SlideShare a Scribd company logo
Auxetics: From Foams to
         Composites and Beyond

                  Fabrizio Scarpa,
              f.scarpa@bristol.ac.uk




www.bris.ac.uk/composites
Contents


Introduction

Foams

Honeycombs and truss-cores

Composites

 Nano-auxetics

 Conclusions
Acknowledgements




         Special thanks for their contribution to:



A. Bezazi, M. Bianchi, P. Pastorino, M. Ruzzene, C. Lira, C. D. L.
  Remillat, L. G. Ciffo, M. R. Hassan, T. L. Lew, A. Spadoni, K.
Saito, C. W. Smith, W. H. Bullough, H. Abramovitch, M. Burgard,
 M. Hoffmeister, M. Celuch, K. E. Evans, F. C. Smith, R. Neville,
C. Coconnier, S. Jacobs, J. Martin, M. Bruckner, A. Alderson, K.
           Alderson, P. Innocenti, A. Lorato, Y. H. Tai,
      J. Yates, K. Worden, A. B. Spencer and G. Tomlinson
Introduction
• From the Greek auxetos: “that can expand”
• Indicates Negative Poisson’s ratio (NPR) materials


          1    0.5             Homogeneous, isotropic solid


          E1 21  E2 12          Special orthotropic solid


          
                    
             3 FR 2 1   2       Central deflection
                                   of a clamped
                16 Et 3            circular plate


                        1                        Hardness – increase
          H                                     with NPR – the
                 1      2 23
                                                 material wraps
                                                 around the indenter


            Synclastic curvature – easy
            manufacturing of dome-shaped
            structures

                                                               (University of Bolton, 2008)
Introduction

Fibril Hinging
(microporous UHMWPE
and PFTE - GoreTex©)




  A. Alderson, K. E. Evans, J. Mater. Sci. 1997, 32, 2797.
                                                        (courtesy of Azon.com)
Introduction

                Rotating rectangles




                                                                                      J.N. Grima et al., Adv.
                                                                                      Mater., 12 (2000)1912;
                                                                                      A. Alderson et al.,
                                                                                      International Patent No.
 (Courtesy of Professor Joseph Grima, http://home.um.edu.mt/auxetic/properties.htm)   PCT/GB98/03281 (1998).




Used to prototype “smart” filters for chemical processes.
Possible explanation of auxetic behaviour in some forms of a-crystobalite
Introduction
                                                               
                                         y
                                                                       r
                                                           t

                                                  

                                                       x



(D. Prall and R. Lakes, Int. J.
Mech. Sci., 39, 305-314, 1996)               LL
                                                                   R
                                                                   R




                                         30 o   L r   t r   b L

                                    •Rotations of the nodes induce
                                    bending of the ligaments
                                    •Isotropic in-plane properties ( = -1)
Foams




          Strain dependent tensile Poisson’s ratio


 (Scarpa, et al. Phys. Stat. Solidi B, 242(3) 2005, 681-694 )
Foams

                   1. Multiaxial compression




4. Relaxation of       Conventional            2. Annealing
the sample            PU based foam




                        3. Cooling
Foams
  Conventional PU foam



                                  Auxetic ( = -0.26)




Non-auxetic iso-density
Foams

Compression is the most
significant manufacturing
parameter for
auxetic foams.




              (M. Bianchi, F Scarpa, C W Smith. J. Mat. Sci. 43(17), 5851)
Foams

                  80

                  70
                                                        Conventional
                                   r = 0.95             Iso density
                  60
]




                                                        Auxetic
3




                  50
Energy U [mj/cm




                  40

                  30

                  20


                  10

                   0
                       0   25000              50000      75000         100000

                                   Number of cycles N
Smart auxetic foams
            (F. Scarpa, W. A. Bullough and P.
            Lumley, IMechE Proc. Part C, 216,
            2004)




     Doping auxetic foams with magnetorheological
     fluids can provide a tuned acoustic absorber
     with shift peak varying with the intensity of an
     external magnet
Shape Memory effect
                   Auxetic Sample




Returned
Sample
Shape Memory effect




                                      SEM images of
                                      (a)conventional,
(Bianchi M., Scarpa F, Smith C. W.,   (b)1st auxetic,
2010. Acta Mater. 58(3), 858)         (c)returned from   (a)   (b)
                                      auxetic and
                                      (d) 2nd auxetic
                                      open-cell PU
                                      based foam
                                                         (c)   (d)
Foams – New manufacturing process
                New manufacturing process
                for Auxetic foams
                (Bianchi M., Scarpa F. Banse M. Smith C. W., 2011. Acta
                Mater. 59(2), 686)
Foams – Vibration transmissibility

       9

       8
                               Auxetic
       7
                               Conventional
       6

       5
|X |
  R




       4

       3

       2

       1

       0
       50       100            150            200
                      ω [Hz]
Centre-symmetric honeycombs




                  4  2 
   
c    22 cos  cos   sin  2 sin   Flexible topology to enhance
                                               the mechanical and thermal
                                               conductivity performance
Centre-symmetric honeycombs
                             Point A
                                               INCONEL 617 core
                                               Conduction – radiation problem
                                                     Time 0 s – uniform 273 K
                                Point B
                                                     Time 20 s – 1400 K at upper face

                                                                                    PPR configurations




                                       NPR
                                       configurations
In upper surfaces,
temperatures are lower for
auxetic configurations

             (Innocenti P., Scarpa F, 2009. J. Comp. Mat. 43(21), 2419)
Centre-symmetric honeycombs

 Shape memory alloy honeycombs
Centre-symmetric honeycombs
       Nonlinear in-plane properties – SMA honeycombs




(Hassan MR, Scarpa F, Mohamed NA. Journal of Intelligent Material Systems and Structures 2009 20: 897-905 )
Zero  honeycombs (SILICOMB)




                     (Lira C, Scarpa F, Tai Y H, Yates J R,
                     2011. Comp. Sci. Tech. In press)
                     (Lira C, Scarpa F, M. Olszewska and M.
                     Celuch, 2009. Phys Status Solidi B 246,
                     2055)
Gradient honeycombs




         (Lira C, Scarpa F., 2010. Comp. Sci. Tech. 70(6), 930)
         (Lira C., Scarpa F. Rajasekaran R., 2011. J. Int. Mat.
         Syst. Struct. In press)
Kirigami/Origami honeycombs




                   (Saito    K,. Neville R. Scapa F., ICCS16
                   Porto,    28-30 June 2011)
                   (Saito    K., Agnese F., Scarpa F, 2011.
                   J. Int.   Mat. Syst. Struct. In press)
Chiral structures
  •Developed using RTM techniques for maritime sandwich applications
  •Core with polyester/glass fibre
  •Superior specific compressive and shear strength compared to analogous cores
  in marine constructions
  •Possibility of embedding sensors (PZT, MFCs) for SHM or other monitoring
  applications
  •Flat or curved panels easily manufactured with no in-plane buckling stresses
  •Developed and commercialised by CHISMATECH (Catania, I)




(Scarpa F., 2010. Comp.
Sci. Tech. 70.
CHISMACOMB Special
Issue)
Chiral structures
Truss-core beam
             Applied torque




Deformed configurations for excitation at resonant frequencies:
                                         Numerical
                Localized deformations                             Localized deformations




              1120 Hz                                            1150 Hz
                                         Experimental




                              (Spadoni A,. Ruzzene M., Scarpa F, 2006. J. Int. Mat. Syst. Struct.
                              17(11), 941)
Chiral structures




                                                                                              Deflection vs Velocity at 15º


                                                                               2.5


                                                                                2
                                                                                                    Experimental




                                                    Vertical Deflection (mm)
                                                                                                    FEA Inviscid
                                                                               1.5                  FEA Viscous



                                                                                1

     Eppler420 for racecar wing design                                         0.5


                                                                                0

(Bornengo D., Scarpa F., Remillat C D L., 2005.
                                                                                     0   10       20       30       40        50   60   70
                                                                                                          Velocity (m/s)

IMechE Part G: J. Aerospace Eng. 219,185)
(Martin J. et al, 2008. Physica Status Solidi B    Chiral wingbox provides continuous
245(3), 570)                                      camber variation with a stiff bending
                                                                 airfoil
ES
    A
        A
         st
           riu
              m
                   U
                       LR
                            Ø
                                3m
              SS
                   B
     Fo             R
       ld
         ab             Ø
                            6m
             le
  Th            Ti
    in            ps
       Sh               Ø
          el                6m
             lP
                an
                   el
                        Ø
            SM              6m
                 AR
                     T
         A              Ø
           st             6m
              ro
                 m
                   es
       A              h
         st
            ro          Ø
                          9m
 C             m
   hi            es
     ra            h
       lD              Ø
          ep             12
              lo            m
 C              ya
   hi
     ra            bl
       lD             e
          ep            Ø
                          3m
 C            lo
   hi           ya
     ra            bl
       lD             e
          ep            Ø
                          6m
C             lo
  hi            ya
    ra             bl
      lD              e
         ep             Ø
                          9m
                                     Weight to Area Ratio

             lo
               ya
                  bl
                    e
                       Ø
                         12
                           m
                                                            Packed to Deployed Area Ratio
                                                                                            Deployable SMA antenna demonstrator
Auxetic composite laminates
(K Anderson, V R Simkins, V L Coenen, P J Davies, A Alderson, K Evans. Phys. Stat Solidi B, 242(3), 509 (2005) )




                                                                 = -0.156




                                                                    = 0.086


                    Static load/displacement curves                Name0      Stacking sequence     Name    Stacking sequence   Name    Stacking sequence

                                                                    ST 1           [± θ2 ]s         ST 11     [± 33 /± θ ]s     ST 21     [± 10 /± θ ]s
         0.6
                                                                    ST 2          [02 /± θ ]s       ST 12     [± 35 /± θ ]s     ST 22     [± 15 /± θ ]s
                                                        ST 8
         0.3                                                        ST 3          [902 /± θ ]s      ST 13     [± 37 /± θ ]s     ST 23      [±16 /± θ ]s
                                                        ST 10
                                                        ST 12
                                                                    ST 4       [- θ/+ θ/- θ/+θ/]s   ST 14     [± 40 /± θ ]s     ST 24     [± 17 /± θ ]s
           0                                            ST 14
                0   20     40      60     80      100               ST 5          [± θ/ 02]s        ST 15     [± 45 /± θ ]s     ST 25     [± 18 /± θ ]s
   13




                                                        ST 15
                                                        ST 16
         -0.3                                                       ST 6          [± θ/902 ]s       ST 16     [± 50 /± θ ]s     ST 26     [± 19 /± θ ]s
                                                        ST 17
                                                        ST 18       ST 7         [± 20 /± θ ]s      ST 17     [± 60 /± θ ]s     ST 27     [± 21 /± θ ]s
         -0.6                                           ST 19
                                         Carbon         ST 3        ST 8         [± 25 /± θ ]s      ST 18     [± 70 /± θ ]s     ST 28     [± 22 /± θ ]s
         -0.9                                                       ST 9         [± 27 /± θ ]s      ST 19     [± 80 /± θ ]s     ST 29     [± 23 /± θ ]s
                            [Degrees]
                                                                    ST 10        [± 30 /± θ ]s      ST 20      [± 5 /± θ ]s     ST 30      [±24 /± θ ]s

   (E H Harkati, A Bezazi, F Scarpa, K Alderson, A Alderson. Phys. Stat Solidi B, 244(3), 883 (2007) )
Auxetic composite laminates

         3-point bending (T300-914 prepreg)




(Bezazi A., Boukharouba W., Scarpa F, 2009. Physica Status Solid B 246(9), 2102)
Auxetic composite laminates

         3-point bending (T300-914 prepreg)




(Bezazi A., Boukharouba W., Scarpa F, 2009. Physica Status Solid B 246(9), 2102)
Nano-auxetics in carbon structures

Weakening of C-C bonds strength → NPR in SWCNTs
 (Jindal P., Jindal VK, 2006. J. Comp. Theor. Nanosci. 3(1), 148)


NPR effect when bond angle variation dominant
deformation mechanism modification of force
constants and bond length equilibrium
(Yao, YT, Alderson A, Alderson K., 2007. Paper presented at Auxetics 2007
@ Malta)


Evidence of in-plane NPR in
buckypapers when mixing                                             Other possible
SWCNTs and MWCNTs                                                   mechanisms?
(Hall, LJ et al, 2008. Science, 320, 504)
Nano-auxetics in carbon structures

                              Missing rib model (MRM) to explain
                              NPR in open cell foams
                                 (C. W. Smith, J. N. Grima and K E Evans, 2000. Acta Mater. 48, 4349)

  Vacancy defects induced by electronic or ion irradiation
   (Telling, R. H. et al, 2003. Nature Mat. 2, 333)
   (Ajayan, PM, Ravikumar, V, Charlier, JC, 1998. Phys. Rev. Lett. 81, 1437)
   (Mielke, SL, et al, 2004. Chem. Phys. Lett. 390, 413)




                                                Uniaxial mechanical
                                                properties depending on %
                                                of vacant atoms
(Sammalkorpi M et al. 2004. Phys. Rev. B 70, 245416)
CNT and graphene mechanical properties




(F Scarpa and S Adhikari, 2008. J. Phys. D: App. Phys., 41, 085306)
(Scarpa F., Adhikari S., Phani A S, 2009. Nanotechnology 20 065709)
(Scarpa, FL, L. Boldrin, Peng, H-X, Remillat, CDL & Adhikari, S., 2010. Applied Physics Letters, 97,
151903)
(R. Chowdhury, Adhikari, S, CY Wang & Scarpa, FL., 2010 Comp. Mat. Sci., 48, 730)
(E.I. Saavedra Flores, Adhikari, S, Friswell, MI & Scarpa, FL, 2011. Comp.Mat. Sci., 50, 1083)
(Scarpa, FL, J. W. Narojczyk & K. W. Wojciechowski., 2011., Physica Status Solidi B, 1, 82
(Chowdhury R, Adhikari S, Rees P., Wilks S. P., Scarpa F., 2010. Phys. Rev. B 83, 045401)
Nano-auxetics in carbon structures



•FE nonlinear tensile loading
simulations – applied strain 1.e-3
•Random generation for vacancies
•Elements attached to vacant
atoms desactivated (ekill utility)
•Combinations of SWCNT aspect
ratio, radius and % of vacant
atoms considered
•12800 MC simulations




     (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
Nano-auxetics in carbon structures




Mean Young’s modulus ratio and standard deviation Young’s modulus ratio for
armchair (n,n). ● = 2 % NRV; ■ = 1.5 % NRV; ▲= 1 % NRV; ◊ = 0.5 % NRV



    (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
Nano-auxetics in carbon structures




Probability density functions for nrz in      Distribution of the standard deviations
 (n,n) tubes (R = 0.426 nm, AR=5)              for (n,n) configurations (pristine nrz
                                                      between 0.29 and 0.16)


      (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
Nano-auxetics in carbon structures
           (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)




                                                             (6,0) rz = -0.41

Evidence on NPR in defective CNTs found in NI-CNT systems

 (Smolyanitsky A, Twari V K, 2011. Nanotechnology 22 085703)
Nano-auxetics in carbon structures




      (Ma Y et al, 2010. App. Phys. Lett. 97 061909)
Nano-auxetics in carbon structures




      (Chen L et al, 2009. App. Phys. Lett. 94 253111)
Conclusions


Auxetics and NPR can be engineered at different scales


Use of auxetic materials and structures needs lateral
thinking  multidisciplinary research


There is scope for R&D activities at different TRLs –
from blue sky to manufacturing of commercial
prototypes
Conclusions




               Thank you for
              your attention!

More Related Content

Similar to Fs 24052011

Design dell'energia comportamentale
Design dell'energia comportamentaleDesign dell'energia comportamentale
Design dell'energia comportamentale
Romagna Tech
 
Self-healing Materials
Self-healing MaterialsSelf-healing Materials
Self-healing Materials
Reset_co
 
N.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-ofN.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-of
IAPS
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk Raabe
 
Nano Indentation Lecture2
Nano Indentation Lecture2Nano Indentation Lecture2
Nano Indentation Lecture2
Viet NguyenHoang
 
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on AuxeticsMorphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Fabrizio Scarpa
 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Dr. Basanta Kumar Parida
 
1 s2.0-s1751616107000021-main
1 s2.0-s1751616107000021-main1 s2.0-s1751616107000021-main
1 s2.0-s1751616107000021-main
Sion Jung
 
Thesis0520
Thesis0520Thesis0520
Thesis0520
BoLiu
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015
cjfoss
 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015
cjfoss
 
Endogenous and exogenous christalization
Endogenous and exogenous christalizationEndogenous and exogenous christalization
Endogenous and exogenous christalization
greenbike
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystals
vinzilla
 
N Herbots Us Patent6613667
N Herbots Us Patent6613667N Herbots Us Patent6613667
N Herbots Us Patent6613667
Dr. Ing. Nicole Herbots, i.r., PhD UCL'84
 
Poster aps2020 (sapkota, yub)
Poster aps2020 (sapkota, yub)Poster aps2020 (sapkota, yub)
Poster aps2020 (sapkota, yub)
Yub Raj Sapkota
 
Evidence for ancient_grand_canyon
Evidence for ancient_grand_canyonEvidence for ancient_grand_canyon
Evidence for ancient_grand_canyon
Sérgio Sacani
 
Formation of Helium Lines in Prominences
Formation of Helium Lines in ProminencesFormation of Helium Lines in Prominences
Formation of Helium Lines in Prominences
University of Glasgow
 
Anoverviewofnickeltitaniumalloysused
AnoverviewofnickeltitaniumalloysusedAnoverviewofnickeltitaniumalloysused
Anoverviewofnickeltitaniumalloysused
Maria Cutajar
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
Masayuki Horio
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellites
IJERA Editor
 

Similar to Fs 24052011 (20)

Design dell'energia comportamentale
Design dell'energia comportamentaleDesign dell'energia comportamentale
Design dell'energia comportamentale
 
Self-healing Materials
Self-healing MaterialsSelf-healing Materials
Self-healing Materials
 
N.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-ofN.34 michel great-influence-of paolo-farinella-in-studies-of
N.34 michel great-influence-of paolo-farinella-in-studies-of
 
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
Dierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  CrystalsDierk  Raabe  Darmstadt  T U  Celebration  Colloquium  Mechanics Of  Crystals
Dierk Raabe Darmstadt T U Celebration Colloquium Mechanics Of Crystals
 
Nano Indentation Lecture2
Nano Indentation Lecture2Nano Indentation Lecture2
Nano Indentation Lecture2
 
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on AuxeticsMorphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
Morphing Aircraft Workshop 26/03/13 - Presentation on Auxetics
 
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
Sputtering yield and nanopattern formation study of BNSiO2 (Borosil) at eleva...
 
1 s2.0-s1751616107000021-main
1 s2.0-s1751616107000021-main1 s2.0-s1751616107000021-main
1 s2.0-s1751616107000021-main
 
Thesis0520
Thesis0520Thesis0520
Thesis0520
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015
 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015
 
Endogenous and exogenous christalization
Endogenous and exogenous christalizationEndogenous and exogenous christalization
Endogenous and exogenous christalization
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystals
 
N Herbots Us Patent6613667
N Herbots Us Patent6613667N Herbots Us Patent6613667
N Herbots Us Patent6613667
 
Poster aps2020 (sapkota, yub)
Poster aps2020 (sapkota, yub)Poster aps2020 (sapkota, yub)
Poster aps2020 (sapkota, yub)
 
Evidence for ancient_grand_canyon
Evidence for ancient_grand_canyonEvidence for ancient_grand_canyon
Evidence for ancient_grand_canyon
 
Formation of Helium Lines in Prominences
Formation of Helium Lines in ProminencesFormation of Helium Lines in Prominences
Formation of Helium Lines in Prominences
 
Anoverviewofnickeltitaniumalloysused
AnoverviewofnickeltitaniumalloysusedAnoverviewofnickeltitaniumalloysused
Anoverviewofnickeltitaniumalloysused
 
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
PSRI30yr anniversary lecture on Scaling Law and Agglomeration Issues in Fluid...
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellites
 

Fs 24052011

  • 1. Auxetics: From Foams to Composites and Beyond Fabrizio Scarpa, f.scarpa@bristol.ac.uk www.bris.ac.uk/composites
  • 3. Acknowledgements Special thanks for their contribution to: A. Bezazi, M. Bianchi, P. Pastorino, M. Ruzzene, C. Lira, C. D. L. Remillat, L. G. Ciffo, M. R. Hassan, T. L. Lew, A. Spadoni, K. Saito, C. W. Smith, W. H. Bullough, H. Abramovitch, M. Burgard, M. Hoffmeister, M. Celuch, K. E. Evans, F. C. Smith, R. Neville, C. Coconnier, S. Jacobs, J. Martin, M. Bruckner, A. Alderson, K. Alderson, P. Innocenti, A. Lorato, Y. H. Tai, J. Yates, K. Worden, A. B. Spencer and G. Tomlinson
  • 4. Introduction • From the Greek auxetos: “that can expand” • Indicates Negative Poisson’s ratio (NPR) materials  1    0.5 Homogeneous, isotropic solid E1 21  E2 12 Special orthotropic solid   3 FR 2 1   2  Central deflection of a clamped 16 Et 3 circular plate 1 Hardness – increase H  with NPR – the 1    2 23 material wraps around the indenter Synclastic curvature – easy manufacturing of dome-shaped structures (University of Bolton, 2008)
  • 5. Introduction Fibril Hinging (microporous UHMWPE and PFTE - GoreTex©) A. Alderson, K. E. Evans, J. Mater. Sci. 1997, 32, 2797. (courtesy of Azon.com)
  • 6. Introduction Rotating rectangles J.N. Grima et al., Adv. Mater., 12 (2000)1912; A. Alderson et al., International Patent No. (Courtesy of Professor Joseph Grima, http://home.um.edu.mt/auxetic/properties.htm) PCT/GB98/03281 (1998). Used to prototype “smart” filters for chemical processes. Possible explanation of auxetic behaviour in some forms of a-crystobalite
  • 7. Introduction  y r t  x (D. Prall and R. Lakes, Int. J. Mech. Sci., 39, 305-314, 1996) LL R R   30 o   L r   t r   b L •Rotations of the nodes induce bending of the ligaments •Isotropic in-plane properties ( = -1)
  • 8. Foams Strain dependent tensile Poisson’s ratio (Scarpa, et al. Phys. Stat. Solidi B, 242(3) 2005, 681-694 )
  • 9. Foams 1. Multiaxial compression 4. Relaxation of Conventional 2. Annealing the sample PU based foam 3. Cooling
  • 10. Foams Conventional PU foam Auxetic ( = -0.26) Non-auxetic iso-density
  • 11. Foams Compression is the most significant manufacturing parameter for auxetic foams. (M. Bianchi, F Scarpa, C W Smith. J. Mat. Sci. 43(17), 5851)
  • 12. Foams 80 70 Conventional r = 0.95 Iso density 60 ] Auxetic 3 50 Energy U [mj/cm 40 30 20 10 0 0 25000 50000 75000 100000 Number of cycles N
  • 13. Smart auxetic foams (F. Scarpa, W. A. Bullough and P. Lumley, IMechE Proc. Part C, 216, 2004) Doping auxetic foams with magnetorheological fluids can provide a tuned acoustic absorber with shift peak varying with the intensity of an external magnet
  • 14. Shape Memory effect Auxetic Sample Returned Sample
  • 15. Shape Memory effect SEM images of (a)conventional, (Bianchi M., Scarpa F, Smith C. W., (b)1st auxetic, 2010. Acta Mater. 58(3), 858) (c)returned from (a) (b) auxetic and (d) 2nd auxetic open-cell PU based foam (c) (d)
  • 16. Foams – New manufacturing process New manufacturing process for Auxetic foams (Bianchi M., Scarpa F. Banse M. Smith C. W., 2011. Acta Mater. 59(2), 686)
  • 17. Foams – Vibration transmissibility 9 8 Auxetic 7 Conventional 6 5 |X | R 4 3 2 1 0 50 100 150 200 ω [Hz]
  • 18. Centre-symmetric honeycombs  4  2   c 22 cos  cos   sin  2 sin Flexible topology to enhance the mechanical and thermal conductivity performance
  • 19. Centre-symmetric honeycombs Point A INCONEL 617 core Conduction – radiation problem Time 0 s – uniform 273 K Point B Time 20 s – 1400 K at upper face PPR configurations NPR configurations In upper surfaces, temperatures are lower for auxetic configurations (Innocenti P., Scarpa F, 2009. J. Comp. Mat. 43(21), 2419)
  • 20. Centre-symmetric honeycombs Shape memory alloy honeycombs
  • 21. Centre-symmetric honeycombs Nonlinear in-plane properties – SMA honeycombs (Hassan MR, Scarpa F, Mohamed NA. Journal of Intelligent Material Systems and Structures 2009 20: 897-905 )
  • 22. Zero  honeycombs (SILICOMB) (Lira C, Scarpa F, Tai Y H, Yates J R, 2011. Comp. Sci. Tech. In press) (Lira C, Scarpa F, M. Olszewska and M. Celuch, 2009. Phys Status Solidi B 246, 2055)
  • 23. Gradient honeycombs (Lira C, Scarpa F., 2010. Comp. Sci. Tech. 70(6), 930) (Lira C., Scarpa F. Rajasekaran R., 2011. J. Int. Mat. Syst. Struct. In press)
  • 24. Kirigami/Origami honeycombs (Saito K,. Neville R. Scapa F., ICCS16 Porto, 28-30 June 2011) (Saito K., Agnese F., Scarpa F, 2011. J. Int. Mat. Syst. Struct. In press)
  • 25. Chiral structures •Developed using RTM techniques for maritime sandwich applications •Core with polyester/glass fibre •Superior specific compressive and shear strength compared to analogous cores in marine constructions •Possibility of embedding sensors (PZT, MFCs) for SHM or other monitoring applications •Flat or curved panels easily manufactured with no in-plane buckling stresses •Developed and commercialised by CHISMATECH (Catania, I) (Scarpa F., 2010. Comp. Sci. Tech. 70. CHISMACOMB Special Issue)
  • 26. Chiral structures Truss-core beam Applied torque Deformed configurations for excitation at resonant frequencies: Numerical Localized deformations Localized deformations 1120 Hz 1150 Hz Experimental (Spadoni A,. Ruzzene M., Scarpa F, 2006. J. Int. Mat. Syst. Struct. 17(11), 941)
  • 27. Chiral structures Deflection vs Velocity at 15º 2.5 2 Experimental Vertical Deflection (mm) FEA Inviscid 1.5 FEA Viscous 1 Eppler420 for racecar wing design 0.5 0 (Bornengo D., Scarpa F., Remillat C D L., 2005. 0 10 20 30 40 50 60 70 Velocity (m/s) IMechE Part G: J. Aerospace Eng. 219,185) (Martin J. et al, 2008. Physica Status Solidi B Chiral wingbox provides continuous 245(3), 570) camber variation with a stiff bending airfoil
  • 28. ES A A st riu m U LR Ø 3m SS B Fo R ld ab Ø 6m le Th Ti in ps Sh Ø el 6m lP an el Ø SM 6m AR T A Ø st 6m ro m es A h st ro Ø 9m C m hi es ra h lD Ø ep 12 lo m C ya hi ra bl lD e ep Ø 3m C lo hi ya ra bl lD e ep Ø 6m C lo hi ya ra bl lD e ep Ø 9m Weight to Area Ratio lo ya bl e Ø 12 m Packed to Deployed Area Ratio Deployable SMA antenna demonstrator
  • 29. Auxetic composite laminates (K Anderson, V R Simkins, V L Coenen, P J Davies, A Alderson, K Evans. Phys. Stat Solidi B, 242(3), 509 (2005) )  = -0.156  = 0.086 Static load/displacement curves Name0 Stacking sequence Name Stacking sequence Name Stacking sequence ST 1 [± θ2 ]s ST 11 [± 33 /± θ ]s ST 21 [± 10 /± θ ]s 0.6 ST 2 [02 /± θ ]s ST 12 [± 35 /± θ ]s ST 22 [± 15 /± θ ]s ST 8 0.3 ST 3 [902 /± θ ]s ST 13 [± 37 /± θ ]s ST 23 [±16 /± θ ]s ST 10 ST 12 ST 4 [- θ/+ θ/- θ/+θ/]s ST 14 [± 40 /± θ ]s ST 24 [± 17 /± θ ]s 0 ST 14 0 20 40 60 80 100 ST 5 [± θ/ 02]s ST 15 [± 45 /± θ ]s ST 25 [± 18 /± θ ]s  13 ST 15 ST 16 -0.3 ST 6 [± θ/902 ]s ST 16 [± 50 /± θ ]s ST 26 [± 19 /± θ ]s ST 17 ST 18 ST 7 [± 20 /± θ ]s ST 17 [± 60 /± θ ]s ST 27 [± 21 /± θ ]s -0.6 ST 19 Carbon ST 3 ST 8 [± 25 /± θ ]s ST 18 [± 70 /± θ ]s ST 28 [± 22 /± θ ]s -0.9 ST 9 [± 27 /± θ ]s ST 19 [± 80 /± θ ]s ST 29 [± 23 /± θ ]s  [Degrees] ST 10 [± 30 /± θ ]s ST 20 [± 5 /± θ ]s ST 30 [±24 /± θ ]s (E H Harkati, A Bezazi, F Scarpa, K Alderson, A Alderson. Phys. Stat Solidi B, 244(3), 883 (2007) )
  • 30. Auxetic composite laminates 3-point bending (T300-914 prepreg) (Bezazi A., Boukharouba W., Scarpa F, 2009. Physica Status Solid B 246(9), 2102)
  • 31. Auxetic composite laminates 3-point bending (T300-914 prepreg) (Bezazi A., Boukharouba W., Scarpa F, 2009. Physica Status Solid B 246(9), 2102)
  • 32. Nano-auxetics in carbon structures Weakening of C-C bonds strength → NPR in SWCNTs (Jindal P., Jindal VK, 2006. J. Comp. Theor. Nanosci. 3(1), 148) NPR effect when bond angle variation dominant deformation mechanism modification of force constants and bond length equilibrium (Yao, YT, Alderson A, Alderson K., 2007. Paper presented at Auxetics 2007 @ Malta) Evidence of in-plane NPR in buckypapers when mixing Other possible SWCNTs and MWCNTs mechanisms? (Hall, LJ et al, 2008. Science, 320, 504)
  • 33. Nano-auxetics in carbon structures Missing rib model (MRM) to explain NPR in open cell foams (C. W. Smith, J. N. Grima and K E Evans, 2000. Acta Mater. 48, 4349) Vacancy defects induced by electronic or ion irradiation (Telling, R. H. et al, 2003. Nature Mat. 2, 333) (Ajayan, PM, Ravikumar, V, Charlier, JC, 1998. Phys. Rev. Lett. 81, 1437) (Mielke, SL, et al, 2004. Chem. Phys. Lett. 390, 413) Uniaxial mechanical properties depending on % of vacant atoms (Sammalkorpi M et al. 2004. Phys. Rev. B 70, 245416)
  • 34. CNT and graphene mechanical properties (F Scarpa and S Adhikari, 2008. J. Phys. D: App. Phys., 41, 085306) (Scarpa F., Adhikari S., Phani A S, 2009. Nanotechnology 20 065709) (Scarpa, FL, L. Boldrin, Peng, H-X, Remillat, CDL & Adhikari, S., 2010. Applied Physics Letters, 97, 151903) (R. Chowdhury, Adhikari, S, CY Wang & Scarpa, FL., 2010 Comp. Mat. Sci., 48, 730) (E.I. Saavedra Flores, Adhikari, S, Friswell, MI & Scarpa, FL, 2011. Comp.Mat. Sci., 50, 1083) (Scarpa, FL, J. W. Narojczyk & K. W. Wojciechowski., 2011., Physica Status Solidi B, 1, 82 (Chowdhury R, Adhikari S, Rees P., Wilks S. P., Scarpa F., 2010. Phys. Rev. B 83, 045401)
  • 35. Nano-auxetics in carbon structures •FE nonlinear tensile loading simulations – applied strain 1.e-3 •Random generation for vacancies •Elements attached to vacant atoms desactivated (ekill utility) •Combinations of SWCNT aspect ratio, radius and % of vacant atoms considered •12800 MC simulations (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
  • 36. Nano-auxetics in carbon structures Mean Young’s modulus ratio and standard deviation Young’s modulus ratio for armchair (n,n). ● = 2 % NRV; ■ = 1.5 % NRV; ▲= 1 % NRV; ◊ = 0.5 % NRV (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
  • 37. Nano-auxetics in carbon structures Probability density functions for nrz in Distribution of the standard deviations (n,n) tubes (R = 0.426 nm, AR=5) for (n,n) configurations (pristine nrz between 0.29 and 0.16) (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002)
  • 38. Nano-auxetics in carbon structures (F Scarpa, S Adhikari, C Y Wang 2009. J. Phys. D: App. Phys., 42(14), 142002) (6,0) rz = -0.41 Evidence on NPR in defective CNTs found in NI-CNT systems (Smolyanitsky A, Twari V K, 2011. Nanotechnology 22 085703)
  • 39. Nano-auxetics in carbon structures (Ma Y et al, 2010. App. Phys. Lett. 97 061909)
  • 40. Nano-auxetics in carbon structures (Chen L et al, 2009. App. Phys. Lett. 94 253111)
  • 41. Conclusions Auxetics and NPR can be engineered at different scales Use of auxetic materials and structures needs lateral thinking  multidisciplinary research There is scope for R&D activities at different TRLs – from blue sky to manufacturing of commercial prototypes
  • 42. Conclusions Thank you for your attention!