ENERGY EFFICIENCY OPTIMIZATION OF
GROUNDWATER ABSTRACTION
Juan Ayanz, Ignacio Casals – Aguas de Alicante
Jose Francisco Caro – Suez Water Advanced Solutions
Context
Need for
energy
optimization
monitoring
solutions
Groundwater covers
approximately 50%
of drinking water
world needs.
Energy-intensive
process
Many factors
involved
(hydrogeological,
hydraulic,
mechanical,
electrical)
Lack of reliable
information
The case of Aguas de Alicante
• SE of Spain, classified as semi-arid
• High hydraulic stress, seasonal
consumption peaks
• No local surface water resources
• Groundwater accounts for almost
50% of the supply (20 wells)
• Groundwater abstraction means the
highest energy bill for the company
• Technology development project
launched in association with Suez
Advanced Solutions
Hydraulic stress in Spain’s main river basins
Objectives
Develop a smart equipment able to perform a real time, continuous
audit of the well efficiency considering all its components
Requirements
Remote reporting and
setting of parameters
High precision and time
resolution
Low maintenance
Able to monitor:
Aquifer state
Well condition
Pump efficiency
Electrical installation
Components
Water level
meter (bubbling
method)1
Pressure gauge
Temperature
gauge
Flow meter
Electric Quality
Analyser
Industrial
embedded PC
Router
1Patented
IDroSmartwell
Main Results
• Continuous groundwater levels (static,
dynamic, drawdown and recovery)
• Operating flow measurement
• Specific capacity and well losses
• Real time hydraulic, electrical and
electromechanical parameters
• Pump working point and curves
• Hydraulic and electrical demanded power
• Pump efficiency ratios and losses
• Electricity costs and losses due to inefficiency
Water
Production
management,
Maintenance
and Operation
Energy efficiency and data synchronization
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
01-01-08
31-12-08
31-12-09
01-01-11
01-01-12
kwh/m3/m
Date
Non-
synchronized
measurements
?
¿
Study of the
energy efficiency
evolution through
the indicator
Kwh/m3/m
Energy efficiency and data synchronization
Study of the
energy efficiency
evolution through
the indicator
Kwh/m3/m
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055
0.0060
01-01-08
31-12-08
31-12-09
01-01-11
01-01-12
?
¿
kwh/m3/m
Repair
Non-
synchronized
measurements
Synchronized
measurements
Piezometric level control
San Pelayo well
Santa Rita well
San Cristobal well
Irrigation well
Piezometric level control
Level
evolution
Piezometric level control
Sta. Rita well
starts
Sta. Rita &
San Pelayo
wells stop
Irrigation
well stops
San Pelayo
well starts
San Pelayo
well start
Irrigation well
starts
Sta. Rita well
starts
San Pelayo
well stops
San Cristóbal
well stops
Irrigation
well stops
San Cristóbal
starts
Level
evolution
Water production efficiency: Level optimization
Water production efficiency: Level optimization
Level increase = 3 m.
Drawdown = 18 m.
Drawdown < 0,5 m.Drawdown = 1 m.
Level increase = 2 m.
SL = -239 m.
SL = -242 m.
SL = -237 m.
Water production efficiency: Critical flow
Critical flow
Characteristic curve of the well
Water production efficiency: Critical Flow
Drawdown much lower than
stable dinamic level
Ascent higher than
Static level
Static level
Stable dinamic level
Static level t > 4 h.
There is a deficient connection between the well and the aquifer: the coefficient of
losses of the well is too high for this flow (low critical flow).
Curve of Accumulated cost overrun (€)
Accumulativecostoverrundueto
inefficiency
Date
Maintenance optimization
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Optimal date
for intervention
Repair cost not recovered Excess energy costs
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Optimal date
for intervention
Repair cost not recovered Excess energy costs
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Actual intervention
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
Optimal date
for intervention
Repair cost not recovered Excess energy costs
Cost Overrun Limit
(11.500 €)
Curve of Accumulated cost overrun (€)
Actual intervention
Date
Accumulativecostoverrundueto
inefficiency
Maintenance optimization
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
kw/m3/m
Quantitative Assessment of pump condition and repairs
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
kw/m3/m
Quantitative Assessment of pump condition and repairs
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Quantification
of the pump's wear
Quantification
of the repair’s quality
Accumulated Volume (m3)
First Pump
kw/m3/m
Quantitative Assessment of pump condition and repairs
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
Original Situation
kw/m3/m
Second pump
Quantitative Assessment of pump condition and repairs
y = 5,59133898E-11x + 4,28489613E-03
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
Original Situation
kw/m3/m
Second pump
Quantitative Assessment of pump condition and repairs
y = 5,59133898E-11x + 4,28489613E-03
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
Original Situation
First Repair
kw/m3/m
Second pump
Quantitative Assessment of pump condition and repairs
y = 5,59133898E-11x + 4,28489613E-03
y = 7,26023030E-11x + 4,21630977E-03
y = 8,52000846E-11x + 4,25486485E-03
0,0035
0,0037
0,0039
0,0041
0,0043
0,0045
0,0047
0,0049
0,0051
0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000
Accumulated Volume (m3)
First Pump
Original Situation
First Repair
kw/m3/m
Second pump
Quantitative Assessment of pump condition and repairs
The case of Aguas de Alicante: results
• The system was implemented
in 10 wells
• Estimated Savings:
• 1,934,405 Kwh per year
( 20%)
• 260,000 €
• Implementation in all wells
under way
Stages of groundwater abstraction management
Manual,
básico
Errática y
elemental
Ausente o
esporádico
Ausencia
EQUIPMENT MEASUREMENT CONTROL SOFTWARE OBJECTIVES
Obsoleto Ausencia Ausencia AusenciaObsolete Absent Absent Absent
Only demand
fulfillment
Manual,
basic
Occasional and
basic
Absent or
sporadic
Absent
Fulfill demand,
basic protection
Esporádico,
In situ
Manual,
in situ
Básic
o
Mantenimient
o correctivo
Automático
, in situ
Sporadic, In
situ
Manual,
in situ
Basic
Corrective
Maintenance
Automatic,
in situ
Automático,
telecontrolado
Automática,
descoordinada
Exhaustivo,
impreciso
Evolucionado Mantenimient
o preventivo
Automatic,
remote control
Automatic,
asynchronous
Exhaustive,
Non precise
Evolved Preventive
Maintenance
Avanzado,
específico,
IdroSmartWell
Automática,
coordinada
Exhaustivo,
preciso
Avanzado,
específico y/o
propio
Mantenimient
o preventivo
y/o predictivo
Advanced,
specific,
IdroSmartWell
Automatic,
Synchronized
Exhaustive,
precise
Advanced,
specific
Predictive
Maintenance
jfcarom@aquatec.es
ignacio.casals@aguasdealicante.es

Energy efficiency optimization in groundwater abstraction - IWA Efficient 2017

  • 1.
    ENERGY EFFICIENCY OPTIMIZATIONOF GROUNDWATER ABSTRACTION Juan Ayanz, Ignacio Casals – Aguas de Alicante Jose Francisco Caro – Suez Water Advanced Solutions
  • 2.
    Context Need for energy optimization monitoring solutions Groundwater covers approximately50% of drinking water world needs. Energy-intensive process Many factors involved (hydrogeological, hydraulic, mechanical, electrical) Lack of reliable information
  • 3.
    The case ofAguas de Alicante • SE of Spain, classified as semi-arid • High hydraulic stress, seasonal consumption peaks • No local surface water resources • Groundwater accounts for almost 50% of the supply (20 wells) • Groundwater abstraction means the highest energy bill for the company • Technology development project launched in association with Suez Advanced Solutions Hydraulic stress in Spain’s main river basins
  • 4.
    Objectives Develop a smartequipment able to perform a real time, continuous audit of the well efficiency considering all its components Requirements Remote reporting and setting of parameters High precision and time resolution Low maintenance Able to monitor: Aquifer state Well condition Pump efficiency Electrical installation
  • 5.
    Components Water level meter (bubbling method)1 Pressuregauge Temperature gauge Flow meter Electric Quality Analyser Industrial embedded PC Router 1Patented IDroSmartwell
  • 6.
    Main Results • Continuousgroundwater levels (static, dynamic, drawdown and recovery) • Operating flow measurement • Specific capacity and well losses • Real time hydraulic, electrical and electromechanical parameters • Pump working point and curves • Hydraulic and electrical demanded power • Pump efficiency ratios and losses • Electricity costs and losses due to inefficiency Water Production management, Maintenance and Operation
  • 7.
    Energy efficiency anddata synchronization 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 01-01-08 31-12-08 31-12-09 01-01-11 01-01-12 kwh/m3/m Date Non- synchronized measurements ? ¿ Study of the energy efficiency evolution through the indicator Kwh/m3/m
  • 8.
    Energy efficiency anddata synchronization Study of the energy efficiency evolution through the indicator Kwh/m3/m 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 01-01-08 31-12-08 31-12-09 01-01-11 01-01-12 ? ¿ kwh/m3/m Repair Non- synchronized measurements Synchronized measurements
  • 9.
    Piezometric level control SanPelayo well Santa Rita well San Cristobal well Irrigation well
  • 10.
  • 11.
    Piezometric level control Sta.Rita well starts Sta. Rita & San Pelayo wells stop Irrigation well stops San Pelayo well starts San Pelayo well start Irrigation well starts Sta. Rita well starts San Pelayo well stops San Cristóbal well stops Irrigation well stops San Cristóbal starts Level evolution
  • 12.
    Water production efficiency:Level optimization
  • 13.
    Water production efficiency:Level optimization Level increase = 3 m. Drawdown = 18 m. Drawdown < 0,5 m.Drawdown = 1 m. Level increase = 2 m. SL = -239 m. SL = -242 m. SL = -237 m.
  • 14.
    Water production efficiency:Critical flow Critical flow Characteristic curve of the well
  • 15.
    Water production efficiency:Critical Flow Drawdown much lower than stable dinamic level Ascent higher than Static level Static level Stable dinamic level Static level t > 4 h. There is a deficient connection between the well and the aquifer: the coefficient of losses of the well is too high for this flow (low critical flow).
  • 16.
    Curve of Accumulatedcost overrun (€) Accumulativecostoverrundueto inefficiency Date Maintenance optimization
  • 17.
    Cost Overrun Limit (11.500€) Curve of Accumulated cost overrun (€) Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 18.
    Cost Overrun Limit (11.500€) Curve of Accumulated cost overrun (€) Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 19.
    Cost Overrun Limit (11.500€) Curve of Accumulated cost overrun (€) Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 20.
    Cost Overrun Limit (11.500€) Curve of Accumulated cost overrun (€) Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 21.
    Optimal date for intervention Repaircost not recovered Excess energy costs Cost Overrun Limit (11.500 €) Curve of Accumulated cost overrun (€) Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 22.
    Optimal date for intervention Repaircost not recovered Excess energy costs Cost Overrun Limit (11.500 €) Curve of Accumulated cost overrun (€) Actual intervention Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 23.
    Optimal date for intervention Repaircost not recovered Excess energy costs Cost Overrun Limit (11.500 €) Curve of Accumulated cost overrun (€) Actual intervention Date Accumulativecostoverrundueto inefficiency Maintenance optimization
  • 24.
    0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.0001.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump kw/m3/m Quantitative Assessment of pump condition and repairs
  • 25.
    y = 8,52000846E-11x+ 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump kw/m3/m Quantitative Assessment of pump condition and repairs
  • 26.
    y = 8,52000846E-11x+ 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Quantification of the pump's wear Quantification of the repair’s quality Accumulated Volume (m3) First Pump kw/m3/m Quantitative Assessment of pump condition and repairs
  • 27.
    y = 8,52000846E-11x+ 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump Original Situation kw/m3/m Second pump Quantitative Assessment of pump condition and repairs
  • 28.
    y = 5,59133898E-11x+ 4,28489613E-03 y = 8,52000846E-11x + 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump Original Situation kw/m3/m Second pump Quantitative Assessment of pump condition and repairs
  • 29.
    y = 5,59133898E-11x+ 4,28489613E-03 y = 8,52000846E-11x + 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump Original Situation First Repair kw/m3/m Second pump Quantitative Assessment of pump condition and repairs
  • 30.
    y = 5,59133898E-11x+ 4,28489613E-03 y = 7,26023030E-11x + 4,21630977E-03 y = 8,52000846E-11x + 4,25486485E-03 0,0035 0,0037 0,0039 0,0041 0,0043 0,0045 0,0047 0,0049 0,0051 0 500.000 1.000.000 1.500.000 2.000.000 2.500.000 3.000.000 3.500.000 Accumulated Volume (m3) First Pump Original Situation First Repair kw/m3/m Second pump Quantitative Assessment of pump condition and repairs
  • 31.
    The case ofAguas de Alicante: results • The system was implemented in 10 wells • Estimated Savings: • 1,934,405 Kwh per year ( 20%) • 260,000 € • Implementation in all wells under way
  • 32.
    Stages of groundwaterabstraction management Manual, básico Errática y elemental Ausente o esporádico Ausencia EQUIPMENT MEASUREMENT CONTROL SOFTWARE OBJECTIVES Obsoleto Ausencia Ausencia AusenciaObsolete Absent Absent Absent Only demand fulfillment Manual, basic Occasional and basic Absent or sporadic Absent Fulfill demand, basic protection Esporádico, In situ Manual, in situ Básic o Mantenimient o correctivo Automático , in situ Sporadic, In situ Manual, in situ Basic Corrective Maintenance Automatic, in situ Automático, telecontrolado Automática, descoordinada Exhaustivo, impreciso Evolucionado Mantenimient o preventivo Automatic, remote control Automatic, asynchronous Exhaustive, Non precise Evolved Preventive Maintenance Avanzado, específico, IdroSmartWell Automática, coordinada Exhaustivo, preciso Avanzado, específico y/o propio Mantenimient o preventivo y/o predictivo Advanced, specific, IdroSmartWell Automatic, Synchronized Exhaustive, precise Advanced, specific Predictive Maintenance
  • 33.