang Mikro
Name Frequency and Wavelengths Aplications
SHF
3–30 GHz
100 mm – 10 mm
microwave devices, wireless LAN, most modern Radars
EHF
30–300 GHz
10 mm – 1 mm
Radio astronomy, high-frequency microwave radio relay
INFRA MERAH
Inframerah
• Inframerah adalah radiasi elektromagnetik dari panjang gelombang
lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi
gelombang radio. Namanya berarti "bawah merah" (dari bahasa
Latin infra, "bawah"), merah merupakan warna dari cahaya tampak
dengan gelombang terpanjang.
• Frekuensi
• Pemanfaatan antara lain : terapi fisik
(physical therapy), fotografi inframerah
untuk keperluan pemetaan sumber alam
dan diagnosa penyakit.
CAHAYA TAMPAK
Cahaya Tampak
• Cahaya tampak (sering disebut cahaya) adalah radiasi gelombang
elektromagnetik yang dapat dideteksi oleh mata manusia. Berdasarkan
dari urutan frekuensi terkecil, ia memiliki cahaya Merah, Jingga, Kuning,
Hijau , Biru, Nila dan Ungu ( Me Ji Ku Hi Bi Ni U)
ULTRAVIOLET
Sinar Ultraviolet (UV)
• Istilah ultraviolet berarti "melebihi ungu" (dari bahasa
Latin ultra, "melebihi"), sedangkan kata ungu merupakan
warna panjang gelombang paling pendek dari cahaya
dari sinar tampak.
Pemanfaatan UV
• Gelombang ini dihasilkan oleh atom dan molekul
dalam nyala listrik. Sinar UV diperlukan dalam
asimilasi tumbuh-tumbuhan, dan dapat
membunuh kuman penyakit.
SINAR - X
Sinar X (X-ray)
• Sinar – X dihasilkan oleh elektron-elektron yang berada dibagian dalam kulit
elektron atom, atau pancaran yang terjadi karena elektron dengan kelajuan
besar menumbuk logam. Sinar – x dapat digunakan untuk memotret
kedudukan tulang-tulang dalam badan, khususnya untuk menentukan
tulang yang patah.
SINAR - GAMMA
Gamma Ray
• Sinar gamma (seringkali dinotasikan dengan huruf
Yunani gamma, γ) adalah sebuah bentuk berenergi dari
radiasi elektromagnetik yang diproduksi oleh
radioaktivitas atau proses nuklir atau subatomik lainnya
seperti penghancuran elektron-positron.
Pemanfaatan Gamma Ray
• Daya tembusnya yang sangat besar dapat menyebabkan efek
yang serius jika diserap oleh jaringan hidup. Dengan
pengontrolan, sinar ini digunakan untuk membunuh sel-sel
kanker dan mensterilkan peralatan rumah sakit.
Active Denial System
• Sistem persenjataan yang menggunakan gelombang
elektromagnetik.
• Non-Lethal Weapon, tidak menyebabkan
kematian,hanya bersifat melumpuhkan.
• Menggunakan sebuah antenna segi delapan untuk
mengarahkan gelombang energi yang tidak terlihat
kearah target.
• Gelombang elektromagnetik ini dipancarkan oleh
sebuah transmitter dan kemudian merambat pada
kecepatan cahaya (300.000 km per detik) sambil
membawa energi yang hanya mampu menembus
permukaan kulit sejauh 0,04 cm.
Kecepatan gelombang elektromagnetik
sama dengan kecepatan cahaya
yang dirumuskan :
o
o
c

 .
1

o = 8.85 x 10-12 C2/Nm2
o = 12.56 x 10-7 wb/amp.m
C = 3 . 108 m/s
o = permitivitas ruang hampa
o = perbeabilitas ruang hampa
C = cepat rambat cahaya
Hubungan Frekuensi (f), Panjang Gelombang ( ), dan
cepat rambat gelombang elektromagnetik (c)


.
f
c 
Contoh Soal:
Sebuah gelombang radio dipancarkan pada frekuensi 150 MHz. Tentukan
panjang gelombang yang dipancarkan!
Jawab:
Hz
x
s
m
x
f
c
f
c
4
8
10
15
/
10
3
.






m
2000


2. Energi dalam GEM
Hubungan antara kuat medan listrik dg medan magnetik :
Dimana :
Dengan :
Em, Bm = nilai max amplitudo medan listrik dan magnetik
c = cepat rambat cahaya
c
B
E
B
E
m
m



t)
-
(kx
cos
t)
-
(kx
cos


m
x
m
y
B
B
E
E


3. Rapat Energi Listrik dan Magnetik
Rapat energi listrik dan magnetik dinyatakan dengan :
Dengan :
ue = rapat energi listrik (J/m3)
ε0 = 8,85 x 10-12 C2 N-1m-2
E = kuat medan listrik (N/C)
uB = rapat energi magnetik (J/m3)
B = besar induksi magnetik (Wb/m2)
μ0 = 4π x 10-7 Wb/A
2
0
2
1
E
ue 

0
2
2
B
uB 
4. Intensitas GEM
Intensitas GEM atau laju energi yg dipindahkan melalui GEM
disebut pointing (S).
Dengan intensitas rata-rata :
B
x
E
S



0
1


0
2
0
)
(
cos



t
kx
B
E
EB
S m
m 


0
2
m
m B
E
S 
Hubungan Intensitas Gelombang dengan Energi Rata-rata
Dengan menggunakan hubungan dan
rapat energi magnetik adalah
Rapat energi total adalah
c
E
B 
0
0
1



c
e
B u
E
E
c
E
B
u 



 2
0
0
0
0
2
0
2
2
0
2
2
1
2
2
/
2






0
2
2

B
u
u
u
u B
e
B 



Rapat energi total rata-rata adalah
Intensitas gelombang (laju energi rata2 per m2) yg dipindahkan
melalui GEM sama dg rapat enrgi rata2 dikalikan dengan
cepat rambat cahaya.
Dengan :
I = intensitas radiasi (W/m2)
S = intensitas gelombang = laju energi rata2 per m2 (W/m2)
P = daya radiasi (W)
A = luas permukaan (m2)
c
B
E
u m
m
0
2


u
c
S 
0
2
0
2
0 2
2
2 


m
m
m
m cB
c
E
B
E
A
P
I
S 




Contoh Soal
1. Medan listrik maksimum di suatu titik
yang berjarak 8 meter dari suatu sumber
titik adalah 2,3 V/m.
Hitunglah :
a. medan magnetik maksimumnya
b. intensitas rata-rata
c. daya sumber
7
0
8
Jika diketahui : 4 10 Wb/A.m
dan 3 x 10 m/s
c
  


• Jawab
Medan magnetik maksimum :
E=2,3 V/m
r = 8 m
Intensitas rata-2 :
Daya sumber :
r : jarak sumber ke titik yang dimaksud.
m
m
E
B
c

2 2
0 0
2 2
m m
cB E
I
c
 
 
2
4
P I A r I

 
2
9
8
/
10
7
,
7
10
.
3
3
,
2
m
Wb
x
c
E
B m
m




2
3
7
8
2
0
2
/
10
01
,
7
10
4
10
.
3
2
3
,
2
2
m
watt
x
x
x
c
E
I m 






2 2 3
4 4 8 .7,01.10 5,6
P r I watt
 

  

 
2. Jika program TV kita dapat ditangkap di
-Centauri, bintang terdekat dari bumi.
Jarak bumi ke bintang tersebut 4,3 tahun
cahaya. Jika stasiun TV di bumi
mempunyai daya output 1000 kW,
hitunglah : intensitas sinyal yang diterima
di -Centauri -Centauri
r
• Jawab
8
15
1 tahun cahaya (3 x 10 )(365 x 24 x 3600 )
9,4608 x 10
m
s s
m


6
2 16 2
29 2
10
4 4(3,14)(4,07 x 10 )
4,8 x 10 watt/m
P P
I
A r


  

3. Ketika Badu berjalan menjauhi lampu jalanan
sejauh 9 meter, dia mengukur intensitas
cahaya disitu sebesar 0,8 kali intensitas mula-
mula. Jika tinggi lampu 6 meter, berapakah
jarak Badu (mendatar) dari lampu mula-mula?
y = 6 m r
ro
x= ? 9 m
• Jawab
2
2
2 2 2
0
2 2 2 2
0 0 0
2
2
2
2
2
1,2
4
/ 4
/ 4 ( 9)
36
0,8
18 117
72 288 0
72 ( 72) 4.1.( 288)
4
2 2
75,8
P
I
r
r
I P r x y
I P r r x y
x
x x
x x
b b ac
x
a
x m





  
 


 
  
   
  
 

4. Suatu GEM yang digunakan untuk komunikasi
di kapal selam mempunyai panjang gelombang
4 kali jari-jari bumi (jari-jari bumi = 6375 km).
Hitung berapa frekuensi gelombang ini !
Jawab :
8
6
.
3 x 10
11,8 m
4 x 6,375 x 10
c f
c
f



  
5. Intensitas yang diterima secara langsung dari
matahari (tanpa penyerapan panas oleh
atmosfir bumi) pada suatu hari terik sekitar
Berapa jauh Amir harus berdiri dari
suatu pemanas yang mempunyai daya 0,9 kW
agar intensitas panas yang dirasakan Amir
sama dengan intensitas matahari.
Jawab :
2
135 /
W m
2
2
4
900
0, 53
4 4(3.14)(135)
0, 73 m
P
I
r
P
r
I
r



  

Latihan :
1. Suatu GEM dalam vakum memiliki
amplitudo medan listrik 360 V/m.
Hitunglah amplitudo medan magnetiknya?
2. Sebuah sumber titik dari radiasi EM
memiliki daya rata2 keluaran P = 1000
W. Tentukan :
a. Amplitudo max medan listrik Em dan
medan magnetik Bm pada titik yg
berjarak r = 4 m dari sumber radiasi
b. Rapat energi rata-rata pada titik yg
berjarak r = 4 m dari sumber radiasi
3. Sebuah sumber cahaya monokromatik
memancarkan daya EM 250 W merata
ke segala arah.
a. Hitung rapat energi listrik rata-rata
pada jarak 1 m dari sumber
b. Hitung rapat energi magnetik rata-rata
pada jarak 1 m dari sumber
c. Tentukan intensitas gelombang pada
lokasi tsb

More Related Content

What's hot

Difraksi Sinar X (3)
Difraksi Sinar X (3)Difraksi Sinar X (3)
Difraksi Sinar X (3)jayamartha
 
Ppt efek compton
Ppt efek comptonPpt efek compton
Ppt efek comptonAmalia Lia
 
Laporan Resmi Percobaan Spektrometer
Laporan Resmi Percobaan SpektrometerLaporan Resmi Percobaan Spektrometer
Laporan Resmi Percobaan SpektrometerLatifatul Hidayah
 
Eksperimen Fisika "Polarisasi Cahaya"
Eksperimen Fisika "Polarisasi Cahaya"Eksperimen Fisika "Polarisasi Cahaya"
Eksperimen Fisika "Polarisasi Cahaya"Nurfaizatul Jannah
 
Fisika Inti
Fisika Inti Fisika Inti
Fisika Inti FKIP UHO
 
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docx
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docxRPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docx
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docxYomiRamadhona
 
2.difraksi sinar x
2.difraksi sinar x2.difraksi sinar x
2.difraksi sinar xIrfan Rifa'i
 
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)Ismail Musthofa
 
Difraksi Sinar-X
Difraksi Sinar-XDifraksi Sinar-X
Difraksi Sinar-Xnail fisika
 
14708251062_Fathurrahman_Model-model Inti
14708251062_Fathurrahman_Model-model Inti14708251062_Fathurrahman_Model-model Inti
14708251062_Fathurrahman_Model-model IntiIPA 2014
 
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-201056852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010eli priyatna laidan
 
Model-model Energi dalam Zat Padat
Model-model Energi dalam Zat PadatModel-model Energi dalam Zat Padat
Model-model Energi dalam Zat PadatRisdawati Hutabarat
 

What's hot (20)

Difraksi Sinar X (3)
Difraksi Sinar X (3)Difraksi Sinar X (3)
Difraksi Sinar X (3)
 
Efek Doppler
Efek  DopplerEfek  Doppler
Efek Doppler
 
Bahan Ajar Elastisitas
Bahan Ajar ElastisitasBahan Ajar Elastisitas
Bahan Ajar Elastisitas
 
Ppt efek compton
Ppt efek comptonPpt efek compton
Ppt efek compton
 
Gamma kamera
Gamma kameraGamma kamera
Gamma kamera
 
Ringkasan zat padat
Ringkasan zat padatRingkasan zat padat
Ringkasan zat padat
 
Dinamika kisi kristal
Dinamika kisi kristalDinamika kisi kristal
Dinamika kisi kristal
 
Laporan Resmi Percobaan Spektrometer
Laporan Resmi Percobaan SpektrometerLaporan Resmi Percobaan Spektrometer
Laporan Resmi Percobaan Spektrometer
 
Eksperimen Fisika "Polarisasi Cahaya"
Eksperimen Fisika "Polarisasi Cahaya"Eksperimen Fisika "Polarisasi Cahaya"
Eksperimen Fisika "Polarisasi Cahaya"
 
Fisika Inti
Fisika Inti Fisika Inti
Fisika Inti
 
Ppt kelompok 3
Ppt kelompok 3Ppt kelompok 3
Ppt kelompok 3
 
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docx
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docxRPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docx
RPP 3.8 - KONSEP DAN FENOMENA KUANTUM.docx
 
2.difraksi sinar x
2.difraksi sinar x2.difraksi sinar x
2.difraksi sinar x
 
Energi surya
Energi suryaEnergi surya
Energi surya
 
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)
Fisika Modern (Teori Wien, Efek Fotolistrik, Efek Compton)
 
Difraksi Sinar-X
Difraksi Sinar-XDifraksi Sinar-X
Difraksi Sinar-X
 
14708251062_Fathurrahman_Model-model Inti
14708251062_Fathurrahman_Model-model Inti14708251062_Fathurrahman_Model-model Inti
14708251062_Fathurrahman_Model-model Inti
 
Difraksi franhoufer
Difraksi franhouferDifraksi franhoufer
Difraksi franhoufer
 
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-201056852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010
56852975 pembahasan-soal-olimpiade-astronomi-tingkat-provinsi-2010
 
Model-model Energi dalam Zat Padat
Model-model Energi dalam Zat PadatModel-model Energi dalam Zat Padat
Model-model Energi dalam Zat Padat
 

Similar to gelombang-elektromagnetik-x21 (1).ppt

gelombang-elektromagnetik-x21.ppt
gelombang-elektromagnetik-x21.pptgelombang-elektromagnetik-x21.ppt
gelombang-elektromagnetik-x21.pptmekicotpecah
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikDenz Kyodensu
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikDestina Destina
 
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptx
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptxAPLIKASI GELOMBANG ELEKTROMAGNETIK.pptx
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptxmuhammadrizky561763
 
Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21HazaTaufano
 
Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21PT. SASA
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikDeena dep
 
Gelombang elektromagnetik XII Ipa
Gelombang elektromagnetik XII IpaGelombang elektromagnetik XII Ipa
Gelombang elektromagnetik XII IpaMuhammad Ramdhani
 
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptx
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptxTUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptx
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptxAlyaSabrinaAffandi
 
Gelombang Elektromagnetik
Gelombang ElektromagnetikGelombang Elektromagnetik
Gelombang Elektromagnetikkhairunnisak880
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikauliarika
 
Hanjar bab6-gem
Hanjar bab6-gemHanjar bab6-gem
Hanjar bab6-gempagio
 
Gelombang Elektromagnet
Gelombang Elektromagnet Gelombang Elektromagnet
Gelombang Elektromagnet Marsella Wijaya
 
A1 Gel Elektromagnetik Syafira
A1 Gel Elektromagnetik SyafiraA1 Gel Elektromagnetik Syafira
A1 Gel Elektromagnetik Syafiraruy pudjo
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikbusbussron
 

Similar to gelombang-elektromagnetik-x21 (1).ppt (20)

gelombang-elektromagnetik-x21.ppt
gelombang-elektromagnetik-x21.pptgelombang-elektromagnetik-x21.ppt
gelombang-elektromagnetik-x21.ppt
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptx
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptxAPLIKASI GELOMBANG ELEKTROMAGNETIK.pptx
APLIKASI GELOMBANG ELEKTROMAGNETIK.pptx
 
Tugas fisika
Tugas fisikaTugas fisika
Tugas fisika
 
Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21
 
Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21Gelombang elektromagnetik-x21
Gelombang elektromagnetik-x21
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 
Gelombang elektromagnetik XII Ipa
Gelombang elektromagnetik XII IpaGelombang elektromagnetik XII Ipa
Gelombang elektromagnetik XII Ipa
 
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptx
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptxTUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptx
TUGAS FISIKA (Alya Shabrina Affandi 03: XII-E).pptx
 
Daftar isi
Daftar isiDaftar isi
Daftar isi
 
09 bab 8
09 bab 809 bab 8
09 bab 8
 
09 bab 8
09 bab 809 bab 8
09 bab 8
 
kls x bab 8
kls x bab 8kls x bab 8
kls x bab 8
 
Gelombang Elektromagnetik
Gelombang ElektromagnetikGelombang Elektromagnetik
Gelombang Elektromagnetik
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 
Hanjar bab6-gem
Hanjar bab6-gemHanjar bab6-gem
Hanjar bab6-gem
 
Gelombang Elektromagnet
Gelombang Elektromagnet Gelombang Elektromagnet
Gelombang Elektromagnet
 
A1 Gel Elektromagnetik Syafira
A1 Gel Elektromagnetik SyafiraA1 Gel Elektromagnetik Syafira
A1 Gel Elektromagnetik Syafira
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 

gelombang-elektromagnetik-x21 (1).ppt

  • 2. Bagaimana alat-alat berikut bekerja? Alat-alat tersebut bekerja menggunakan gelombang elektromagnetik.
  • 3. Apakah Gelombang Elektromagnetik ? Gelombang elektromagnetik adalah gelombang yang tidak memerlukan medium untuk merambat dan dapat merambat dalam ruang hampa.
  • 4. Beberapa Percobaan Gelombang Elektromagnetik • Percobaan Oersted yang berhasil membuktikan : arus listrik dalam konduktor menghasilkan medan magnet disekitarnya (jarum kompas menyimpang bila di dekatkan pada kawat yang dialiri arus listrik) • Percobaan Faraday yang berhasil mebuktikan batang konduktor yang menghasilkan GGL induksi pada kedua ujungnya bila memotong medan magnet • Percobaan Faraday yang menunjukkan perubahan fluks magnetik pada kumparan menghasilkan arus induksi dalam kumparan tersebut
  • 5. Kebenaran Hipotesa Maxwell tentang adanya gelombang elektromagnetik pada akhirnya dibuktikan oleh “Heinrich Hertz” Heinrich menemukan cara menghasilkan gelombang radio dan menentukan kelajuannya
  • 7. Sifat-sifat gelombang elektromagnetik 1. Gelombang elektromagnetik dapat merambat dalam ruang tanpa medium 2. Merupakan gelombang transversal 3. Tidak memiliki muatan listrik sehingga bergerak lurus dalam medan magnet maupun medan listrik 4. Dapat mengalami pemantulan (refleksi), pembiasan (refraksi), perpaduan (interferensi), pelenturan (difraksi), pengutuban (polarisasi) 5. Perubahan medan listrik dan medan magnet terjadi secara bersamaan, sehingga medan listrik dan medan magnet sefase dan berbanding lurus
  • 8. Spektrum GEM adalah rentang semua radiasi elektromagnetic yang mungkin yang dapat diukur dari frekuensi, panjang gelombang dan energi photon yang terkandung.
  • 9.
  • 10. SPEKTRUM GELOMBANG ELEKTROMAGNETIK Urutan spektrum gelombang electromagnetik berdasar Kenaikan frekuensi atau penurunan panjang gelombang: 1. Gelombang radio Jangkauan frekuensi cukup luas, memiliki 2 jenis modulasi, yaitu AM (jangkauan luas) dan FM (jangkauan sempit). 2. Gelombang mikro Digunakan untuk alat-alat elektronik, alat komunikasi, alat memasak (oven) dan radar. 3. Sinar inframerah Dihasilkan oleh molekul dan benda panas, digunakan di bidang industri, medis, dan astronomi (pemotretan bumi dari satelit).
  • 11. 4. Sinar tampak (cahaya) Adalah sinar yang dapat membantu penglihatan kita. Perbedaan frekuensi cahaya menimbulkan spektrum warna cahaya 5. Sinar ultraviolet Dihasilkan dalam atom-atom dan molekul-molekul dalam loncatan listrik. Matahari adalah sumber utama sinar ini. Dibidang industri digunakan untuk proses sterilisasi. 6. Sinar X disebut juga sinar Rontgen, sesuai penemunya. Sinar ini dihasilkan akibat tumbukan elektron berkecepatan tinggi di pemukaan logam. Dibidang kedokteran digunakan untuk diagnosa dan terapi medis, sedangkan di bidang industri, siner x digunakan untuk analisis struktur bahan. 7. Sinar gamma Merupakan gelombang elektromagnetik dengan panjang gelombang terpendek dan frekuensi tertinggi, dihasilkan dari inti atom yang tidak stabil ataupun sinar kosmis. Daya tembus sangat besar, mampu menembus pelat timbal.
  • 13. Gelombang Radio • Radio adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter.
  • 15. Gelombang Mikro Name Frequency and Wavelengths Aplications SHF 3–30 GHz 100 mm – 10 mm microwave devices, wireless LAN, most modern Radars EHF 30–300 GHz 10 mm – 1 mm Radio astronomy, high-frequency microwave radio relay
  • 17. Inframerah • Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang. • Frekuensi
  • 18. • Pemanfaatan antara lain : terapi fisik (physical therapy), fotografi inframerah untuk keperluan pemetaan sumber alam dan diagnosa penyakit.
  • 20. Cahaya Tampak • Cahaya tampak (sering disebut cahaya) adalah radiasi gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Berdasarkan dari urutan frekuensi terkecil, ia memiliki cahaya Merah, Jingga, Kuning, Hijau , Biru, Nila dan Ungu ( Me Ji Ku Hi Bi Ni U)
  • 22. Sinar Ultraviolet (UV) • Istilah ultraviolet berarti "melebihi ungu" (dari bahasa Latin ultra, "melebihi"), sedangkan kata ungu merupakan warna panjang gelombang paling pendek dari cahaya dari sinar tampak.
  • 23. Pemanfaatan UV • Gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Sinar UV diperlukan dalam asimilasi tumbuh-tumbuhan, dan dapat membunuh kuman penyakit.
  • 25. Sinar X (X-ray) • Sinar – X dihasilkan oleh elektron-elektron yang berada dibagian dalam kulit elektron atom, atau pancaran yang terjadi karena elektron dengan kelajuan besar menumbuk logam. Sinar – x dapat digunakan untuk memotret kedudukan tulang-tulang dalam badan, khususnya untuk menentukan tulang yang patah.
  • 27. Gamma Ray • Sinar gamma (seringkali dinotasikan dengan huruf Yunani gamma, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.
  • 28. Pemanfaatan Gamma Ray • Daya tembusnya yang sangat besar dapat menyebabkan efek yang serius jika diserap oleh jaringan hidup. Dengan pengontrolan, sinar ini digunakan untuk membunuh sel-sel kanker dan mensterilkan peralatan rumah sakit.
  • 29. Active Denial System • Sistem persenjataan yang menggunakan gelombang elektromagnetik. • Non-Lethal Weapon, tidak menyebabkan kematian,hanya bersifat melumpuhkan. • Menggunakan sebuah antenna segi delapan untuk mengarahkan gelombang energi yang tidak terlihat kearah target. • Gelombang elektromagnetik ini dipancarkan oleh sebuah transmitter dan kemudian merambat pada kecepatan cahaya (300.000 km per detik) sambil membawa energi yang hanya mampu menembus permukaan kulit sejauh 0,04 cm.
  • 30.
  • 31.
  • 32.
  • 33. Kecepatan gelombang elektromagnetik sama dengan kecepatan cahaya yang dirumuskan : o o c   . 1  o = 8.85 x 10-12 C2/Nm2 o = 12.56 x 10-7 wb/amp.m C = 3 . 108 m/s o = permitivitas ruang hampa o = perbeabilitas ruang hampa C = cepat rambat cahaya
  • 34. Hubungan Frekuensi (f), Panjang Gelombang ( ), dan cepat rambat gelombang elektromagnetik (c)   . f c  Contoh Soal: Sebuah gelombang radio dipancarkan pada frekuensi 150 MHz. Tentukan panjang gelombang yang dipancarkan! Jawab: Hz x s m x f c f c 4 8 10 15 / 10 3 .       m 2000  
  • 35. 2. Energi dalam GEM Hubungan antara kuat medan listrik dg medan magnetik : Dimana : Dengan : Em, Bm = nilai max amplitudo medan listrik dan magnetik c = cepat rambat cahaya c B E B E m m    t) - (kx cos t) - (kx cos   m x m y B B E E  
  • 36. 3. Rapat Energi Listrik dan Magnetik Rapat energi listrik dan magnetik dinyatakan dengan : Dengan : ue = rapat energi listrik (J/m3) ε0 = 8,85 x 10-12 C2 N-1m-2 E = kuat medan listrik (N/C) uB = rapat energi magnetik (J/m3) B = besar induksi magnetik (Wb/m2) μ0 = 4π x 10-7 Wb/A 2 0 2 1 E ue   0 2 2 B uB 
  • 37. 4. Intensitas GEM Intensitas GEM atau laju energi yg dipindahkan melalui GEM disebut pointing (S). Dengan intensitas rata-rata : B x E S    0 1   0 2 0 ) ( cos    t kx B E EB S m m    0 2 m m B E S 
  • 38. Hubungan Intensitas Gelombang dengan Energi Rata-rata Dengan menggunakan hubungan dan rapat energi magnetik adalah Rapat energi total adalah c E B  0 0 1    c e B u E E c E B u      2 0 0 0 0 2 0 2 2 0 2 2 1 2 2 / 2       0 2 2  B u u u u B e B    
  • 39. Rapat energi total rata-rata adalah Intensitas gelombang (laju energi rata2 per m2) yg dipindahkan melalui GEM sama dg rapat enrgi rata2 dikalikan dengan cepat rambat cahaya. Dengan : I = intensitas radiasi (W/m2) S = intensitas gelombang = laju energi rata2 per m2 (W/m2) P = daya radiasi (W) A = luas permukaan (m2) c B E u m m 0 2   u c S  0 2 0 2 0 2 2 2    m m m m cB c E B E A P I S     
  • 40. Contoh Soal 1. Medan listrik maksimum di suatu titik yang berjarak 8 meter dari suatu sumber titik adalah 2,3 V/m. Hitunglah : a. medan magnetik maksimumnya b. intensitas rata-rata c. daya sumber 7 0 8 Jika diketahui : 4 10 Wb/A.m dan 3 x 10 m/s c     
  • 41. • Jawab Medan magnetik maksimum : E=2,3 V/m r = 8 m Intensitas rata-2 : Daya sumber : r : jarak sumber ke titik yang dimaksud. m m E B c  2 2 0 0 2 2 m m cB E I c     2 4 P I A r I   
  • 42. 2 9 8 / 10 7 , 7 10 . 3 3 , 2 m Wb x c E B m m     2 3 7 8 2 0 2 / 10 01 , 7 10 4 10 . 3 2 3 , 2 2 m watt x x x c E I m        2 2 3 4 4 8 .7,01.10 5,6 P r I watt      
  • 43.    2. Jika program TV kita dapat ditangkap di -Centauri, bintang terdekat dari bumi. Jarak bumi ke bintang tersebut 4,3 tahun cahaya. Jika stasiun TV di bumi mempunyai daya output 1000 kW, hitunglah : intensitas sinyal yang diterima di -Centauri -Centauri r
  • 44. • Jawab 8 15 1 tahun cahaya (3 x 10 )(365 x 24 x 3600 ) 9,4608 x 10 m s s m   6 2 16 2 29 2 10 4 4(3,14)(4,07 x 10 ) 4,8 x 10 watt/m P P I A r      
  • 45. 3. Ketika Badu berjalan menjauhi lampu jalanan sejauh 9 meter, dia mengukur intensitas cahaya disitu sebesar 0,8 kali intensitas mula- mula. Jika tinggi lampu 6 meter, berapakah jarak Badu (mendatar) dari lampu mula-mula? y = 6 m r ro x= ? 9 m
  • 46. • Jawab 2 2 2 2 2 0 2 2 2 2 0 0 0 2 2 2 2 2 1,2 4 / 4 / 4 ( 9) 36 0,8 18 117 72 288 0 72 ( 72) 4.1.( 288) 4 2 2 75,8 P I r r I P r x y I P r r x y x x x x x b b ac x a x m                           
  • 47. 4. Suatu GEM yang digunakan untuk komunikasi di kapal selam mempunyai panjang gelombang 4 kali jari-jari bumi (jari-jari bumi = 6375 km). Hitung berapa frekuensi gelombang ini ! Jawab : 8 6 . 3 x 10 11,8 m 4 x 6,375 x 10 c f c f      
  • 48. 5. Intensitas yang diterima secara langsung dari matahari (tanpa penyerapan panas oleh atmosfir bumi) pada suatu hari terik sekitar Berapa jauh Amir harus berdiri dari suatu pemanas yang mempunyai daya 0,9 kW agar intensitas panas yang dirasakan Amir sama dengan intensitas matahari. Jawab : 2 135 / W m 2 2 4 900 0, 53 4 4(3.14)(135) 0, 73 m P I r P r I r       
  • 49. Latihan : 1. Suatu GEM dalam vakum memiliki amplitudo medan listrik 360 V/m. Hitunglah amplitudo medan magnetiknya?
  • 50. 2. Sebuah sumber titik dari radiasi EM memiliki daya rata2 keluaran P = 1000 W. Tentukan : a. Amplitudo max medan listrik Em dan medan magnetik Bm pada titik yg berjarak r = 4 m dari sumber radiasi b. Rapat energi rata-rata pada titik yg berjarak r = 4 m dari sumber radiasi
  • 51. 3. Sebuah sumber cahaya monokromatik memancarkan daya EM 250 W merata ke segala arah. a. Hitung rapat energi listrik rata-rata pada jarak 1 m dari sumber b. Hitung rapat energi magnetik rata-rata pada jarak 1 m dari sumber c. Tentukan intensitas gelombang pada lokasi tsb