SlideShare a Scribd company logo
1 of 22
Motion of Charged Particles through Titan’s Atmosphere
Austin Windsor, Matthew Richard
Presented By: Austin Windsor
nasa.gov
Motion of Charged Particles through Titan’s Atmosphere
Previous Titan Research
• Discovery Day 2014
• Ion Production Rates in
Titan’s Ionosphere
• Electron Precipitation
• Became co-author of
peer-evaluated
publication
Motion of Charged Particles through Titan’s Atmosphere
Goal for Discovery Day 2015
• Build a Monte Carlo computer code
• Produce simulated results of charged particles
entering Titan’s atmosphere
• Show the relationship of ion production with respect
to the altitude
nasa.gov
Motion of Charged Particles through Titan’s Atmosphere
What is Titan and Why?
• Saturn’s Largest Moon
• Titan’s atmosphere
resembles an early Earth
atmosphere in a deep
freeze (-190 C).
• Titan is the only other
planetesimal in the solar
system with sustainable
liquid on the surface
(methane)nasa.gov
Howell [2014]
Motion of Charged Particles through Titan’s Atmosphere
Cassini Solstice Mission
• Launched in 1997 to reach
orbit in 2004
• The Magnetospheric Imaging
Instrument (MIMI)
• The Cassini Plasma
Spectrometer (CAPS)
• Huygens, first atmospheric
entry probe to reach the
surface
European Space Agency [2003]
Motion of Charged Particles through Titan’s Atmosphere
Titan’s Haze
• Thick, dense layer of
Hydrocarbons
• Goal: Understand how the
haze is produced
• Starts around 500 km in
altitude
• Instruments could not see
through haze to view the
surface of Titan
nasa.gov
Motion of Charged Particles through Titan’s Atmosphere
Particle Interaction in Titan’s Atmosphere
• Photoionization, Electron Impact Ionization, and Ion Precipitation
• O+ , H2
+ , H+
Waite et al. [2004]
Motion of Charged Particles through Titan’s Atmosphere
Theoretical Background
• Motion in Magnetic Field, B
• Motion in Electric Field, E
• Approximation of particle’s next
position
• Probability of Collision with
Atmosphere
Motion of Charged Particles through Titan’s Atmosphere
Motion in Magnetic Field, B
• The path of the charged particle is circular.
• The force is always perpendicular to the path of motion.
BYU Physics
Motion of Charged Particles through Titan’s Atmosphere
Motion in Magnetic Field, B
Motion of Charged Particles through Titan’s Atmosphere
Motion in Magnetic Field, B
Motion of Charged Particles through Titan’s Atmosphere
Motion in Electric Field, E
• Generalized Ohm’s Law
• Strength of E is dependent of Plasma Flow Rates and B
• Motion of charged particles create an Electric Field
NPTEL
Motion of Charged Particles through Titan’s Atmosphere
Combining E and B Equations
Split Vectors into Components
Motion of Charged Particles through Titan’s Atmosphere
Split Vectors into Components
Motion of Charged Particles through Titan’s Atmosphere
Approximating Particle’s Next Position
• Initial Conditions: Position and Velocity
• Calculate Acceleration from Initial Conditions
• Use Newton’s motion equations for new position, velocity, and accelera
Small Time Step, dt, later
zi vz,i az,i
xi vx,i ax,i yi vy,i ay,i
yf vy,f ay,fxf vx,f ax,f
zf vz,f az,f
Motion of Charged Particles through Titan’s Atmosphere
Adding an Atmosphere
• Primarily made up of N2 (about 95%) and CH4 (about 5%)
• Probability of charged particles colliding with neutral species in the
atmosphere potentially causing ionization to occur
• Obtain data from Cassini Spacecraft to integrate a realistic
atmosphere
Motion of Charged Particles through Titan’s Atmosphere
Adding an Atmosphere
• σ = 2.27 x 10-5 cm-3
• no = 1.096 x 1010 prts/cm3
• z = altitude
• H = scale height
• kB = 1.3806 x 10-23 J/K
• T = 150 K
• m = 4.65 x 10-26 kg
• g = force of gravity
• G = 6.673 x 10-11 m3kg-1s-2
• mT = 1.345 x 1023 kg
• r = distance from center of Titan
space.com
Motion of Charged Particles through Titan’s Atmosphere
Building the Code
• Monte Carlo Simulation: problem solving technique used to
approximate the probability of certain outcomes by running
multiple trial runs using random numbers
• Random Number Generator Produced
Motion of Charged Particles through Titan’s Atmosphere
Building the Code
1. Track Particle’s motion with induced Magnetic Field
2. Add Electric Field Vector
3. Define Electric Field in terms of Plasma Flow Rates
4. Track multiple particles with random initial conditions generated
5. Shoot particles at Titan, do they hit the surface?
6. Add atmosphere with collision probability
7. Produce random number to compare with probability
8. Count the number of collision for given altitude bin
Motion of Charged Particles through Titan’s Atmosphere
Final Results
Motion of Charged Particles through Titan’s Atmosphere
Final Results
• Total of 100,000 Protons, 30% Collided with Atmosphere
Motion of Charged Particles through Titan’s Atmosphere
Future Plans
• Continue to build and develop code
• Integrate more better cross sections
• Incorporate plasma flow rates received from Cassini
• Add more neutral species to the atmosphere
• Run larger quantity of particles for better results

More Related Content

What's hot

Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtDark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtZhaksylyk Kazykenov
 
Ch28 special relativity 3 05 2013
Ch28  special relativity   3 05 2013Ch28  special relativity   3 05 2013
Ch28 special relativity 3 05 2013Majoro
 
Theory of Relativity
Theory of RelativityTheory of Relativity
Theory of Relativityirish clado
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption eventsBaurzhan Alzhanov
 
The Planck Interaction (w audio)
The Planck Interaction  (w audio)The Planck Interaction  (w audio)
The Planck Interaction (w audio)David Harding
 
Ultra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGNUltra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGNAshkbiz Danehkar
 
Optimal trajectory to Saturn in ion-thruster powered spacecraft
Optimal trajectory to Saturn in ion-thruster powered spacecraftOptimal trajectory to Saturn in ion-thruster powered spacecraft
Optimal trajectory to Saturn in ion-thruster powered spacecraftKristopherKerames
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Sérgio Sacani
 
special relativity
special relativityspecial relativity
special relativitypraveens
 
Special Relativity
Special RelativitySpecial Relativity
Special Relativitypraveens
 
Summer Research PowerPoint
Summer Research PowerPointSummer Research PowerPoint
Summer Research PowerPointTodd Denning
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of RelativityNikhil Sharma
 
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Insights to the Morphology of Planetary Nebulae from 3D SpectroscopyInsights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Insights to the Morphology of Planetary Nebulae from 3D SpectroscopyAshkbiz Danehkar
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 
Ch 28 Special Relativity
Ch 28 Special RelativityCh 28 Special Relativity
Ch 28 Special RelativityScott Thomas
 
Thespeedoflight
ThespeedoflightThespeedoflight
Thespeedoflight9690022544
 

What's hot (20)

Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrtDark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
Dark side ofthe_universe_public_29_september_2017_nazarbayev_shrt
 
Ch28 special relativity 3 05 2013
Ch28  special relativity   3 05 2013Ch28  special relativity   3 05 2013
Ch28 special relativity 3 05 2013
 
Theory of Relativity
Theory of RelativityTheory of Relativity
Theory of Relativity
 
Digamon IT1(DK1) presentation
Digamon IT1(DK1) presentationDigamon IT1(DK1) presentation
Digamon IT1(DK1) presentation
 
Pawan Kumar Relativistic jets in tidal disruption events
Pawan Kumar	Relativistic jets in tidal disruption eventsPawan Kumar	Relativistic jets in tidal disruption events
Pawan Kumar Relativistic jets in tidal disruption events
 
The Planck Interaction (w audio)
The Planck Interaction  (w audio)The Planck Interaction  (w audio)
The Planck Interaction (w audio)
 
Ultra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGNUltra-Fast Outflows in Seyfert I AGN
Ultra-Fast Outflows in Seyfert I AGN
 
Optimal trajectory to Saturn in ion-thruster powered spacecraft
Optimal trajectory to Saturn in ion-thruster powered spacecraftOptimal trajectory to Saturn in ion-thruster powered spacecraft
Optimal trajectory to Saturn in ion-thruster powered spacecraft
 
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
Evidence for the_thermal_sunyaev-zeldovich_effect_associated_with_quasar_feed...
 
special relativity
special relativityspecial relativity
special relativity
 
Special Relativity
Special RelativitySpecial Relativity
Special Relativity
 
Summer Research PowerPoint
Summer Research PowerPointSummer Research PowerPoint
Summer Research PowerPoint
 
Special Theory Of Relativity
Special Theory Of RelativitySpecial Theory Of Relativity
Special Theory Of Relativity
 
Einstein's Theory of relativity
 Einstein's Theory of relativity Einstein's Theory of relativity
Einstein's Theory of relativity
 
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Insights to the Morphology of Planetary Nebulae from 3D SpectroscopyInsights to the Morphology of Planetary Nebulae from 3D Spectroscopy
Insights to the Morphology of Planetary Nebulae from 3D Spectroscopy
 
DeSGC_Summary_2015
DeSGC_Summary_2015DeSGC_Summary_2015
DeSGC_Summary_2015
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
Ch 28 Special Relativity
Ch 28 Special RelativityCh 28 Special Relativity
Ch 28 Special Relativity
 
Thespeedoflight
ThespeedoflightThespeedoflight
Thespeedoflight
 
Speed of light from Al Qu'ran
Speed of light from Al Qu'ranSpeed of light from Al Qu'ran
Speed of light from Al Qu'ran
 

Viewers also liked (10)

Гра – найбільш доступний, природний та улюблений вид дитячої діяльності.
Гра – найбільш доступний, природний та  улюблений вид дитячої діяльності.Гра – найбільш доступний, природний та  улюблений вид дитячої діяльності.
Гра – найбільш доступний, природний та улюблений вид дитячої діяльності.
 
кабинет английского языка №37 сш №40
кабинет английского языка №37 сш №40кабинет английского языка №37 сш №40
кабинет английского языка №37 сш №40
 
Ahn.org data scraping
Ahn.org data scrapingAhn.org data scraping
Ahn.org data scraping
 
кулікова катерина замки англії та шотландії
кулікова катерина   замки англії та шотландіїкулікова катерина   замки англії та шотландії
кулікова катерина замки англії та шотландії
 
кабинет английского языка №37 сш №40
кабинет английского языка №37 сш №40кабинет английского языка №37 сш №40
кабинет английского языка №37 сш №40
 
Моє портфоліо
Моє портфоліоМоє портфоліо
Моє портфоліо
 
Diseño de redes locales
Diseño de redes localesDiseño de redes locales
Diseño de redes locales
 
моє портфоліо
моє портфоліомоє портфоліо
моє портфоліо
 
Звіт директора за 2015-2016 н.р.
Звіт директора за 2015-2016 н.р.Звіт директора за 2015-2016 н.р.
Звіт директора за 2015-2016 н.р.
 
post event report to committee
post event report to committeepost event report to committee
post event report to committee
 

Similar to Final_Windows

Cyclotron presentation
Cyclotron presentationCyclotron presentation
Cyclotron presentationSahib Ullah
 
Ion Propulsion Poster
Ion Propulsion PosterIon Propulsion Poster
Ion Propulsion PosterJacob Benner
 
The search for quantum gravity phenomenology - Marcus Reitz
The search for quantum gravity phenomenology - Marcus ReitzThe search for quantum gravity phenomenology - Marcus Reitz
The search for quantum gravity phenomenology - Marcus ReitzAdvanced-Concepts-Team
 
Physics Chapter No 1
Physics Chapter No 1Physics Chapter No 1
Physics Chapter No 1AqibJaved89
 
637127main tarditi presentation
637127main tarditi presentation637127main tarditi presentation
637127main tarditi presentationClifford Stone
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...Chad Orzel
 
Advance Propulsion System in Space Exploration - Ion Propulsion
Advance Propulsion System in Space Exploration - Ion PropulsionAdvance Propulsion System in Space Exploration - Ion Propulsion
Advance Propulsion System in Space Exploration - Ion PropulsionVINOTHE9
 
Discovery_Day_Windsor_2014
Discovery_Day_Windsor_2014Discovery_Day_Windsor_2014
Discovery_Day_Windsor_2014Austin Windsor
 
Applications Of Computer Science in Astronomy
Applications Of Computer Science in AstronomyApplications Of Computer Science in Astronomy
Applications Of Computer Science in AstronomyAhmed Abuzuraiq
 
Inflation as a solution to the problems of the Big Bang
Inflation as a solution to the problems of the Big BangInflation as a solution to the problems of the Big Bang
Inflation as a solution to the problems of the Big BangIan Huston
 
American Astronomical Society plenary talk
American Astronomical Society plenary talkAmerican Astronomical Society plenary talk
American Astronomical Society plenary talkMichael Norman
 
Gaya sentral ruben siagian.pptx
Gaya sentral ruben siagian.pptxGaya sentral ruben siagian.pptx
Gaya sentral ruben siagian.pptxRubenSiagian1
 

Similar to Final_Windows (20)

Ch09
Ch09Ch09
Ch09
 
Cyclotron presentation
Cyclotron presentationCyclotron presentation
Cyclotron presentation
 
Ion Propulsion Poster
Ion Propulsion PosterIon Propulsion Poster
Ion Propulsion Poster
 
Cyclotron.pdf
Cyclotron.pdfCyclotron.pdf
Cyclotron.pdf
 
Cyclotron
CyclotronCyclotron
Cyclotron
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
The search for quantum gravity phenomenology - Marcus Reitz
The search for quantum gravity phenomenology - Marcus ReitzThe search for quantum gravity phenomenology - Marcus Reitz
The search for quantum gravity phenomenology - Marcus Reitz
 
Particle physics 2010
Particle physics 2010Particle physics 2010
Particle physics 2010
 
Physics Chapter No 1
Physics Chapter No 1Physics Chapter No 1
Physics Chapter No 1
 
637127main tarditi presentation
637127main tarditi presentation637127main tarditi presentation
637127main tarditi presentation
 
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
High Precision, Not High Energy: Using Atomic Physics to Look Beyond the Stan...
 
Advance Propulsion System in Space Exploration - Ion Propulsion
Advance Propulsion System in Space Exploration - Ion PropulsionAdvance Propulsion System in Space Exploration - Ion Propulsion
Advance Propulsion System in Space Exploration - Ion Propulsion
 
Discovery_Day_Windsor_2014
Discovery_Day_Windsor_2014Discovery_Day_Windsor_2014
Discovery_Day_Windsor_2014
 
Applications Of Computer Science in Astronomy
Applications Of Computer Science in AstronomyApplications Of Computer Science in Astronomy
Applications Of Computer Science in Astronomy
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Inflation as a solution to the problems of the Big Bang
Inflation as a solution to the problems of the Big BangInflation as a solution to the problems of the Big Bang
Inflation as a solution to the problems of the Big Bang
 
Cyclotron
CyclotronCyclotron
Cyclotron
 
American Astronomical Society plenary talk
American Astronomical Society plenary talkAmerican Astronomical Society plenary talk
American Astronomical Society plenary talk
 
Cyclotron
CyclotronCyclotron
Cyclotron
 
Gaya sentral ruben siagian.pptx
Gaya sentral ruben siagian.pptxGaya sentral ruben siagian.pptx
Gaya sentral ruben siagian.pptx
 

Final_Windows

  • 1. Motion of Charged Particles through Titan’s Atmosphere Austin Windsor, Matthew Richard Presented By: Austin Windsor nasa.gov
  • 2. Motion of Charged Particles through Titan’s Atmosphere Previous Titan Research • Discovery Day 2014 • Ion Production Rates in Titan’s Ionosphere • Electron Precipitation • Became co-author of peer-evaluated publication
  • 3. Motion of Charged Particles through Titan’s Atmosphere Goal for Discovery Day 2015 • Build a Monte Carlo computer code • Produce simulated results of charged particles entering Titan’s atmosphere • Show the relationship of ion production with respect to the altitude nasa.gov
  • 4. Motion of Charged Particles through Titan’s Atmosphere What is Titan and Why? • Saturn’s Largest Moon • Titan’s atmosphere resembles an early Earth atmosphere in a deep freeze (-190 C). • Titan is the only other planetesimal in the solar system with sustainable liquid on the surface (methane)nasa.gov Howell [2014]
  • 5. Motion of Charged Particles through Titan’s Atmosphere Cassini Solstice Mission • Launched in 1997 to reach orbit in 2004 • The Magnetospheric Imaging Instrument (MIMI) • The Cassini Plasma Spectrometer (CAPS) • Huygens, first atmospheric entry probe to reach the surface European Space Agency [2003]
  • 6. Motion of Charged Particles through Titan’s Atmosphere Titan’s Haze • Thick, dense layer of Hydrocarbons • Goal: Understand how the haze is produced • Starts around 500 km in altitude • Instruments could not see through haze to view the surface of Titan nasa.gov
  • 7. Motion of Charged Particles through Titan’s Atmosphere Particle Interaction in Titan’s Atmosphere • Photoionization, Electron Impact Ionization, and Ion Precipitation • O+ , H2 + , H+ Waite et al. [2004]
  • 8. Motion of Charged Particles through Titan’s Atmosphere Theoretical Background • Motion in Magnetic Field, B • Motion in Electric Field, E • Approximation of particle’s next position • Probability of Collision with Atmosphere
  • 9. Motion of Charged Particles through Titan’s Atmosphere Motion in Magnetic Field, B • The path of the charged particle is circular. • The force is always perpendicular to the path of motion. BYU Physics
  • 10. Motion of Charged Particles through Titan’s Atmosphere Motion in Magnetic Field, B
  • 11. Motion of Charged Particles through Titan’s Atmosphere Motion in Magnetic Field, B
  • 12. Motion of Charged Particles through Titan’s Atmosphere Motion in Electric Field, E • Generalized Ohm’s Law • Strength of E is dependent of Plasma Flow Rates and B • Motion of charged particles create an Electric Field NPTEL
  • 13. Motion of Charged Particles through Titan’s Atmosphere Combining E and B Equations Split Vectors into Components
  • 14. Motion of Charged Particles through Titan’s Atmosphere Split Vectors into Components
  • 15. Motion of Charged Particles through Titan’s Atmosphere Approximating Particle’s Next Position • Initial Conditions: Position and Velocity • Calculate Acceleration from Initial Conditions • Use Newton’s motion equations for new position, velocity, and accelera Small Time Step, dt, later zi vz,i az,i xi vx,i ax,i yi vy,i ay,i yf vy,f ay,fxf vx,f ax,f zf vz,f az,f
  • 16. Motion of Charged Particles through Titan’s Atmosphere Adding an Atmosphere • Primarily made up of N2 (about 95%) and CH4 (about 5%) • Probability of charged particles colliding with neutral species in the atmosphere potentially causing ionization to occur • Obtain data from Cassini Spacecraft to integrate a realistic atmosphere
  • 17. Motion of Charged Particles through Titan’s Atmosphere Adding an Atmosphere • σ = 2.27 x 10-5 cm-3 • no = 1.096 x 1010 prts/cm3 • z = altitude • H = scale height • kB = 1.3806 x 10-23 J/K • T = 150 K • m = 4.65 x 10-26 kg • g = force of gravity • G = 6.673 x 10-11 m3kg-1s-2 • mT = 1.345 x 1023 kg • r = distance from center of Titan space.com
  • 18. Motion of Charged Particles through Titan’s Atmosphere Building the Code • Monte Carlo Simulation: problem solving technique used to approximate the probability of certain outcomes by running multiple trial runs using random numbers • Random Number Generator Produced
  • 19. Motion of Charged Particles through Titan’s Atmosphere Building the Code 1. Track Particle’s motion with induced Magnetic Field 2. Add Electric Field Vector 3. Define Electric Field in terms of Plasma Flow Rates 4. Track multiple particles with random initial conditions generated 5. Shoot particles at Titan, do they hit the surface? 6. Add atmosphere with collision probability 7. Produce random number to compare with probability 8. Count the number of collision for given altitude bin
  • 20. Motion of Charged Particles through Titan’s Atmosphere Final Results
  • 21. Motion of Charged Particles through Titan’s Atmosphere Final Results • Total of 100,000 Protons, 30% Collided with Atmosphere
  • 22. Motion of Charged Particles through Titan’s Atmosphere Future Plans • Continue to build and develop code • Integrate more better cross sections • Incorporate plasma flow rates received from Cassini • Add more neutral species to the atmosphere • Run larger quantity of particles for better results