SlideShare a Scribd company logo
1 of 8
Download to read offline
Reports
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 1 / 10.1126/science.1253645
The earliest phases in the lives of stars determine their future fate. For
example, the production of chemical elements, which are used to trace
the history of Galactic evolution, depends on the initial mass and metal-
licity of young stars. Also, the angular momentum obtained during the
birth process is vital for the further stellar life. Therefore, understanding
the physical processes that occur during the earliest stages of stellar evo-
lution is essential.
During the early evolutionary phases, following the star’s appear-
ance on the birthline (1–3), the central temperatures and densities are not
yet high enough to initiate significant nuclear burning, hence, the early
star derives all of its energy (heat and radiative) from the release of grav-
itational potential energy. The interior structure undergoes several
changes as the temperature rises and the opacities, in general, decrease
(1). Initially, the higher opacities and the outward transportation of the
released gravitational energy force the star to be nearly fully convective.
But, as the star heats up and the opacities drop, a radiative core develops.
At this point the star leaves the Hayashi track (4) and follows the Heny-
ey track (5), moving leftward to hotter surface temperatures in the evolu-
tionary diagram. Eventually, the star’s central regions become hot
enough for nuclear burning to occur. Models predict that, for intermedi-
ate-mass stars (i.e., with 1.5 to 8 solar masses, M◉), just before the star
reaches this nuclear burning stage, called the main-sequence (MS) phase,
there is a “bump” or brief period of
nuclear burning where carbon is
“burned” by the CNO cycle (a chain of
hydrogen burning reactions catalyzed
by the presence of C, N, and O) until C
and N reach nuclear burning equilibri-
um. As this happens, the star’s core
briefly becomes convective and the
star’s luminosity increases. Shortly
thereafter, the star resumes its contrac-
tion onto the zero-age main sequence
(ZAMS), when nuclear burning of hy-
drogen re-ignites and remains the dom-
inant source of energy throughout most
of the rest of the star’s life. The precise
definition of the ZAMS is critical when
comparing ages of young stars. Here we
define the ZAMS as the time following
the CN equilibrium burning bump,
when the nuclear burning accounts for
at least one percent of the total luminos-
ity of the star.
For pre-MS stars with 1.5 to 4 M◉,
the interior structure will become un-
stable to acoustic oscillation modes at
some point during their evolution along
the Henyey track. These can be ob-
served at the surface as periodic varia-
tions in luminosity and temperature or
as Doppler shifts of spectral lines. So,
for at least some pre-MS stars, it is
possible at some evolutionary stages to
use asteroseismology to explore their
structure and evolution. The pre-MS
stars addressed in this study show co-
herent self-excited low-radial-order
pressure (p) modes (6) with periods
from ~18 min up to 6 hours. Until
2008, only 36 of them were known (7);
through 2011, the number increased
significantly to more than 60 (8) using
dedicated ground-based observations
and high-precision time-series photometry obtained with the Microvari-
ability and Oscillations of STars (MOST) (9) and COnvection, ROtation
et Transits planétaires (CoRoT) (10) satellites. Although the pulsations
of pre-MS stars could be studied in relative detail, little information was
available about the stars’ fundamental astrophysical properties, such as
effective temperature (Teff), surface gravity (log g), luminosity, mass
(M), projected rotational velocity (vsini) and metallicity ([Fe/H]), due to
the lack of spectroscopic measurements for this type of objects.
Our sample comprises 34 stars with confirmed pre-MS evolutionary
status, pulsational variability and accurate fundamental parameters de-
termined from detailed spectroscopic analyses. We assessed the pre-MS
status of the stars in our sample in two different ways: through their
membership in open clusters known to be younger than 10 million years,
which ensures that 1.5-4 M◉ stars have not reached the ZAMS yet; or
through their identification as Herbig Ae stars (11), which are associated
with star-forming regions.
The pulsational properties of the sample stars were determined from
ground and space-based observations. For nineteen stars, high-precision
space photometry from the MOST (9) and CoRoT (10) satellites was
used to investigate the pulsations. For eight of those (i.e., HD 261737,
HD 262014, HD 262209, HD 37357, NGC 2244 45, NGC 2244 183,
Echography of young stars reveals
their evolution
K. Zwintz,
1
* L. Fossati,
2
T. Ryabchikova,
3
D. Guenther,
4
C. Aerts,
1,5
T. G. Barnes,
6
N. Themeßl,
7
D. Lorenz,
7
C. Cameron,
8
R. Kuschnig,
7
S. Pollack-Drs,
7
E. Moravveji,
1
A. Baglin,
9
J. M. Matthews,
10
A. F. J.
Moffat,
11
E. Poretti,
12
M. Rainer,
12
S. M. Rucinski,
13
D. Sasselov,
14
W.
W. Weiss7
1
Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium. 2
Argelander Institut
für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany. 3
Institute of Astronomy,
Russian Academy of Sciences, Pyatnitskaya 48, 109017 Moscow, Russia. 4
Department of Astronomy and
Physics, St. Mary’s University, Halifax, NS B3H 3C3, Canada. 5
Department of Astrophysics, IMAPP,
Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands. 6
The University of Texas at
Austin, McDonald Observatory, 82 Mt. Locke Rd., McDonald Observatory, Texas 79734, USA. 7
Universität
Wien, Institut für Astrophysik, Türkenschanzstraße 17, 1180 Vienna, Austria. 8
Department of Mathematics,
Physics and Geology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada, B1P
6L2. 9
LESIA, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195, Meudon, France. 10
Department
of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1,
Canada. 11
Départment de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC
H3C 3J7, Canada. 12
INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy.
13
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S
3H4, Canada. 14
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138,
USA.
*Corresponding author. E-mail: konstanze.zwintz@ster.kuleuven.be.
We demonstrate that a seismic analysis of stars in their earliest evolutionary phases
is a powerful method to identify young stars and distinguish their evolutionary
states. The early star that is born from the gravitational collapse of a molecular
cloud reaches at some point sufficient temperature, mass and luminosity to be
detected. Accretion stops and the pre-main sequence star that emerges is nearly
fully convective and chemically homogeneous. It will continue to contract
gravitationally until the density and temperature in the core are high enough to start
nuclear burning of hydrogen. We show that there is a relationship for a sample of
young stars between detected pulsation properties and their evolutionary status,
illustrating the potential of asteroseismology for the early evolutionary phases.
onJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfrom
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 2 / 10.1126/science.1253645
NGC 2244 271 and NGC 2244 399) the pulsational variability was dis-
covered in the course of this study, while the seismic properties for the
remaining eleven objects observed from space have been described in
previous work (see Supplementary Material for all references). Addi-
tionally, the pulsational properties for 15 stars were taken from ground-
based observing campaigns reported in the literature (see Supplementary
Material for all references).
For the determination of the fundamental parameters, we obtained
high-resolution, high signal-to-noise ratio spectra for 27 objects of our
sample to complement the variability analysis; for the other seven stars,
fundamental parameters were available in the literature (Supplementary
Material).
To put the stars’ positions in the Teff – log g plane in context to their
relative evolutionary stage, we computed pre-MS evolutionary tracks
with the Yale Stellar Evolution Code (YREC, 12) for solar metallicity
(i.e., Z = 0.02) (Figs. 1 and 2). We find that our sample includes stars
that gain their energy solely from gravitational contraction (i.e., stars that
are on the Henyey track just before arriving on the ZAMS), stars in
which incomplete nuclear burnings have started (i.e., stars that are brief-
ly burning CN producing the short rise in the luminosity before the star
settles onto the ZAMS as discussed above), and stars close to the ZAMS
where hydrogen-burning in the cores has already started.
In general, the stellar lifetime strongly depends on the birth mass. In
the case of pre-MS stars, this dependence is manifested by the Kelvin-
Helmholtz contraction time scale (13) rather than the nuclear time scale
that rules the evolution of MS stars. The 34 pre-MS stars of our sample
have masses between 1.5 and 3.0 M◉. Although this mass range is rather
narrow, the differences in stellar ages at the ZAMS are significant: a star
with 3.0 M◉ needs only ~8 million years from the birthline (i.e., the point
where the star emerges from the molecular cloud and mass accretion
stops) until hydrogen is ignited in its core (i.e., the arrival on the
ZAMS), while a star with 1.5 M◉ has a ZAMS age of ~33 million years.
The duration of the star formation process is thus strongly dependent on
the mass of the pre-MS star.
The evolution of stellar rotation rates during the pre-MS phases is
poorly understood. As young stars contract during their transition from
the birthline to the ZAMS, stellar evolution theory predicts an increase
in their rotational velocities if angular momentum is conserved (14). The
fraction of the projected rotational velocity (vsini) over the critical
breakup velocity (vcrit) for the 34 pre-MS stars (Fig. 1) indeed indicates
the occurrence of higher rotation rates at the times of the first nuclear
burning compared to the one of stars in the earlier stages. We find that
the majority of the pre-MS stars in our sample rotates at a low to moder-
ate fraction of their critical breakup velocity (fig. S3), which points to
angular momentum loss by, e.g., winds or star-disk coupling. Our results
agree with recent results reported for Herbig Ae/Be stars in a similar
mass range (15).
The acoustic cut-off frequency is the highest frequency of a pressure
mode that can still be trapped inside the star and is therefore an im-
portant seismic characteristic. Theoretical computations for pre-MS stars
predict the highest values to occur close to the ZAMS (i.e., around
1000μHz or 86.4d−1
) and the lowest values (i.e., around 100μHz or
8.6d−1
) close to the birthline (16). For high-order pressure modes, the
acoustic cut-off frequency scales with the frequency of maximum power,
νmax (17). For comparison with our observational sample, we used the
highest significant pressure-mode frequency, fmax, which is the measura-
ble quantity in our data coming closest to the acoustic cut-off frequency
computed from seismic models. Our observations indeed confirm the
theoretical predictions: the coolest and least evolved stars have the low-
est fmax values, and therefore pulsate with the longest periods (fig. S4).
The hottest and most evolved stars have the highest fmax values and pul-
sate with the shortest periods. A similar relation is found when we use
νmax derived from our data instead of fmax. In the present sample fmax
ranges from 76.47 μHz (for the star HR 5999) to 970.37 μHz (for the star
HD 261711).
Our sample consists of a mixture of different types of pre-MS ob-
jects (cluster members and Herbig Ae field stars) that also have different
formation histories. By taking a subsample of pulsating stars that formed
from the same molecular cloud and had the same initial conditions, we
reduced possible ambiguities in the interpretation. In the young open
cluster NGC 2264 (18, 19) nine pulsating pre-MS members were discov-
ered by multi-epoch observations conducted with the MOST and the
CoRoT space telescopes. The pulsational variability of HD 261737, HD
262014 and HD 262209 is reported for the first time in this work (Sup-
plementary Material), while the seismic properties for V 588 Mon, V
589 Mon, HD 261230, HD 261387, NGC 2264 104 and HD 261711
have been described in previous work (see Supplementary Material for
all references). The nine pre-MS pulsators in NGC 2264 (marked as “a”
through “i” in Figs. 2 and 3) have different masses and are found to be in
different relative evolutionary phases. Their evolutionary tracks in con-
junction with their pulsational properties (Figs. 2 and 3) illustrate that
the least-evolved stars pulsate slower (V 589 Mon) than the objects that
are already located closer to the ZAMS (HD 261711). This is evidence
of sequential star formation, making the assignment of a single age to
this and other young open clusters unjustified. In particular, we find that
the duration of the star formation process in NGC 2264 has been ongo-
ing for much longer than the cluster age of 1 to 5 Myr reported in the
literature (e.g., 18, 19).
A clear relation between the seismic observables and evolutionary
status for the pre-MS stars emerges, even though our sample is relatively
heterogeneous due to both the mixture of field and cluster stars of vary-
ing metallicity, as well as different precision for the available data sets.
This relation is even clearer when we consider stars formed from the
same birth environment, such as members of the young cluster NGC
2264. We have shown with this study that asteroseismology can discern
different stages of evolution not only for dying intermediate-mass stars,
as was recently found (20). Such observations can be similarly applied to
unravel the star formation history of young stars and even deliver the
relative ages of the various mass populations of pre-MS stars of young
open clusters.
References and Notes
1. S. W. Stahler, The birthline for low-mass stars. Astrophys. J. 274, 822–829
(1983). doi:10.1086/161495
2. S. W. Stahler, Deuterium and the stellar birthline. Astrophys. J. 332, 804–825
(1988). doi:10.1086/166694
3. F. Palla, S. W. Stahler, The birthline for intermediate-mass stars. Astrophys. J.
360, L47–50 (1990). doi:10.1086/185809
4. C. Hayashi, Publ. Astron. Soc. Jpn. 13, 450–452 (1961).
5. L. G. Henyey, R. Lelevier, R. D. Levée, The Early Phases of Stellar Evolution.
Publ. Astron. Soc. Pac. 67, 154 (1955). doi:10.1086/126791
6. M. Suran, M. Goupil, A. Baglin, Y. Lebreton, C. Catala, Comparative
seismology of pre- and main sequence stars in the instability strip. Astron.
Astrophys. 372, 233–240 (2001). doi:10.1051/0004-6361:20010485
7. K. Zwintz, Comparing the Observational Instability Regions for Pulsating Pre–
Main‐Sequence and Classical δ Scuti Stars. Astrophys. J. 673, 1088–1092
(2008). doi:10.1086/524293
8. K. Zwintz, T. Kallinger, D. B. Guenther, M. Gruberbauer, R. Kuschnig, W. W.
Weiss, M. Auvergne, L. Jorda, F. Favata, J. Matthews, M. Fischer,
PULSATIONAL ANALYSIS OF V 588 MON AND V 589 MON
OBSERVED WITH THE MOST AND CoRoT SATELLITES. Astrophys. J.
729, 20–33 (2011). doi:10.1088/0004-637X/729/1/20
9. G. A. H. Walker, J. Matthews, R. Kuschnig, R. Johnson, S. Rucinski, J. Pazder,
G. Burley, A. Walker, K. Skaret, R. Zee, S. Grocott, K. Carroll, P. Sinclair, D.
Sturgeon, J. Harron, The MOST Asteroseismology Mission: Ultraprecise
Photometry from Space. Publ. Astron. Soc. Pac. 115, 1023–1035 (2003).
doi:10.1086/377358
10. A. Baglin, A., The CoRoT mission, pre-launch status, stellar seismology and
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 3 / 10.1126/science.1253645
planet finding, eds. M. Fridlund, A. Baglin, J. Lochard & L. Conroy, ESA SP-
1306 (Noordwijk, The Netherlands: ESA Publications Division).
11. G. H. Herbig, The Spectra of Be- and Ae-TYPE Stars Associated with
Nebulosity. Astrophys. J. 4 (Supplement), 337–382 (1960).
doi:10.1086/190050
12. D. B. Guenther, T. Kallinger, K. Zwintz, W. W. Weiss, R. Kuschnig, M. P.
Casey, J. M. Matthews, A. F. J. Moffat, S. M. Rucinski, D. Sasselov, G. A. H.
Walker, ASTEROSEISMIC ANALYSIS OF THE PRE-MAIN-SEQUENCE
STARS IN NGC 2264. Astrophys. J. 704, 1710–1720 (2009).
doi:10.1088/0004-637X/704/2/1710
13. M. Marconi, F. Palla, The Instability Strip for Pre–main-sequence Stars.
Astrophys. J. 507, L141–L144 (1998). doi:10.1086/311704
14. S. W. Stahler, F. Palla, The Formation of Stars, (Wiley-VCH, Weinheim,
2006).
15. E. Alecian, G. A. Wade, C. Catala, J. H. Grunhut, J. D. Landstreet, T. Bohm,
C. P. Folsom, S. Marsden, A high-resolution spectropolarimetric survey of
Herbig Ae/Be stars - II. Rotation. Mon. Not. R. Astron. Soc. 429, 1027–1038
(2013). doi:10.1093/mnras/sts384
16. M. Casey, Analysis of pre-main sequence delta Scuti stars, PhD Thesis, St.
Mary’s University, Canada, Publication Number: AAT NR82337 (2011).
17. C. Aerts, J. Christensen-Dalsgaard, D. Kurtz, Asteroseismology, (Springer
Dordrecht Heidelberg London New York, 2010).
18. L. M. Rebull, R. B. Makidon, S. E. Strom, L. A. Hillenbrand, A. Birmingham,
B. M. Patten, B. F. Jones, H. Yagi, M. T. Adams, Circumstellar Disk
Candidates Identified in NGC 2264. Astron. J. 123, 1528–1547 (2002).
doi:10.1086/338904
19. S. E. Dahm, T. Simon, The T Tauri Star Population of the Young Cluster
NGC 2264. Astron. J. 129, 829–855 (2005). doi:10.1086/426326
20. T. R. Bedding, B. Mosser, D. Huber, J. Montalbán, P. Beck, J. Christensen-
Dalsgaard, Y. P. Elsworth, R. A. García, A. Miglio, D. Stello, T. R. White, J.
De Ridder, S. Hekker, C. Aerts, C. Barban, K. Belkacem, A. M. Broomhall,
T. M. Brown, D. L. Buzasi, F. Carrier, W. J. Chaplin, M. P. Di Mauro, M. A.
Dupret, S. Frandsen, R. L. Gilliland, M. J. Goupil, J. M. Jenkins, T. Kallinger,
S. Kawaler, H. Kjeldsen, S. Mathur, A. Noels, V. S. Aguirre, P. Ventura,
Gravity modes as a way to distinguish between hydrogen- and helium-burning
red giant stars. Nature 471, 608–611 (2011). Medline
doi:10.1038/nature09935
21. D. W. Kurtz, C. Catala, On the? Scuti variability in the pre-main sequence
Herbig Ae star HR 5999. Astron. Astrophys. 369, 981–985 (2001).
doi:10.1051/0004-6361:20010165
22. P. Lampens, F. Rufener, Astron. Astrophys. Suppl. Ser. 83, 145–182 (1990).
23. V. Ripepi, M. Marconi, S. Bernabei, F. Palla, F. J. G. Pinheiro, D. F. M.
Folha, T. D. Oswalt, L. Terranegra, A. Arellano Ferro, X. J. Jiang, J. M.
Alcalá, S. Marinoni, M. J. P. F. G. Monteiro, M. Rudkin, K. Johnston,
Multisite observations of the PMS δ Scuti star V351 Ori. Astron. Astrophys.
408, 1047–1055 (2003). doi:10.1051/0004-6361:20031011
24. K. Zwintz, T. Kallinger, D. B. Guenther, M. Gruberbauer, D. Huber, J. Rowe,
R. Kuschnig, W. W. Weiss, J. M. Matthews, A. F. J. Moffat, S. M. Rucinski,
D. Sasselov, G. A. H. Walker, M. P. Casey, MOST photometry of the
enigmatic PMS pulsator HD 142666. Astron. Astrophys. 494, 1031–1040
(2009). doi:10.1051/0004-6361:200811116
25. K. Zwintz, M. Hareter, R. Kuschnig, P. J. Amado, N. Nesvacil, E. Rodriguez,
D. Diaz-Fraile, W. W. Weiss, T. Pribulla, D. B. Guenther, J. M. Matthews, A.
F. J. Moffat, S. M. Rucinski, D. Sasselov, G. A. H. Walker, MOST
observations of the young open cluster NGC 2264. Astron. Astrophys. 502,
239–252 (2009). doi:10.1051/0004-6361/200911863
26. M. W. Werner, T. L. Roellig, F. J. Low, G. H. Rieke, M. Rieke, W. F.
Hoffmann, E. Young, J. R. Houck, B. Brandl, G. G. Fazio, J. L. Hora, R. D.
Gehrz, G. Helou, B. T. Soifer, J. Stauffer, J. Keene, P. Eisenhardt, D.
Gallagher, T. N. Gautier, W. Irace, C. R. Lawrence, L. Simmons, J. E. Van
Cleve, M. Jura, E. L. Wright, D. P. Cruikshank, The Spitzer Space Telescope
Mission. Astrophys. J. 154, 1–9 (2004). doi:10.1086/422992
27. M. C. Weisskopf, B. Brinkman, C. Canizares, G. Garmire, S. Murray, L. P.
Van Speybroeck, An Overview of the Performance and Scientific Results
from the Chandra X‐Ray Observatory. Publ. Astron. Soc. Pac. 114, 1–24
(2002). doi:10.1086/338108
28. W. W. Weiss, in The CoRoT mission, pre-launch status, stellar seismology
and planet finding, eds. M. Fridlund, A. Baglin, J. Lochard & L. Conroy, ESA
SP-1306, 93 (Noordwijk, The Netherlands: ESA Publications Division, 2006).
29. M. Auvergne, P. Bodin, L. Boisnard, J.-T. Buey, S. Chaintreuil, G. Epstein,
M. Jouret, T. Lam-Trong, P. Levacher, A. Magnan, R. Perez, P. Plasson, J.
Plesseria, G. Peter, M. Steller, D. Tiphène, A. Baglin, P. Agogué, T.
Appourchaux, D. Barbet, T. Beaufort, R. Bellenger, R. Berlin, P. Bernardi, D.
Blouin, P. Boumier, F. Bonneau, R. Briet, B. Butler, R. Cautain, F. Chiavassa,
V. Costes, J. Cuvilho, V. Cunha-Parro, F. De Oliveira Fialho, M. Decaudin,
J.-M. Defise, S. Djalal, A. Docclo, R. Drummond, O. Dupuis, G. Exil, C.
Fauré, A. Gaboriaud, P. Gamet, P. Gavalda, E. Grolleau, L. Gueguen, V.
Guivarc’h, P. Guterman, J. Hasiba, G. Huntzinger, H. Hustaix, C. Imbert, G.
Jeanville, B. Johlander, L. Jorda, P. Journoud, F. Karioty, L. Kerjean, L.
Lafond, V. Lapeyrere, P. Landiech, T. Larqué, P. Laudet, J. Le Merrer, L.
Leporati, B. Leruyet, B. Levieuge, A. Llebaria, L. Martin, E. Mazy, J.-M.
Mesnager, J.-P. Michel, J.-P. Moalic, W. Monjoin, D. Naudet, S.
Neukirchner, K. Nguyen-Kim, M. Ollivier, J.-L. Orcesi, H. Ottacher, A.
Oulali, J. Parisot, S. Perruchot, A. Piacentino, L. Pinheiro da Silva, J. Platzer,
B. Pontet, A. Pradines, C. Quentin, U. Rohbeck, G. Rolland, F. Rollenhagen,
R. Romagnan, N. Russ, R. Samadi, R. Schmidt, N. Schwartz, I. Sebbag, H.
Smit, W. Sunter, M. Tello, P. Toulouse, B. Ulmer, O. Vandermarcq, E.
Vergnault, R. Wallner, G. Waultier, P. Zanatta, The CoRoT satellite in flight:
Description and performance. Astron. Astrophys. 506, 411–424 (2009).
doi:10.1051/0004-6361/200810860
30. P. Lenz, M. Breger, Period04 User Guide. Comm. Asteroseismol. 146, 53–136
(2005). doi:10.1553/cia146s53
31. M. Breger et al., Astron. Astrophys. 271, 482–486 (1993).
32. R. Kuschnig et al., Astron. Astrophys. 328, 544–550 (1997).
33. P. Reegen, SigSpec. Astron. Astrophys. 467, 1353–1371 (2007).
doi:10.1051/0004-6361:20066597
34. M. Mayor et al., The Messenger 114, 20–24 (2003).
35. M. Rainer, Laurea Thesis, Università degli Studi di Milano (2003).
36. J.-F. Donati, M. Semel, B. D. Carter, D. E. Rees, A. Collier Cameron,
Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc.
291, 658–682 (1997). doi:10.1093/mnras/291.4.658
37. G. Raskin, H. Van Winckel, H. Hensberge, A. Jorissen, H. Lehmann, C.
Waelkens, G. Avila, J.-P. De Cuyper, P. Degroote, R. Dubosson, L.
Dumortier, Y. Frémat, U. Laux, B. Michaud, J. Morren, J. Perez Padilla, W.
Pessemier, S. Prins, K. Smolders, S. Van Eck, J. Winkler, HERMES: A high-
resolution fibre-fed spectrograph for the Mercator telescope. Astron.
Astrophys. 526, A69–80 (2011). doi:10.1051/0004-6361/201015435
38. S. Pollack-Drs, Master Thesis, University of Vienna (2012).
39. D. Shulyak, V. Tsymbal, T. Ryabchikova, C. Stütz, W. W. Weiss, Line-by-
line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000
(2004). doi:10.1051/0004-6361:20034169
40. F. Kupka, N. Piskunov, T. A. Ryabchikova, H. C. Stempels, W. W. Weiss,
VALD?2: Progress of the Vienna Atomic Line Data Base. Astron. Astrophys.
Suppl. Ser. 138, 119–133 (1999). doi:10.1051/aas:1999267
41. O. Kochukhov, in Physics of Magnetic Stars, eds. I. I. Romanyuk, D. O.
Kudryavtsev, O. M. Neizvestnaya & V. M. Shapova, Special Astrophysical
Observatory, RAS (2007)
42. J. Valenti, N. Piskunov, Spectroscopy made easy: A new tool for fitting
observations with synthetic spectra. Astron. Astrophys. Suppl. Ser. 118, 595–
603 (1996). doi:10.1051/aas:1996222
43. J. Stauffer, A. M. Cody, A. Baglin, S. Alencar, L. Rebull, L. A. Hillenbrand,
L. Venuti, N. J. Turner, J. Carpenter, P. Plavchan, K. Findeisen, S. Carey, S.
Terebey, M. Morales-Calderón, J. Bouvier, G. Micela, E. Flaccomio, I. Song,
R. Gutermuth, L. Hartmann, N. Calvet, B. Whitney, D. Barrado, F. J. Vrba, K.
Covey, W. Herbst, G. Furesz, S. Aigrain, F. Favata, CSI 2264:
CHARACTERIZING ACCRETION-BURST DOMINATED LIGHT
CURVES FOR YOUNG STARS IN NGC 2264. Astron. J. 147, 83–116
(2014). doi:10.1088/0004-6256/147/4/83
44. P. I. Pápics, M. Briquet, A. Baglin, E. Poretti, C. Aerts, P. Degroote, A.
Tkachenko, T. Morel, W. Zima, E. Niemczura, M. Rainer, M. Hareter, F.
Baudin, C. Catala, E. Michel, R. Samadi, M. Auvergne, Gravito-inertial and
pressure modes detected in the B3 IV CoRoT target HD 43317. Astron.
Astrophys. 542, A55–67 (2012). doi:10.1051/0004-6361/201218809
45. A. Thoul, P. Degroote, C. Catala, C. Aerts, T. Morel, M. Briquet, M. Hillen,
G. Raskin, H. Van Winckel, M. Auvergne, A. Baglin, F. Baudin, E. Michel,
High-precision CoRoT space photometry and fundamental parameter
determination of the B2.5V star HD 48977. Astron. Astrophys. 551, A12–17
(2013). doi:10.1051/0004-6361/201118756
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 4 / 10.1126/science.1253645
46. P. Demarque, D. B. Guenther, L. H. Li, A. Mazumdar, C. W. Straka, YREC:
The Yale rotating stellar evolution code. Astrophys. Space Sci. 316, 31–41
(2008). doi:10.1007/s10509-007-9698-y
47. L. A. Marschall, W. F. van Altena, L.-T. G. Chiun, Membership of the
Rosette Nebula cluster, NGC 2244. Astron. J. 87, 1497–1506 (1982).
doi:10.1086/113240
48. N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, R.-D. Scholz,
Astrophysical parameters of Galactic open clusters. Astron. Astrophys. 438,
1163–1173 (2005). doi:10.1051/0004-6361:20042523
49. L. Chen, R. de Grijs, J. L. Zhao, Mass Segregation in Very Young Open
Clusters: A Case Study of NGC 2244 and NGC 6530. Astron. J. 134, 1368–
1379 (2007). doi:10.1086/521022
50. C. Koen, L. A. Balona, K. Khadaroo, I. Lane, A. Prinsloo, B. Smith, C. D.
Laney, Pulsations in beta Pictoris. Mon. Not. R. Astron. Soc. 344, 1250–1256
(2003). doi:10.1046/j.1365-8711.2003.06912.x
51. T. Lanz, S. R. Heap, I. Hubeny, [ITAL]HST[/ITAL]/GHRS Observations of
the β Pictoris System: Basic Parameters and the Age of the System.
Astrophys. J. 447, 41–44 (1995). doi:10.1086/309561
52. D. W. Kurtz, M. Müller, Photometric confirmation of the Scuti pulsational
variability in the pre-main-sequence Herbig Ae star HD 104237. Mon. Not. R.
Astron. Soc. 310, 1071–1076 (1999). doi:10.1046/j.1365-8711.1999.03016.x
53. A. Fumel, T. Böhm, Spectroscopic monitoring of the Herbig Ae star HD
104237. Astron. Astrophys. 540, A108–117 (2012). doi:10.1051/0004-
6361/201117817
54. K. Zwintz, P. Lenz, M. Breger, A. A. Pamyatnykh, T. Zdravkov, R. Kuschnig,
J. M. Matthews, D. B. Guenther, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski,
D. Sasselov, W. W. Weiss, Regular frequency patterns in the classical δ Scuti
star HD 144277 observed by the MOST satellite. Astron. Astrophys. 533,
A133–140 (2011). doi:10.1051/0004-6361/201117272
55. M. M. Guimarães, S. H. P. Alencar, W. J. B. Corradi, S. L. A. Vieira, Stellar
parameters and evidence of circumstellar activity for a sample of Herbig
Ae/Be stars. Astron. Astrophys. 457, 581–589 (2006). doi:10.1051/0004-
6361:20065005
56. K. Zwintz, L. Fossati, D. B. Guenther, T. Ryabchikova, A. Baglin, N.
Themessl, T. G. Barnes, J. M. Matthews, M. Auvergne, D. Bohlender, S.
Chaintreuil, R. Kuschnig, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D.
Sasselov, W. W. Weiss, Regular frequency patterns in the young δ Scuti star
HD 261711 observed by the CoRoT and MOST satellites. Astron. Astrophys.
552, A68–79 (2013). doi:10.1051/0004-6361/201220934
57. M. Casey, K. Zwintz, D. B. Guenther, W. W. Weiss, P. J. Amado, D. Diaz-
Fraile, E. Rodriguez, R. Kuschnig, J. M. Matthews, A. F. J. Moffat, J. F.
Rowe, S. M. Rucinski, D. Sasselov, MOST observations of the Herbig Ae -
Scuti star HD 34282. Mon. Not. R. Astron. Soc. 428, 2596–2604 (2013).
doi:10.1093/mnras/sts241
58. P. Amado et al., Mem. Soc. Astron. Ital. 77, 97–98 (2006).
59. V. Ripepi, F. Palla, M. Marconi, S. Bernabei, A. Arellano Ferro, L.
Terranegra, J. M. Alcalá, Detection of? Scuti-like pulsation in H254, a pre-
main sequence F-type star in IC 348. Astron. Astrophys. 391, 587–593 (2002).
doi:10.1051/0004-6361:20020836
60. V. Ripepi, S. Bernabei, M. Marconi, F. Palla, A. Arellano Ferro, A. Bonanno,
P. Ferrara, A. Frasca, X. J. Jiang, S.-L. Kim, S. Marinoni, G. Mignemi, M. J.
P. F. G. Monteiro, T. D. Oswalt, P. Reegen, R. Janulis, E. Rodriguez, A.
Rolland, A. Ruoppo, L. Terranegra, K. Zwintz, A multisite photometric
campaign on the pre-main-sequence δ Scuti pulsator IP Persei. Astron.
Astrophys. 449, 335–343 (2006). doi:10.1051/0004-6361:20054164
61. K. Zwintz, M. Marconi, P. Reegen, W. W. Weiss, Search for pulsating pre-
main-sequence stars in NGC 6383. Mon. Not. R. Astron. Soc. 357, 345–353
(2005). doi:10.1111/j.1365-2966.2005.08655.x
62. K. Zwintz, W. W. Weiss, Pulsating pre-main sequence stars in IC 4996 and
NGC 6530. Astron. Astrophys. 457, 237–248 (2006). doi:10.1051/0004-
6361:20065449
63. M. Marconi, V. Ripepi, S. Bernabei, A. Ruoppo, M. J. P. F. G. Monteiro, J. P.
Marques, F. Palla, S. Leccia, The PMS δ Scuti star PDS2. Astrophys. Space
Sci. 328, 109–111 (2010). doi:10.1007/s10509-009-0172-x
64. T. Böhm, W. Zima, C. Catala, E. Alecian, K. Pollard, D. Wright, Discovery of
non-radial pulsations in the spectroscopic binary Herbig Ae star RS
Chamaeleontis. Astron. Astrophys. 497, 183–194 (2009). doi:10.1051/0004-
6361/200811460
65. E. Alecian, C. Catala, C. van't Veer-Menneret, M.-J. Goupil, L. Balona,
Pulsations and metallicity of the pre-main sequence eclipsing spectroscopic
binary RS Cha. Astron. Astrophys. 442, 993–1002 (2005). doi:10.1051/0004-
6361:20041906
66. S. Bernabei, V. Ripepi, A. Ruoppo, M. Marconi, M. J. P. F. G. Monteiro, E.
Rodriguez, T. D. Oswalt, S. Leccia, F. Palla, G. Catanzaro, P. J. Amado, M. J.
Lopez-Gonzalez, F. J. Aceituno, Multi-site photometry of the pulsating
Herbig Ae star V346 Ori. Astron. Astrophys. 501, 279–289 (2009).
doi:10.1051/0004-6361/200809643
67. S. Vieira, W. J. B. Corradi, S. H. P. Alencar, L. T. S. Mendes, C. A. O.
Torres, G. R. Quast, M. M. Guimares, L. da Silva, Investigation of 131 Herbig
Ae/Be Candidate Stars. Astron. J. 126, 2971–2987 (2003).
doi:10.1086/379553
68. K. Zwintz, L. Fossati, D. B. Guenther, T. Ryabchikova, A. Baglin, N.
Themessl, T. G. Barnes, J. M. Matthews, M. Auvergne, D. Bohlender, S.
Chaintreuil, R. Kuschnig, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D.
Sasselov, W. W. Weiss, Regular frequency patterns in the young δ Scuti star
HD 261711 observed by the CoRoT and MOST satellites. Astron. Astrophys.
552, A68–79 (2013). doi:10.1051/0004-6361/201220934
Acknowledgments: Data obtained with the MOST satellite are available through
the MOST Public Data Archive (http://most.astro.ubc.ca//archive.html) and
data from CoRoT in the CoRoT Archive (http://idoc-corot.ias.u-
psud.fr/index.jsp). Spectroscopic data can be obtained at the ESO archive
(http://archive.eso.org) and the CFHT archive (http://www3.cadc-ccda.hia-
iha.nrc-cnrc.gc.ca/en/cfht/). Data are also available from the public website
http://www.ster.kuleuven.be/~konstanze/science/. We are grateful to the
MOST and CoRoT teams for making this work possible. We would like to
thank N. Piskunov for his advice on the best usage of the SME software. The
research leading to these results has received funding from the European
Research Council under the European Community's Seventh Framework
Programme (FP7/2007 – 2013) / ERC grant agreement No 227224
(PROSPERITY), from the Research Council of the KU Leuven under grant
agreement GOA/2013/012, and from the Fund for Scientific Research of
Flanders (FWO), Belgium, under grant agreement G.0B69.13. TR
acknowledges partial financial support from the Presidium RAS Program
“Nonstationary Phenomena in Objects of the Universe”. DBG, JM, AFJM and
SMR acknowledge the funding support of the Natural Sciences and
Engineering Research Council (NSERC) of Canada. RK and WWW are
supported by the Austrian Fonds zur Förderung der wissenschaftlichen
Forschung (P22691-N16) and by the Austrian Research Promotion Agency-
ALR. EP and MR acknowledge financial support from the FP7 project
“SPACEINN: Exploitation of Space Data for Innovative Helio- and
Asteroseismology”. EM is beneficiary of a postdoctoral grant from the
Belgian Federal Science Policy Office co-funded by the Marie Curie Actions
FP7-PEOPLE-COFUND2008 n246540 MOBILITY GRANT from the
European Commission. CC was supported by the Canadian Space Agency.
EM is the beneficiary of a postdoctoral grant from the Belgian Federal
Science Policy Office co-funded by the Marie Curie Actions FP7-PEOPLE-
COFUND2008 n246540 MOBILITY GRANT from the European
Commission. Spectroscopic data were obtained with the 2.7-m telescope at
Mc Donald Observatory, Texas, US, the 3.6m-telescope at La Silla
Observatory under the ESO Large Programme LP185.D-0056, the Canada
France Hawaii Telescope (proposal number CFHT2012AC003), the Cerro
Tololo Inter-american Observatory 1.5-m telescope and the Mercator
Telescope (operated on the island of La Palma by the Flemish Community, at
the Spanish Observatorio del Roque de los Muchachos of the Instituto de
Astrofísica de Canarias) with the HERMES spectrograph, which is supported
by the Funds for Scientific Research of Flanders (FWO), Belgium, the
Research Council of K.U. Leuven, Belgium, the Fonds National Recherches
Scientific (FNRS), Belgium, the Royal Observatory of Belgium, the
Observatoire de Genève, Switzerland and the Thüringer Landessternwarte
Tautenburg, Germany.
Supplementary Materials
www.sciencemag.org/content/science.1253645/DC1
Materials and Methods
Figs. S1 to S6
Table S1
References (21-68)
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 5 / 10.1126/science.1253645
19 March 2014; accepted 11 June 2014
Published online 3 July 2014
10.1126/science.1253645
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 6 / 10.1126/science.1253645
Fig. 1. 34 pulsating pre-MS stars in the evolutionary diagram. Evolutionary diagram of surface gravity vs.
effective temperature for the 34 pulsating pre-MS stars. Symbol colors correspond to the percentage of critical
breakup velocity (vsini / vcrit) according to the scale at top-left. Pre-MS evolutionary tracks (12) are shown from 1.5
to 3.0 M◉ in steps of 0.05 M◉ and are color-coded according to the contribution of gravitational potential energy to
the total energy output: when gravitational contraction is the only energy source, the pre-MS tracks are drawn in
black; the track brightness increases as the ratio of gravitational potential energy to the total energy output drops,
with the onset of first non-equilibrium nuclear burnings closer to the ZAMS. The symbols marked with a white
smaller square in their centers are members of the young cluster NGC 2264 labeled “a” to “i” in Figs. 2 and 3.
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 7 / 10.1126/science.1253645
Fig. 2. NGC 2264 evolutionary diagram. Evolutionary diagram of surface gravity against effective temperature
showing a subset of nine pulsating pre-MS stars in the young cluster NGC 2264: V 589 Mon, V 588 Mon, HD
261230, HD 262209, HD 261737, HD 261387, HD 262014, NGC 2264 104 and HD 261711 labeled “a” to “i.
Symbol colors correspond to the highest observed p-mode frequency, fmax, according to the scale at top-left. Pre-
MS evolutionary tracks (12) are shown from 1.5 to 3.0 M◉ in steps of 0.1 M◉ and are color-coded according to the
contribution of gravitational potential energy to the total energy output (as in Fig. 1). The amplitude spectra of
these nine objects are shown in Fig. 3 using the same labels.
/ http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 8 / 10.1126/science.1253645
Fig. 3. NGC 2264 amplitude spectra. Sequence of amplitude spectra for a subset of nine pulsating pre-MS stars in the young
cluster NGC 2264 from least evolved (V 589 Mon), to most evolved (HD 261711). In each panel the X-axis shows frequency in
μHz and the amplitudes on the Y-axis are given in millimagnitudes. The original amplitude spectra are shown in light grey,
where all identified pulsation frequencies are marked with black solid lines. The location of the maximum pulsation frequency,
fmax, for each star is marked with the dashed red line. The small insets show the region immediately around fmax to illustrate its
statistical significance.

More Related Content

What's hot

Lunar tungsten isotopic_evidence_for_the_late_veneer
Lunar tungsten isotopic_evidence_for_the_late_veneerLunar tungsten isotopic_evidence_for_the_late_veneer
Lunar tungsten isotopic_evidence_for_the_late_veneerSérgio Sacani
 
One tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamOne tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamSérgio Sacani
 
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...Sérgio Sacani
 
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...Sérgio Sacani
 
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingThe mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingSérgio Sacani
 
The habitability of_proxima_centauri_b
The habitability of_proxima_centauri_bThe habitability of_proxima_centauri_b
The habitability of_proxima_centauri_bSérgio Sacani
 
The empty primordial asteroid belt
The empty primordial asteroid beltThe empty primordial asteroid belt
The empty primordial asteroid beltSérgio Sacani
 
Very regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsVery regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsSérgio Sacani
 
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventThe puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventSérgio Sacani
 
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...Sérgio Sacani
 
The xmm newton-view_of_the_central_degrees_of_the_milk_way
The xmm newton-view_of_the_central_degrees_of_the_milk_wayThe xmm newton-view_of_the_central_degrees_of_the_milk_way
The xmm newton-view_of_the_central_degrees_of_the_milk_waySérgio Sacani
 
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitals
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitalsA uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitals
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitalsSérgio Sacani
 
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...Sérgio Sacani
 
The kepler 10_planetary_system_revisited_by_harps
The kepler 10_planetary_system_revisited_by_harpsThe kepler 10_planetary_system_revisited_by_harps
The kepler 10_planetary_system_revisited_by_harpsSérgio Sacani
 
Stellar tidal streams_in_spiral_galaxies_of_the_local_volume
Stellar tidal streams_in_spiral_galaxies_of_the_local_volumeStellar tidal streams_in_spiral_galaxies_of_the_local_volume
Stellar tidal streams_in_spiral_galaxies_of_the_local_volumeSérgio Sacani
 
Radio Observation of Lunar Dust Environment
Radio Observation of Lunar Dust EnvironmentRadio Observation of Lunar Dust Environment
Radio Observation of Lunar Dust EnvironmentSean Con
 
A Theoretical Perception of Gravity from the Quantum to the Relativity
A Theoretical Perception of Gravity from the Quantum to the RelativityA Theoretical Perception of Gravity from the Quantum to the Relativity
A Theoretical Perception of Gravity from the Quantum to the RelativityDR.P.S.JAGADEESH KUMAR
 
Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011Sérgio Sacani
 
A habitable fluvio_lacustrine_at_gale_crater_mars1
A habitable fluvio_lacustrine_at_gale_crater_mars1A habitable fluvio_lacustrine_at_gale_crater_mars1
A habitable fluvio_lacustrine_at_gale_crater_mars1Sérgio Sacani
 

What's hot (20)

Lunar tungsten isotopic_evidence_for_the_late_veneer
Lunar tungsten isotopic_evidence_for_the_late_veneerLunar tungsten isotopic_evidence_for_the_late_veneer
Lunar tungsten isotopic_evidence_for_the_late_veneer
 
One tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_streamOne tenth solar_abundances_along_the_body_of-the_stream
One tenth solar_abundances_along_the_body_of-the_stream
 
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...
Four new planets_around_giant_stars_and_the_mass_metallicity_correlation_of_p...
 
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...
Daily variability of_ceres_albedo_detected_by_m_eans_of_radial_velocities_cha...
 
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timingThe mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
The mass of_the_mars_sized_exoplanet_kepler_138_b_from_transit_timing
 
The habitability of_proxima_centauri_b
The habitability of_proxima_centauri_bThe habitability of_proxima_centauri_b
The habitability of_proxima_centauri_b
 
The empty primordial asteroid belt
The empty primordial asteroid beltThe empty primordial asteroid belt
The empty primordial asteroid belt
 
Very regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass starsVery regular high-frequency pulsation modes in young intermediate-mass stars
Very regular high-frequency pulsation modes in young intermediate-mass stars
 
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_eventThe puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
The puzzling source_in_ngc6388_a_possible_planetary_tidal_disruption_event
 
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...
Evidence ofr mature_bulges_and_an_inside_out_quenching_phase_3_billion_years_...
 
The xmm newton-view_of_the_central_degrees_of_the_milk_way
The xmm newton-view_of_the_central_degrees_of_the_milk_wayThe xmm newton-view_of_the_central_degrees_of_the_milk_way
The xmm newton-view_of_the_central_degrees_of_the_milk_way
 
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitals
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitalsA uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitals
A uranian trojan_and_the_frequency_of_temporary_giant_planet_co_orbitals
 
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...
Kinematics and simulations_of_the_stellar_stream_in_the_halo_of_the_umbrella_...
 
The kepler 10_planetary_system_revisited_by_harps
The kepler 10_planetary_system_revisited_by_harpsThe kepler 10_planetary_system_revisited_by_harps
The kepler 10_planetary_system_revisited_by_harps
 
Stellar tidal streams_in_spiral_galaxies_of_the_local_volume
Stellar tidal streams_in_spiral_galaxies_of_the_local_volumeStellar tidal streams_in_spiral_galaxies_of_the_local_volume
Stellar tidal streams_in_spiral_galaxies_of_the_local_volume
 
Radio Observation of Lunar Dust Environment
Radio Observation of Lunar Dust EnvironmentRadio Observation of Lunar Dust Environment
Radio Observation of Lunar Dust Environment
 
4022
40224022
4022
 
A Theoretical Perception of Gravity from the Quantum to the Relativity
A Theoretical Perception of Gravity from the Quantum to the RelativityA Theoretical Perception of Gravity from the Quantum to the Relativity
A Theoretical Perception of Gravity from the Quantum to the Relativity
 
Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011Le feuvre and_wieczorek_2011
Le feuvre and_wieczorek_2011
 
A habitable fluvio_lacustrine_at_gale_crater_mars1
A habitable fluvio_lacustrine_at_gale_crater_mars1A habitable fluvio_lacustrine_at_gale_crater_mars1
A habitable fluvio_lacustrine_at_gale_crater_mars1
 

Viewers also liked

Results from telescope_array_experiment
Results from telescope_array_experimentResults from telescope_array_experiment
Results from telescope_array_experimentSérgio Sacani
 
Galactic bridges and_tails
Galactic bridges and_tailsGalactic bridges and_tails
Galactic bridges and_tailsSérgio Sacani
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Sérgio Sacani
 
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...Sérgio Sacani
 
The three dimensional_structure_of_the_eta_carinae_homunculus
The three dimensional_structure_of_the_eta_carinae_homunculusThe three dimensional_structure_of_the_eta_carinae_homunculus
The three dimensional_structure_of_the_eta_carinae_homunculusSérgio Sacani
 
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environment
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environmentNon xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environment
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environmentSérgio Sacani
 
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...Sérgio Sacani
 
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...Sérgio Sacani
 
Xray and protostars_in_the_trifid_nebula
Xray and protostars_in_the_trifid_nebulaXray and protostars_in_the_trifid_nebula
Xray and protostars_in_the_trifid_nebulaSérgio Sacani
 
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Sérgio Sacani
 
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxies
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxiesThe birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxies
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxiesSérgio Sacani
 
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...Sérgio Sacani
 
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...Sérgio Sacani
 
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jl
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jlRapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jl
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jlSérgio Sacani
 
Gj 832c a_super_earth_in_the_habitable_zone
Gj 832c a_super_earth_in_the_habitable_zoneGj 832c a_super_earth_in_the_habitable_zone
Gj 832c a_super_earth_in_the_habitable_zoneSérgio Sacani
 

Viewers also liked (15)

Results from telescope_array_experiment
Results from telescope_array_experimentResults from telescope_array_experiment
Results from telescope_array_experiment
 
Galactic bridges and_tails
Galactic bridges and_tailsGalactic bridges and_tails
Galactic bridges and_tails
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000
 
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
 
The three dimensional_structure_of_the_eta_carinae_homunculus
The three dimensional_structure_of_the_eta_carinae_homunculusThe three dimensional_structure_of_the_eta_carinae_homunculus
The three dimensional_structure_of_the_eta_carinae_homunculus
 
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environment
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environmentNon xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environment
Non xrays from_the_very_nearby_typeia_sn_2014j_constraints_on_its_environment
 
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...
Detonating failed deflagration_model_of_themonuclear_supernovae_explosion_dyn...
 
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...
Alma observations of_feeding_and_feedback_in_nearby_seyfert_galaxies_outflow_...
 
Xray and protostars_in_the_trifid_nebula
Xray and protostars_in_the_trifid_nebulaXray and protostars_in_the_trifid_nebula
Xray and protostars_in_the_trifid_nebula
 
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
Rapid growth of_seed_black_holes_in_the_early_universe_by_supra_exponential_a...
 
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxies
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxiesThe birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxies
The birth of_a_galaxy_propelling_reionisation_with_the_faintest_galaxies
 
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...
Detection of an_unindentified_emission_line_in_the_stacked_x_ray_spectrum_of_...
 
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
Using the milk_way_satellites_to_study_interactions_between_cold_dark_matter_...
 
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jl
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jlRapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jl
Rapid formation of_large_dust_grains_in_the_luminous_supernova_sn2010jl
 
Gj 832c a_super_earth_in_the_habitable_zone
Gj 832c a_super_earth_in_the_habitable_zoneGj 832c a_super_earth_in_the_habitable_zone
Gj 832c a_super_earth_in_the_habitable_zone
 

Similar to Ecography of young_star_reveals_their_evolution

Science 2011-hosokawa-1250-3
Science 2011-hosokawa-1250-3Science 2011-hosokawa-1250-3
Science 2011-hosokawa-1250-3Sérgio Sacani
 
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...Isotopic evolution of the protoplanetary disk and the building blocks of Eart...
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...Sérgio Sacani
 
Age of Jupiter inferred from the distinct genetics and formation times of met...
Age of Jupiter inferred from the distinct genetics and formation times of met...Age of Jupiter inferred from the distinct genetics and formation times of met...
Age of Jupiter inferred from the distinct genetics and formation times of met...Sérgio Sacani
 
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...Sérgio Sacani
 
From cosmos to intelligent life; the four ages of astrobiology
From cosmos to intelligent life; the four ages of astrobiologyFrom cosmos to intelligent life; the four ages of astrobiology
From cosmos to intelligent life; the four ages of astrobiologyLuis Miguel Rodríguez Torres
 
A new spin_of_the_first_stars
A new spin_of_the_first_starsA new spin_of_the_first_stars
A new spin_of_the_first_starsSérgio Sacani
 
Betelgeuse as a Merger of a Massive Star with a Companion
Betelgeuse as a Merger of a Massive Star with a CompanionBetelgeuse as a Merger of a Massive Star with a Companion
Betelgeuse as a Merger of a Massive Star with a CompanionSérgio Sacani
 
Kepler 34 b_e_kepler_35_b
Kepler 34 b_e_kepler_35_bKepler 34 b_e_kepler_35_b
Kepler 34 b_e_kepler_35_bSérgio Sacani
 
Theory of Planetary System Formation The mass of the presol.pdf
Theory of Planetary System Formation The mass of the presol.pdfTheory of Planetary System Formation The mass of the presol.pdf
Theory of Planetary System Formation The mass of the presol.pdfadislifestyle
 
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxies
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxiesSubmillimeter galaxies as_progenitors_of_compact_quiescent_galaxies
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxiesSérgio Sacani
 
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics DissertationAlexander Booth
 
Deep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaDeep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaSérgio Sacani
 
Tidal star-planet interaction and its observed impact on stellar activity in ...
Tidal star-planet interaction and its observed impact on stellar activity in ...Tidal star-planet interaction and its observed impact on stellar activity in ...
Tidal star-planet interaction and its observed impact on stellar activity in ...Sérgio Sacani
 
Unit 3: Morgan-Keenan Luminosity Class
Unit 3: Morgan-Keenan Luminosity ClassUnit 3: Morgan-Keenan Luminosity Class
Unit 3: Morgan-Keenan Luminosity ClassBig History Project
 
I need this essay checked for correctness a proofread and w.pdf
I need this essay checked for correctness a proofread and w.pdfI need this essay checked for correctness a proofread and w.pdf
I need this essay checked for correctness a proofread and w.pdfadianantsolutions
 

Similar to Ecography of young_star_reveals_their_evolution (20)

Science 2011-hosokawa-1250-3
Science 2011-hosokawa-1250-3Science 2011-hosokawa-1250-3
Science 2011-hosokawa-1250-3
 
Tests of big bang
Tests of big bangTests of big bang
Tests of big bang
 
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...Isotopic evolution of the protoplanetary disk and the building blocks of Eart...
Isotopic evolution of the protoplanetary disk and the building blocks of Eart...
 
Age of Jupiter inferred from the distinct genetics and formation times of met...
Age of Jupiter inferred from the distinct genetics and formation times of met...Age of Jupiter inferred from the distinct genetics and formation times of met...
Age of Jupiter inferred from the distinct genetics and formation times of met...
 
Life Cycle of Stars Stations
Life Cycle of Stars Stations Life Cycle of Stars Stations
Life Cycle of Stars Stations
 
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...
The pillars of_creation_revisited_with_muse_gas_kinematics_and_high_mass_stel...
 
From cosmos to intelligent life; the four ages of astrobiology
From cosmos to intelligent life; the four ages of astrobiologyFrom cosmos to intelligent life; the four ages of astrobiology
From cosmos to intelligent life; the four ages of astrobiology
 
A new spin_of_the_first_stars
A new spin_of_the_first_starsA new spin_of_the_first_stars
A new spin_of_the_first_stars
 
Betelgeuse as a Merger of a Massive Star with a Companion
Betelgeuse as a Merger of a Massive Star with a CompanionBetelgeuse as a Merger of a Massive Star with a Companion
Betelgeuse as a Merger of a Massive Star with a Companion
 
Kepler 34 b_e_kepler_35_b
Kepler 34 b_e_kepler_35_bKepler 34 b_e_kepler_35_b
Kepler 34 b_e_kepler_35_b
 
Theory of Planetary System Formation The mass of the presol.pdf
Theory of Planetary System Formation The mass of the presol.pdfTheory of Planetary System Formation The mass of the presol.pdf
Theory of Planetary System Formation The mass of the presol.pdf
 
Cheng apj fullres
Cheng apj fullresCheng apj fullres
Cheng apj fullres
 
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxies
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxiesSubmillimeter galaxies as_progenitors_of_compact_quiescent_galaxies
Submillimeter galaxies as_progenitors_of_compact_quiescent_galaxies
 
High Energy Astrophysics Dissertation
High Energy Astrophysics DissertationHigh Energy Astrophysics Dissertation
High Energy Astrophysics Dissertation
 
Deep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebulaDeep nearinfrared survey_carina_nebula
Deep nearinfrared survey_carina_nebula
 
Geoengineering
GeoengineeringGeoengineering
Geoengineering
 
Younger moon
Younger moonYounger moon
Younger moon
 
Tidal star-planet interaction and its observed impact on stellar activity in ...
Tidal star-planet interaction and its observed impact on stellar activity in ...Tidal star-planet interaction and its observed impact on stellar activity in ...
Tidal star-planet interaction and its observed impact on stellar activity in ...
 
Unit 3: Morgan-Keenan Luminosity Class
Unit 3: Morgan-Keenan Luminosity ClassUnit 3: Morgan-Keenan Luminosity Class
Unit 3: Morgan-Keenan Luminosity Class
 
I need this essay checked for correctness a proofread and w.pdf
I need this essay checked for correctness a proofread and w.pdfI need this essay checked for correctness a proofread and w.pdf
I need this essay checked for correctness a proofread and w.pdf
 

More from Sérgio Sacani

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Sérgio Sacani
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Sérgio Sacani
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WaySérgio Sacani
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Sérgio Sacani
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Sérgio Sacani
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoSérgio Sacani
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterSérgio Sacani
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxySérgio Sacani
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesSérgio Sacani
 

More from Sérgio Sacani (20)

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...Identification of Superclusters and Their Properties in the Sloan Digital Sky...
Identification of Superclusters and Their Properties in the Sloan Digital Sky...
 
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
Digitized Continuous Magnetic Recordings for the August/September 1859 Storms...
 
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky WayShiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
Shiva and Shakti: Presumed Proto-Galactic Fragments in the Inner Milky Way
 
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroid...
 
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
Introducing the Exoplanet Escape Factor and the Fishbowl Worlds (Two conceptu...
 
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta VermelhoRevelando Marte - Livro Sobre a Exploração do Planeta Vermelho
Revelando Marte - Livro Sobre a Exploração do Planeta Vermelho
 
Weak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma clusterWeak-lensing detection of intracluster filaments in the Coma cluster
Weak-lensing detection of intracluster filaments in the Coma cluster
 
Quasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our GalaxyQuasar and Microquasar Series - Microquasars in our Galaxy
Quasar and Microquasar Series - Microquasars in our Galaxy
 
A galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxiesA galactic microquasar mimicking winged radio galaxies
A galactic microquasar mimicking winged radio galaxies
 

Recently uploaded

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 

Recently uploaded (20)

Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 

Ecography of young_star_reveals_their_evolution

  • 1. Reports / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 1 / 10.1126/science.1253645 The earliest phases in the lives of stars determine their future fate. For example, the production of chemical elements, which are used to trace the history of Galactic evolution, depends on the initial mass and metal- licity of young stars. Also, the angular momentum obtained during the birth process is vital for the further stellar life. Therefore, understanding the physical processes that occur during the earliest stages of stellar evo- lution is essential. During the early evolutionary phases, following the star’s appear- ance on the birthline (1–3), the central temperatures and densities are not yet high enough to initiate significant nuclear burning, hence, the early star derives all of its energy (heat and radiative) from the release of grav- itational potential energy. The interior structure undergoes several changes as the temperature rises and the opacities, in general, decrease (1). Initially, the higher opacities and the outward transportation of the released gravitational energy force the star to be nearly fully convective. But, as the star heats up and the opacities drop, a radiative core develops. At this point the star leaves the Hayashi track (4) and follows the Heny- ey track (5), moving leftward to hotter surface temperatures in the evolu- tionary diagram. Eventually, the star’s central regions become hot enough for nuclear burning to occur. Models predict that, for intermedi- ate-mass stars (i.e., with 1.5 to 8 solar masses, M◉), just before the star reaches this nuclear burning stage, called the main-sequence (MS) phase, there is a “bump” or brief period of nuclear burning where carbon is “burned” by the CNO cycle (a chain of hydrogen burning reactions catalyzed by the presence of C, N, and O) until C and N reach nuclear burning equilibri- um. As this happens, the star’s core briefly becomes convective and the star’s luminosity increases. Shortly thereafter, the star resumes its contrac- tion onto the zero-age main sequence (ZAMS), when nuclear burning of hy- drogen re-ignites and remains the dom- inant source of energy throughout most of the rest of the star’s life. The precise definition of the ZAMS is critical when comparing ages of young stars. Here we define the ZAMS as the time following the CN equilibrium burning bump, when the nuclear burning accounts for at least one percent of the total luminos- ity of the star. For pre-MS stars with 1.5 to 4 M◉, the interior structure will become un- stable to acoustic oscillation modes at some point during their evolution along the Henyey track. These can be ob- served at the surface as periodic varia- tions in luminosity and temperature or as Doppler shifts of spectral lines. So, for at least some pre-MS stars, it is possible at some evolutionary stages to use asteroseismology to explore their structure and evolution. The pre-MS stars addressed in this study show co- herent self-excited low-radial-order pressure (p) modes (6) with periods from ~18 min up to 6 hours. Until 2008, only 36 of them were known (7); through 2011, the number increased significantly to more than 60 (8) using dedicated ground-based observations and high-precision time-series photometry obtained with the Microvari- ability and Oscillations of STars (MOST) (9) and COnvection, ROtation et Transits planétaires (CoRoT) (10) satellites. Although the pulsations of pre-MS stars could be studied in relative detail, little information was available about the stars’ fundamental astrophysical properties, such as effective temperature (Teff), surface gravity (log g), luminosity, mass (M), projected rotational velocity (vsini) and metallicity ([Fe/H]), due to the lack of spectroscopic measurements for this type of objects. Our sample comprises 34 stars with confirmed pre-MS evolutionary status, pulsational variability and accurate fundamental parameters de- termined from detailed spectroscopic analyses. We assessed the pre-MS status of the stars in our sample in two different ways: through their membership in open clusters known to be younger than 10 million years, which ensures that 1.5-4 M◉ stars have not reached the ZAMS yet; or through their identification as Herbig Ae stars (11), which are associated with star-forming regions. The pulsational properties of the sample stars were determined from ground and space-based observations. For nineteen stars, high-precision space photometry from the MOST (9) and CoRoT (10) satellites was used to investigate the pulsations. For eight of those (i.e., HD 261737, HD 262014, HD 262209, HD 37357, NGC 2244 45, NGC 2244 183, Echography of young stars reveals their evolution K. Zwintz, 1 * L. Fossati, 2 T. Ryabchikova, 3 D. Guenther, 4 C. Aerts, 1,5 T. G. Barnes, 6 N. Themeßl, 7 D. Lorenz, 7 C. Cameron, 8 R. Kuschnig, 7 S. Pollack-Drs, 7 E. Moravveji, 1 A. Baglin, 9 J. M. Matthews, 10 A. F. J. Moffat, 11 E. Poretti, 12 M. Rainer, 12 S. M. Rucinski, 13 D. Sasselov, 14 W. W. Weiss7 1 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium. 2 Argelander Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany. 3 Institute of Astronomy, Russian Academy of Sciences, Pyatnitskaya 48, 109017 Moscow, Russia. 4 Department of Astronomy and Physics, St. Mary’s University, Halifax, NS B3H 3C3, Canada. 5 Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands. 6 The University of Texas at Austin, McDonald Observatory, 82 Mt. Locke Rd., McDonald Observatory, Texas 79734, USA. 7 Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, 1180 Vienna, Austria. 8 Department of Mathematics, Physics and Geology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada, B1P 6L2. 9 LESIA, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195, Meudon, France. 10 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada. 11 Départment de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada. 12 INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy. 13 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4, Canada. 14 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. *Corresponding author. E-mail: konstanze.zwintz@ster.kuleuven.be. We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass and luminosity to be detected. Accretion stops and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases. onJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfromonJuly8,2014www.sciencemag.orgDownloadedfrom
  • 2. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 2 / 10.1126/science.1253645 NGC 2244 271 and NGC 2244 399) the pulsational variability was dis- covered in the course of this study, while the seismic properties for the remaining eleven objects observed from space have been described in previous work (see Supplementary Material for all references). Addi- tionally, the pulsational properties for 15 stars were taken from ground- based observing campaigns reported in the literature (see Supplementary Material for all references). For the determination of the fundamental parameters, we obtained high-resolution, high signal-to-noise ratio spectra for 27 objects of our sample to complement the variability analysis; for the other seven stars, fundamental parameters were available in the literature (Supplementary Material). To put the stars’ positions in the Teff – log g plane in context to their relative evolutionary stage, we computed pre-MS evolutionary tracks with the Yale Stellar Evolution Code (YREC, 12) for solar metallicity (i.e., Z = 0.02) (Figs. 1 and 2). We find that our sample includes stars that gain their energy solely from gravitational contraction (i.e., stars that are on the Henyey track just before arriving on the ZAMS), stars in which incomplete nuclear burnings have started (i.e., stars that are brief- ly burning CN producing the short rise in the luminosity before the star settles onto the ZAMS as discussed above), and stars close to the ZAMS where hydrogen-burning in the cores has already started. In general, the stellar lifetime strongly depends on the birth mass. In the case of pre-MS stars, this dependence is manifested by the Kelvin- Helmholtz contraction time scale (13) rather than the nuclear time scale that rules the evolution of MS stars. The 34 pre-MS stars of our sample have masses between 1.5 and 3.0 M◉. Although this mass range is rather narrow, the differences in stellar ages at the ZAMS are significant: a star with 3.0 M◉ needs only ~8 million years from the birthline (i.e., the point where the star emerges from the molecular cloud and mass accretion stops) until hydrogen is ignited in its core (i.e., the arrival on the ZAMS), while a star with 1.5 M◉ has a ZAMS age of ~33 million years. The duration of the star formation process is thus strongly dependent on the mass of the pre-MS star. The evolution of stellar rotation rates during the pre-MS phases is poorly understood. As young stars contract during their transition from the birthline to the ZAMS, stellar evolution theory predicts an increase in their rotational velocities if angular momentum is conserved (14). The fraction of the projected rotational velocity (vsini) over the critical breakup velocity (vcrit) for the 34 pre-MS stars (Fig. 1) indeed indicates the occurrence of higher rotation rates at the times of the first nuclear burning compared to the one of stars in the earlier stages. We find that the majority of the pre-MS stars in our sample rotates at a low to moder- ate fraction of their critical breakup velocity (fig. S3), which points to angular momentum loss by, e.g., winds or star-disk coupling. Our results agree with recent results reported for Herbig Ae/Be stars in a similar mass range (15). The acoustic cut-off frequency is the highest frequency of a pressure mode that can still be trapped inside the star and is therefore an im- portant seismic characteristic. Theoretical computations for pre-MS stars predict the highest values to occur close to the ZAMS (i.e., around 1000μHz or 86.4d−1 ) and the lowest values (i.e., around 100μHz or 8.6d−1 ) close to the birthline (16). For high-order pressure modes, the acoustic cut-off frequency scales with the frequency of maximum power, νmax (17). For comparison with our observational sample, we used the highest significant pressure-mode frequency, fmax, which is the measura- ble quantity in our data coming closest to the acoustic cut-off frequency computed from seismic models. Our observations indeed confirm the theoretical predictions: the coolest and least evolved stars have the low- est fmax values, and therefore pulsate with the longest periods (fig. S4). The hottest and most evolved stars have the highest fmax values and pul- sate with the shortest periods. A similar relation is found when we use νmax derived from our data instead of fmax. In the present sample fmax ranges from 76.47 μHz (for the star HR 5999) to 970.37 μHz (for the star HD 261711). Our sample consists of a mixture of different types of pre-MS ob- jects (cluster members and Herbig Ae field stars) that also have different formation histories. By taking a subsample of pulsating stars that formed from the same molecular cloud and had the same initial conditions, we reduced possible ambiguities in the interpretation. In the young open cluster NGC 2264 (18, 19) nine pulsating pre-MS members were discov- ered by multi-epoch observations conducted with the MOST and the CoRoT space telescopes. The pulsational variability of HD 261737, HD 262014 and HD 262209 is reported for the first time in this work (Sup- plementary Material), while the seismic properties for V 588 Mon, V 589 Mon, HD 261230, HD 261387, NGC 2264 104 and HD 261711 have been described in previous work (see Supplementary Material for all references). The nine pre-MS pulsators in NGC 2264 (marked as “a” through “i” in Figs. 2 and 3) have different masses and are found to be in different relative evolutionary phases. Their evolutionary tracks in con- junction with their pulsational properties (Figs. 2 and 3) illustrate that the least-evolved stars pulsate slower (V 589 Mon) than the objects that are already located closer to the ZAMS (HD 261711). This is evidence of sequential star formation, making the assignment of a single age to this and other young open clusters unjustified. In particular, we find that the duration of the star formation process in NGC 2264 has been ongo- ing for much longer than the cluster age of 1 to 5 Myr reported in the literature (e.g., 18, 19). A clear relation between the seismic observables and evolutionary status for the pre-MS stars emerges, even though our sample is relatively heterogeneous due to both the mixture of field and cluster stars of vary- ing metallicity, as well as different precision for the available data sets. This relation is even clearer when we consider stars formed from the same birth environment, such as members of the young cluster NGC 2264. We have shown with this study that asteroseismology can discern different stages of evolution not only for dying intermediate-mass stars, as was recently found (20). Such observations can be similarly applied to unravel the star formation history of young stars and even deliver the relative ages of the various mass populations of pre-MS stars of young open clusters. References and Notes 1. S. W. Stahler, The birthline for low-mass stars. Astrophys. J. 274, 822–829 (1983). doi:10.1086/161495 2. S. W. Stahler, Deuterium and the stellar birthline. Astrophys. J. 332, 804–825 (1988). doi:10.1086/166694 3. F. Palla, S. W. Stahler, The birthline for intermediate-mass stars. Astrophys. J. 360, L47–50 (1990). doi:10.1086/185809 4. C. Hayashi, Publ. Astron. Soc. Jpn. 13, 450–452 (1961). 5. L. G. Henyey, R. Lelevier, R. D. Levée, The Early Phases of Stellar Evolution. Publ. Astron. Soc. Pac. 67, 154 (1955). doi:10.1086/126791 6. M. Suran, M. Goupil, A. Baglin, Y. Lebreton, C. Catala, Comparative seismology of pre- and main sequence stars in the instability strip. Astron. Astrophys. 372, 233–240 (2001). doi:10.1051/0004-6361:20010485 7. K. Zwintz, Comparing the Observational Instability Regions for Pulsating Pre– Main‐Sequence and Classical δ Scuti Stars. Astrophys. J. 673, 1088–1092 (2008). doi:10.1086/524293 8. K. Zwintz, T. Kallinger, D. B. Guenther, M. Gruberbauer, R. Kuschnig, W. W. Weiss, M. Auvergne, L. Jorda, F. Favata, J. Matthews, M. Fischer, PULSATIONAL ANALYSIS OF V 588 MON AND V 589 MON OBSERVED WITH THE MOST AND CoRoT SATELLITES. Astrophys. J. 729, 20–33 (2011). doi:10.1088/0004-637X/729/1/20 9. G. A. H. Walker, J. Matthews, R. Kuschnig, R. Johnson, S. Rucinski, J. Pazder, G. Burley, A. Walker, K. Skaret, R. Zee, S. Grocott, K. Carroll, P. Sinclair, D. Sturgeon, J. Harron, The MOST Asteroseismology Mission: Ultraprecise Photometry from Space. Publ. Astron. Soc. Pac. 115, 1023–1035 (2003). doi:10.1086/377358 10. A. Baglin, A., The CoRoT mission, pre-launch status, stellar seismology and
  • 3. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 3 / 10.1126/science.1253645 planet finding, eds. M. Fridlund, A. Baglin, J. Lochard & L. Conroy, ESA SP- 1306 (Noordwijk, The Netherlands: ESA Publications Division). 11. G. H. Herbig, The Spectra of Be- and Ae-TYPE Stars Associated with Nebulosity. Astrophys. J. 4 (Supplement), 337–382 (1960). doi:10.1086/190050 12. D. B. Guenther, T. Kallinger, K. Zwintz, W. W. Weiss, R. Kuschnig, M. P. Casey, J. M. Matthews, A. F. J. Moffat, S. M. Rucinski, D. Sasselov, G. A. H. Walker, ASTEROSEISMIC ANALYSIS OF THE PRE-MAIN-SEQUENCE STARS IN NGC 2264. Astrophys. J. 704, 1710–1720 (2009). doi:10.1088/0004-637X/704/2/1710 13. M. Marconi, F. Palla, The Instability Strip for Pre–main-sequence Stars. Astrophys. J. 507, L141–L144 (1998). doi:10.1086/311704 14. S. W. Stahler, F. Palla, The Formation of Stars, (Wiley-VCH, Weinheim, 2006). 15. E. Alecian, G. A. Wade, C. Catala, J. H. Grunhut, J. D. Landstreet, T. Bohm, C. P. Folsom, S. Marsden, A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation. Mon. Not. R. Astron. Soc. 429, 1027–1038 (2013). doi:10.1093/mnras/sts384 16. M. Casey, Analysis of pre-main sequence delta Scuti stars, PhD Thesis, St. Mary’s University, Canada, Publication Number: AAT NR82337 (2011). 17. C. Aerts, J. Christensen-Dalsgaard, D. Kurtz, Asteroseismology, (Springer Dordrecht Heidelberg London New York, 2010). 18. L. M. Rebull, R. B. Makidon, S. E. Strom, L. A. Hillenbrand, A. Birmingham, B. M. Patten, B. F. Jones, H. Yagi, M. T. Adams, Circumstellar Disk Candidates Identified in NGC 2264. Astron. J. 123, 1528–1547 (2002). doi:10.1086/338904 19. S. E. Dahm, T. Simon, The T Tauri Star Population of the Young Cluster NGC 2264. Astron. J. 129, 829–855 (2005). doi:10.1086/426326 20. T. R. Bedding, B. Mosser, D. Huber, J. Montalbán, P. Beck, J. Christensen- Dalsgaard, Y. P. Elsworth, R. A. García, A. Miglio, D. Stello, T. R. White, J. De Ridder, S. Hekker, C. Aerts, C. Barban, K. Belkacem, A. M. Broomhall, T. M. Brown, D. L. Buzasi, F. Carrier, W. J. Chaplin, M. P. Di Mauro, M. A. Dupret, S. Frandsen, R. L. Gilliland, M. J. Goupil, J. M. Jenkins, T. Kallinger, S. Kawaler, H. Kjeldsen, S. Mathur, A. Noels, V. S. Aguirre, P. Ventura, Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011). Medline doi:10.1038/nature09935 21. D. W. Kurtz, C. Catala, On the? Scuti variability in the pre-main sequence Herbig Ae star HR 5999. Astron. Astrophys. 369, 981–985 (2001). doi:10.1051/0004-6361:20010165 22. P. Lampens, F. Rufener, Astron. Astrophys. Suppl. Ser. 83, 145–182 (1990). 23. V. Ripepi, M. Marconi, S. Bernabei, F. Palla, F. J. G. Pinheiro, D. F. M. Folha, T. D. Oswalt, L. Terranegra, A. Arellano Ferro, X. J. Jiang, J. M. Alcalá, S. Marinoni, M. J. P. F. G. Monteiro, M. Rudkin, K. Johnston, Multisite observations of the PMS δ Scuti star V351 Ori. Astron. Astrophys. 408, 1047–1055 (2003). doi:10.1051/0004-6361:20031011 24. K. Zwintz, T. Kallinger, D. B. Guenther, M. Gruberbauer, D. Huber, J. Rowe, R. Kuschnig, W. W. Weiss, J. M. Matthews, A. F. J. Moffat, S. M. Rucinski, D. Sasselov, G. A. H. Walker, M. P. Casey, MOST photometry of the enigmatic PMS pulsator HD 142666. Astron. Astrophys. 494, 1031–1040 (2009). doi:10.1051/0004-6361:200811116 25. K. Zwintz, M. Hareter, R. Kuschnig, P. J. Amado, N. Nesvacil, E. Rodriguez, D. Diaz-Fraile, W. W. Weiss, T. Pribulla, D. B. Guenther, J. M. Matthews, A. F. J. Moffat, S. M. Rucinski, D. Sasselov, G. A. H. Walker, MOST observations of the young open cluster NGC 2264. Astron. Astrophys. 502, 239–252 (2009). doi:10.1051/0004-6361/200911863 26. M. W. Werner, T. L. Roellig, F. J. Low, G. H. Rieke, M. Rieke, W. F. Hoffmann, E. Young, J. R. Houck, B. Brandl, G. G. Fazio, J. L. Hora, R. D. Gehrz, G. Helou, B. T. Soifer, J. Stauffer, J. Keene, P. Eisenhardt, D. Gallagher, T. N. Gautier, W. Irace, C. R. Lawrence, L. Simmons, J. E. Van Cleve, M. Jura, E. L. Wright, D. P. Cruikshank, The Spitzer Space Telescope Mission. Astrophys. J. 154, 1–9 (2004). doi:10.1086/422992 27. M. C. Weisskopf, B. Brinkman, C. Canizares, G. Garmire, S. Murray, L. P. Van Speybroeck, An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory. Publ. Astron. Soc. Pac. 114, 1–24 (2002). doi:10.1086/338108 28. W. W. Weiss, in The CoRoT mission, pre-launch status, stellar seismology and planet finding, eds. M. Fridlund, A. Baglin, J. Lochard & L. Conroy, ESA SP-1306, 93 (Noordwijk, The Netherlands: ESA Publications Division, 2006). 29. M. Auvergne, P. Bodin, L. Boisnard, J.-T. Buey, S. Chaintreuil, G. Epstein, M. Jouret, T. Lam-Trong, P. Levacher, A. Magnan, R. Perez, P. Plasson, J. Plesseria, G. Peter, M. Steller, D. Tiphène, A. Baglin, P. Agogué, T. Appourchaux, D. Barbet, T. Beaufort, R. Bellenger, R. Berlin, P. Bernardi, D. Blouin, P. Boumier, F. Bonneau, R. Briet, B. Butler, R. Cautain, F. Chiavassa, V. Costes, J. Cuvilho, V. Cunha-Parro, F. De Oliveira Fialho, M. Decaudin, J.-M. Defise, S. Djalal, A. Docclo, R. Drummond, O. Dupuis, G. Exil, C. Fauré, A. Gaboriaud, P. Gamet, P. Gavalda, E. Grolleau, L. Gueguen, V. Guivarc’h, P. Guterman, J. Hasiba, G. Huntzinger, H. Hustaix, C. Imbert, G. Jeanville, B. Johlander, L. Jorda, P. Journoud, F. Karioty, L. Kerjean, L. Lafond, V. Lapeyrere, P. Landiech, T. Larqué, P. Laudet, J. Le Merrer, L. Leporati, B. Leruyet, B. Levieuge, A. Llebaria, L. Martin, E. Mazy, J.-M. Mesnager, J.-P. Michel, J.-P. Moalic, W. Monjoin, D. Naudet, S. Neukirchner, K. Nguyen-Kim, M. Ollivier, J.-L. Orcesi, H. Ottacher, A. Oulali, J. Parisot, S. Perruchot, A. Piacentino, L. Pinheiro da Silva, J. Platzer, B. Pontet, A. Pradines, C. Quentin, U. Rohbeck, G. Rolland, F. Rollenhagen, R. Romagnan, N. Russ, R. Samadi, R. Schmidt, N. Schwartz, I. Sebbag, H. Smit, W. Sunter, M. Tello, P. Toulouse, B. Ulmer, O. Vandermarcq, E. Vergnault, R. Wallner, G. Waultier, P. Zanatta, The CoRoT satellite in flight: Description and performance. Astron. Astrophys. 506, 411–424 (2009). doi:10.1051/0004-6361/200810860 30. P. Lenz, M. Breger, Period04 User Guide. Comm. Asteroseismol. 146, 53–136 (2005). doi:10.1553/cia146s53 31. M. Breger et al., Astron. Astrophys. 271, 482–486 (1993). 32. R. Kuschnig et al., Astron. Astrophys. 328, 544–550 (1997). 33. P. Reegen, SigSpec. Astron. Astrophys. 467, 1353–1371 (2007). doi:10.1051/0004-6361:20066597 34. M. Mayor et al., The Messenger 114, 20–24 (2003). 35. M. Rainer, Laurea Thesis, Università degli Studi di Milano (2003). 36. J.-F. Donati, M. Semel, B. D. Carter, D. E. Rees, A. Collier Cameron, Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291, 658–682 (1997). doi:10.1093/mnras/291.4.658 37. G. Raskin, H. Van Winckel, H. Hensberge, A. Jorissen, H. Lehmann, C. Waelkens, G. Avila, J.-P. De Cuyper, P. Degroote, R. Dubosson, L. Dumortier, Y. Frémat, U. Laux, B. Michaud, J. Morren, J. Perez Padilla, W. Pessemier, S. Prins, K. Smolders, S. Van Eck, J. Winkler, HERMES: A high- resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys. 526, A69–80 (2011). doi:10.1051/0004-6361/201015435 38. S. Pollack-Drs, Master Thesis, University of Vienna (2012). 39. D. Shulyak, V. Tsymbal, T. Ryabchikova, C. Stütz, W. W. Weiss, Line-by- line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000 (2004). doi:10.1051/0004-6361:20034169 40. F. Kupka, N. Piskunov, T. A. Ryabchikova, H. C. Stempels, W. W. Weiss, VALD?2: Progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999). doi:10.1051/aas:1999267 41. O. Kochukhov, in Physics of Magnetic Stars, eds. I. I. Romanyuk, D. O. Kudryavtsev, O. M. Neizvestnaya & V. M. Shapova, Special Astrophysical Observatory, RAS (2007) 42. J. Valenti, N. Piskunov, Spectroscopy made easy: A new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. Ser. 118, 595– 603 (1996). doi:10.1051/aas:1996222 43. J. Stauffer, A. M. Cody, A. Baglin, S. Alencar, L. Rebull, L. A. Hillenbrand, L. Venuti, N. J. Turner, J. Carpenter, P. Plavchan, K. Findeisen, S. Carey, S. Terebey, M. Morales-Calderón, J. Bouvier, G. Micela, E. Flaccomio, I. Song, R. Gutermuth, L. Hartmann, N. Calvet, B. Whitney, D. Barrado, F. J. Vrba, K. Covey, W. Herbst, G. Furesz, S. Aigrain, F. Favata, CSI 2264: CHARACTERIZING ACCRETION-BURST DOMINATED LIGHT CURVES FOR YOUNG STARS IN NGC 2264. Astron. J. 147, 83–116 (2014). doi:10.1088/0004-6256/147/4/83 44. P. I. Pápics, M. Briquet, A. Baglin, E. Poretti, C. Aerts, P. Degroote, A. Tkachenko, T. Morel, W. Zima, E. Niemczura, M. Rainer, M. Hareter, F. Baudin, C. Catala, E. Michel, R. Samadi, M. Auvergne, Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317. Astron. Astrophys. 542, A55–67 (2012). doi:10.1051/0004-6361/201218809 45. A. Thoul, P. Degroote, C. Catala, C. Aerts, T. Morel, M. Briquet, M. Hillen, G. Raskin, H. Van Winckel, M. Auvergne, A. Baglin, F. Baudin, E. Michel, High-precision CoRoT space photometry and fundamental parameter determination of the B2.5V star HD 48977. Astron. Astrophys. 551, A12–17 (2013). doi:10.1051/0004-6361/201118756
  • 4. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 4 / 10.1126/science.1253645 46. P. Demarque, D. B. Guenther, L. H. Li, A. Mazumdar, C. W. Straka, YREC: The Yale rotating stellar evolution code. Astrophys. Space Sci. 316, 31–41 (2008). doi:10.1007/s10509-007-9698-y 47. L. A. Marschall, W. F. van Altena, L.-T. G. Chiun, Membership of the Rosette Nebula cluster, NGC 2244. Astron. J. 87, 1497–1506 (1982). doi:10.1086/113240 48. N. V. Kharchenko, A. E. Piskunov, S. Röser, E. Schilbach, R.-D. Scholz, Astrophysical parameters of Galactic open clusters. Astron. Astrophys. 438, 1163–1173 (2005). doi:10.1051/0004-6361:20042523 49. L. Chen, R. de Grijs, J. L. Zhao, Mass Segregation in Very Young Open Clusters: A Case Study of NGC 2244 and NGC 6530. Astron. J. 134, 1368– 1379 (2007). doi:10.1086/521022 50. C. Koen, L. A. Balona, K. Khadaroo, I. Lane, A. Prinsloo, B. Smith, C. D. Laney, Pulsations in beta Pictoris. Mon. Not. R. Astron. Soc. 344, 1250–1256 (2003). doi:10.1046/j.1365-8711.2003.06912.x 51. T. Lanz, S. R. Heap, I. Hubeny, [ITAL]HST[/ITAL]/GHRS Observations of the β Pictoris System: Basic Parameters and the Age of the System. Astrophys. J. 447, 41–44 (1995). doi:10.1086/309561 52. D. W. Kurtz, M. Müller, Photometric confirmation of the Scuti pulsational variability in the pre-main-sequence Herbig Ae star HD 104237. Mon. Not. R. Astron. Soc. 310, 1071–1076 (1999). doi:10.1046/j.1365-8711.1999.03016.x 53. A. Fumel, T. Böhm, Spectroscopic monitoring of the Herbig Ae star HD 104237. Astron. Astrophys. 540, A108–117 (2012). doi:10.1051/0004- 6361/201117817 54. K. Zwintz, P. Lenz, M. Breger, A. A. Pamyatnykh, T. Zdravkov, R. Kuschnig, J. M. Matthews, D. B. Guenther, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D. Sasselov, W. W. Weiss, Regular frequency patterns in the classical δ Scuti star HD 144277 observed by the MOST satellite. Astron. Astrophys. 533, A133–140 (2011). doi:10.1051/0004-6361/201117272 55. M. M. Guimarães, S. H. P. Alencar, W. J. B. Corradi, S. L. A. Vieira, Stellar parameters and evidence of circumstellar activity for a sample of Herbig Ae/Be stars. Astron. Astrophys. 457, 581–589 (2006). doi:10.1051/0004- 6361:20065005 56. K. Zwintz, L. Fossati, D. B. Guenther, T. Ryabchikova, A. Baglin, N. Themessl, T. G. Barnes, J. M. Matthews, M. Auvergne, D. Bohlender, S. Chaintreuil, R. Kuschnig, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D. Sasselov, W. W. Weiss, Regular frequency patterns in the young δ Scuti star HD 261711 observed by the CoRoT and MOST satellites. Astron. Astrophys. 552, A68–79 (2013). doi:10.1051/0004-6361/201220934 57. M. Casey, K. Zwintz, D. B. Guenther, W. W. Weiss, P. J. Amado, D. Diaz- Fraile, E. Rodriguez, R. Kuschnig, J. M. Matthews, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D. Sasselov, MOST observations of the Herbig Ae - Scuti star HD 34282. Mon. Not. R. Astron. Soc. 428, 2596–2604 (2013). doi:10.1093/mnras/sts241 58. P. Amado et al., Mem. Soc. Astron. Ital. 77, 97–98 (2006). 59. V. Ripepi, F. Palla, M. Marconi, S. Bernabei, A. Arellano Ferro, L. Terranegra, J. M. Alcalá, Detection of? Scuti-like pulsation in H254, a pre- main sequence F-type star in IC 348. Astron. Astrophys. 391, 587–593 (2002). doi:10.1051/0004-6361:20020836 60. V. Ripepi, S. Bernabei, M. Marconi, F. Palla, A. Arellano Ferro, A. Bonanno, P. Ferrara, A. Frasca, X. J. Jiang, S.-L. Kim, S. Marinoni, G. Mignemi, M. J. P. F. G. Monteiro, T. D. Oswalt, P. Reegen, R. Janulis, E. Rodriguez, A. Rolland, A. Ruoppo, L. Terranegra, K. Zwintz, A multisite photometric campaign on the pre-main-sequence δ Scuti pulsator IP Persei. Astron. Astrophys. 449, 335–343 (2006). doi:10.1051/0004-6361:20054164 61. K. Zwintz, M. Marconi, P. Reegen, W. W. Weiss, Search for pulsating pre- main-sequence stars in NGC 6383. Mon. Not. R. Astron. Soc. 357, 345–353 (2005). doi:10.1111/j.1365-2966.2005.08655.x 62. K. Zwintz, W. W. Weiss, Pulsating pre-main sequence stars in IC 4996 and NGC 6530. Astron. Astrophys. 457, 237–248 (2006). doi:10.1051/0004- 6361:20065449 63. M. Marconi, V. Ripepi, S. Bernabei, A. Ruoppo, M. J. P. F. G. Monteiro, J. P. Marques, F. Palla, S. Leccia, The PMS δ Scuti star PDS2. Astrophys. Space Sci. 328, 109–111 (2010). doi:10.1007/s10509-009-0172-x 64. T. Böhm, W. Zima, C. Catala, E. Alecian, K. Pollard, D. Wright, Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Chamaeleontis. Astron. Astrophys. 497, 183–194 (2009). doi:10.1051/0004- 6361/200811460 65. E. Alecian, C. Catala, C. van't Veer-Menneret, M.-J. Goupil, L. Balona, Pulsations and metallicity of the pre-main sequence eclipsing spectroscopic binary RS Cha. Astron. Astrophys. 442, 993–1002 (2005). doi:10.1051/0004- 6361:20041906 66. S. Bernabei, V. Ripepi, A. Ruoppo, M. Marconi, M. J. P. F. G. Monteiro, E. Rodriguez, T. D. Oswalt, S. Leccia, F. Palla, G. Catanzaro, P. J. Amado, M. J. Lopez-Gonzalez, F. J. Aceituno, Multi-site photometry of the pulsating Herbig Ae star V346 Ori. Astron. Astrophys. 501, 279–289 (2009). doi:10.1051/0004-6361/200809643 67. S. Vieira, W. J. B. Corradi, S. H. P. Alencar, L. T. S. Mendes, C. A. O. Torres, G. R. Quast, M. M. Guimares, L. da Silva, Investigation of 131 Herbig Ae/Be Candidate Stars. Astron. J. 126, 2971–2987 (2003). doi:10.1086/379553 68. K. Zwintz, L. Fossati, D. B. Guenther, T. Ryabchikova, A. Baglin, N. Themessl, T. G. Barnes, J. M. Matthews, M. Auvergne, D. Bohlender, S. Chaintreuil, R. Kuschnig, A. F. J. Moffat, J. F. Rowe, S. M. Rucinski, D. Sasselov, W. W. Weiss, Regular frequency patterns in the young δ Scuti star HD 261711 observed by the CoRoT and MOST satellites. Astron. Astrophys. 552, A68–79 (2013). doi:10.1051/0004-6361/201220934 Acknowledgments: Data obtained with the MOST satellite are available through the MOST Public Data Archive (http://most.astro.ubc.ca//archive.html) and data from CoRoT in the CoRoT Archive (http://idoc-corot.ias.u- psud.fr/index.jsp). Spectroscopic data can be obtained at the ESO archive (http://archive.eso.org) and the CFHT archive (http://www3.cadc-ccda.hia- iha.nrc-cnrc.gc.ca/en/cfht/). Data are also available from the public website http://www.ster.kuleuven.be/~konstanze/science/. We are grateful to the MOST and CoRoT teams for making this work possible. We would like to thank N. Piskunov for his advice on the best usage of the SME software. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007 – 2013) / ERC grant agreement No 227224 (PROSPERITY), from the Research Council of the KU Leuven under grant agreement GOA/2013/012, and from the Fund for Scientific Research of Flanders (FWO), Belgium, under grant agreement G.0B69.13. TR acknowledges partial financial support from the Presidium RAS Program “Nonstationary Phenomena in Objects of the Universe”. DBG, JM, AFJM and SMR acknowledge the funding support of the Natural Sciences and Engineering Research Council (NSERC) of Canada. RK and WWW are supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (P22691-N16) and by the Austrian Research Promotion Agency- ALR. EP and MR acknowledge financial support from the FP7 project “SPACEINN: Exploitation of Space Data for Innovative Helio- and Asteroseismology”. EM is beneficiary of a postdoctoral grant from the Belgian Federal Science Policy Office co-funded by the Marie Curie Actions FP7-PEOPLE-COFUND2008 n246540 MOBILITY GRANT from the European Commission. CC was supported by the Canadian Space Agency. EM is the beneficiary of a postdoctoral grant from the Belgian Federal Science Policy Office co-funded by the Marie Curie Actions FP7-PEOPLE- COFUND2008 n246540 MOBILITY GRANT from the European Commission. Spectroscopic data were obtained with the 2.7-m telescope at Mc Donald Observatory, Texas, US, the 3.6m-telescope at La Silla Observatory under the ESO Large Programme LP185.D-0056, the Canada France Hawaii Telescope (proposal number CFHT2012AC003), the Cerro Tololo Inter-american Observatory 1.5-m telescope and the Mercator Telescope (operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias) with the HERMES spectrograph, which is supported by the Funds for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National Recherches Scientific (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. Supplementary Materials www.sciencemag.org/content/science.1253645/DC1 Materials and Methods Figs. S1 to S6 Table S1 References (21-68)
  • 5. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 5 / 10.1126/science.1253645 19 March 2014; accepted 11 June 2014 Published online 3 July 2014 10.1126/science.1253645
  • 6. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 6 / 10.1126/science.1253645 Fig. 1. 34 pulsating pre-MS stars in the evolutionary diagram. Evolutionary diagram of surface gravity vs. effective temperature for the 34 pulsating pre-MS stars. Symbol colors correspond to the percentage of critical breakup velocity (vsini / vcrit) according to the scale at top-left. Pre-MS evolutionary tracks (12) are shown from 1.5 to 3.0 M◉ in steps of 0.05 M◉ and are color-coded according to the contribution of gravitational potential energy to the total energy output: when gravitational contraction is the only energy source, the pre-MS tracks are drawn in black; the track brightness increases as the ratio of gravitational potential energy to the total energy output drops, with the onset of first non-equilibrium nuclear burnings closer to the ZAMS. The symbols marked with a white smaller square in their centers are members of the young cluster NGC 2264 labeled “a” to “i” in Figs. 2 and 3.
  • 7. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 7 / 10.1126/science.1253645 Fig. 2. NGC 2264 evolutionary diagram. Evolutionary diagram of surface gravity against effective temperature showing a subset of nine pulsating pre-MS stars in the young cluster NGC 2264: V 589 Mon, V 588 Mon, HD 261230, HD 262209, HD 261737, HD 261387, HD 262014, NGC 2264 104 and HD 261711 labeled “a” to “i. Symbol colors correspond to the highest observed p-mode frequency, fmax, according to the scale at top-left. Pre- MS evolutionary tracks (12) are shown from 1.5 to 3.0 M◉ in steps of 0.1 M◉ and are color-coded according to the contribution of gravitational potential energy to the total energy output (as in Fig. 1). The amplitude spectra of these nine objects are shown in Fig. 3 using the same labels.
  • 8. / http://www.sciencemag.org/content/early/recent / 3 July 2014 / Page 8 / 10.1126/science.1253645 Fig. 3. NGC 2264 amplitude spectra. Sequence of amplitude spectra for a subset of nine pulsating pre-MS stars in the young cluster NGC 2264 from least evolved (V 589 Mon), to most evolved (HD 261711). In each panel the X-axis shows frequency in μHz and the amplitudes on the Y-axis are given in millimagnitudes. The original amplitude spectra are shown in light grey, where all identified pulsation frequencies are marked with black solid lines. The location of the maximum pulsation frequency, fmax, for each star is marked with the dashed red line. The small insets show the region immediately around fmax to illustrate its statistical significance.