Thoughts on Deployment
   roger@10Gen.com
        @rogerb
Congratulations !

  Development done ?

Great ! Ready to Deploy :-)
some points to consider
Agenda
• A word on performance
• Sizing Your Hardware
   • memory   / cpu / disk io
• Software
   • os / filesystem
• Installing MongoDB / Upgrades
• EC2 Notes
• Security
• Backup
• Durability
• Upgrading
• Monitoring
• Scaling out
A Word on Performance
• Ensure your queries are being executed correctly
   • Enable profiling
   • db.setProfilingLevel(n)
       • n=1: slow operations, n=2: all operations
   • Viewing profile information
       • db.system.profile.find({info: /test.foo/})
   •http://www.mongodb.org/display/DOCS/Database+Profiler

• Query execution plan:
   •db.xx.find({..}).explain()
   •http://www.mongodb.org/display/DOCS/Optimization
• Make sure your Queries are properly indexed.
Sizing Hardware: Memory
• Working set should be as much in memory as possible, but
   • your whole data set doesn’t have to
•Memory Mapped files
   • Maps Files on Filesystem to Virtual Memory
      • Not Physical RAM
   • Page Faults - not in memory - from disk - expensive
• Indices
   • Part of the regular DB files
• Consider Warm Starting your Database
Sizing Hardware: CPU
• MongoDB uses multiple cores
   • For working-set queries, CPU usage is minimal
   • Generally, faster CPU are better

• Aggregation, Full Tablescans
   •Makes heavy use of CPU / Disk
   •Instead of counting / computing:
       • cache / precompute
• Map Reduce
   • Currently Single threaded
       •Can be run in parallel across shards.
   • This restriction may be eliminated, investigating options
Sizing Hardware: I/O
• Disk I/O determines performance of non-working set queries
• More Disks = Better
    • Improved throughput, Reduced Seek times
    • Raid 0 - Striping: improved write performance
    • Raid 1 - Mirroring: survive single disk failure
    • Raid 10 - both
• Consider Flash ?
    • Expensive, getting cheaper
    • Significantly reduced seek time, increased IO throughput
• Network
   • It’s easy to saturate your network
   • (Average doc size * number of document writes, reads) / sec
MongoStat

• Tool that comes with MongoDB
• Shows
   • counters for I/O, time spent in write lock, ...
IOStat
iostat
‐x
2
iostat
‐w
1
            disk0                 disk1                 disk2         cpu         load average
 KB/t      tps MB/s            KB/t tps   MB/s          KB/t tps    MB/s    us   sy id   1m    5m 15m
12.83        3 0.04            2.01   0   0.00         12.26   2    0.02    11    5 83 0.35 0.26 0.25
11.12       75 0.81            0.00   0   0.00          0.00   0    0.00    60   24 16 0.68 0.34 0.28
 4.00        3 0.01            0.00   0   0.00          0.00   0    0.00    60   23 17 0.68 0.34 0.28


avg-cpu:    %user     %nice %system %iowait   %steal   %idle
             0.00      0.00    7.96   29.85     0.50   61.69

Device:             rrqm/s    wrqm/s    r/s      w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await   svctm   %util
sda1                  0.00      0.00   0.00     0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00
sda2                  0.50   4761.19   6.47   837.31    75.62 43681.59    51.86    38.38   42.33    0.46   38.41


     Monitor
disk
transfers
:

       >
200
‐
300
Mb/s
on
XL
EC2,

but
your
mileage
may
vary
    CPU
usage
      >
30
%
during
normal
operations

OS
• For production: Use a 64bit OS
   • 32bit has 2G limit
   • Clients can be 32 bit
• MongoDB supports (little endian only):
   • Linux, FreeBSD, OS X
   • Windows
   • Solaris (joyent)
Filesystem
• All data, namespace files stored in data directory
   • Possible to create links
   • Better to aggregrate IO across disks
•File Allocation
Filesystem
• Logfiles:
    • --logpath <file>
    • Rotate:
        • db.runCommand(“logRotate”)
        • kill -SIGUSR1 <mongod pid>
    •Does not work for ./mongod > <file>
• MongoDB is filesystem-neutral:
    • ext3, ext4 and XFS are most used
    • ext4 / XFS preferred (posix_allocate())
        • improved performance for file allocation
    • Support for NTFS for windows
MongoDB Version Policy


• Production:   run even numbers
   • 1.4.x, 1.6.x, 1.8.x
•Development
   •1.5.x, 1.7.x
• Critical bugs are back ported to even versions
Installing MongoDB
• Installing from Source
    • Requires Scons, C++ compiler, Boost libraries, SpiderMonkey,
    PCRE

• Installing from Binaries (easiest)
    • curl -O http://downloads.mongodb.org/_os_/_version_

• Upgrading database
    • Install new version of MongoDB
    • Stop previous version
    • Start new version

•In case of database file changes,
    •mongodump / mongorestore
EC2 Notes
• Default storage instance is EXT3
   • For best performance, reformat to EXT4 / XFS
   • Use recent version of EXT4
• Use Striping (using MDADM or LVM) aggregates I/O
   •This is a good thing
• EC2 can experience spikes in latency
   • 400-600mS
   •This is a bad thing
More EC2 Notes


• EBS snapshots can be used for backups
   • EBS can disappear
• S3 can be used for longer term backups
• Use Amazon availability zones
   • High Availability
   • Disaster Recovery
Security
• Mongo supports basic security
• We encourage to run mongoDB in a safe environment
• Authenticates a User on a per Database basis
• Start database with --auth
• Admin user stored in the admin database
    use admin
    db.addUser("administrator", "password")
    db.auth(“administrator”, “password”)

• Regular users stored in other databases
    use personnel
    db.addUser("joe", "password")
    db.addUser(“fred”, “password”, true)
Backup
• Typically backups are driven from a slave
• Eliminates impact to client / application traffic to master
Backup



•Two main Strategies
   • mongodump / mongorestore
   • Filesystem backup / snapshot
• Filelock + fsync
mongodump

• binary, compact object dump
• each consistent object is written
• not necessarily consistent from start to finish
   • unless you lock database:
   • db.runCommand({fsync:1,lock:1})
• mongorestore to restore database
   • database does not have to be up to restore
Filesystem Backup

• MUST
   • fsync - flushes buffers to disk
   • lock - blocks writes
      db.runCommand({fsync:1,lock:1})

• Use file-system / LVM / storage snapshot
• unlock
   db.$cmd.sys.unlock.findOne();
Database Maintenance

• When doing a lot of updates or deletes
   • occasional database compaction might be needed
       • indices and datafiles
   • db.repair()
• With replica sets
   • Rolling: start up node with --repair param
Durability


 What failures do you need to recover from?
• Loss of a single database node?
• Loss of a group of nodes?
Durability - Master only

• Write acknowledged
when in memory on
master only
Durability - Master + Slaves
• W=2
• Write acknowledged
when in memory on
master + slave
• Will survive failure of a
single node
Durability - Master + Slaves +
                 fsync
• W=n
• Write acknowledged
when in memory on
master + slaves
• Pick a “majority” of
nodes
• fsync in batches (since
it blocking)
Slave delay
• Protection against app
faults
• Protection against
administration mistakes
• Slave runs X amount of
time behind
Scale out
read

       shard1   shard2   shard3

                                    mongos
/

       rep_a1   rep_a2   rep_a3   config
server


                                    mongos
/

       rep_b1   rep_b2   rep_b3   config
server


                                    mongos
/

       rep_c2   rep_c2   rep_c3   config
server




                                                 write
Monitoring


   • We like Munin ..
   • ... but other frameworks
       work as well


   • Primary function:
   • Measure stats over time
   • Tells you what is going on with
      your system
Thank You :-)
  @rogerb
download at mongodb.org

        conferences,
appearances,
and
meetups
                  http://www.10gen.com/events




   Facebook









|








Twitter








|








LinkedIn
http://bit.ly/mongoN
        @mongodb          http://linkd.in/joinmongo

Deployment Strategy

  • 1.
    Thoughts on Deployment roger@10Gen.com @rogerb
  • 2.
    Congratulations ! Development done ? Great ! Ready to Deploy :-)
  • 3.
  • 4.
    Agenda • A wordon performance • Sizing Your Hardware • memory / cpu / disk io • Software • os / filesystem • Installing MongoDB / Upgrades • EC2 Notes • Security • Backup • Durability • Upgrading • Monitoring • Scaling out
  • 5.
    A Word onPerformance • Ensure your queries are being executed correctly • Enable profiling • db.setProfilingLevel(n) • n=1: slow operations, n=2: all operations • Viewing profile information • db.system.profile.find({info: /test.foo/}) •http://www.mongodb.org/display/DOCS/Database+Profiler • Query execution plan: •db.xx.find({..}).explain() •http://www.mongodb.org/display/DOCS/Optimization • Make sure your Queries are properly indexed.
  • 6.
    Sizing Hardware: Memory •Working set should be as much in memory as possible, but • your whole data set doesn’t have to •Memory Mapped files • Maps Files on Filesystem to Virtual Memory • Not Physical RAM • Page Faults - not in memory - from disk - expensive • Indices • Part of the regular DB files • Consider Warm Starting your Database
  • 7.
    Sizing Hardware: CPU •MongoDB uses multiple cores • For working-set queries, CPU usage is minimal • Generally, faster CPU are better • Aggregation, Full Tablescans •Makes heavy use of CPU / Disk •Instead of counting / computing: • cache / precompute • Map Reduce • Currently Single threaded •Can be run in parallel across shards. • This restriction may be eliminated, investigating options
  • 8.
    Sizing Hardware: I/O •Disk I/O determines performance of non-working set queries • More Disks = Better • Improved throughput, Reduced Seek times • Raid 0 - Striping: improved write performance • Raid 1 - Mirroring: survive single disk failure • Raid 10 - both • Consider Flash ? • Expensive, getting cheaper • Significantly reduced seek time, increased IO throughput • Network • It’s easy to saturate your network • (Average doc size * number of document writes, reads) / sec
  • 9.
    MongoStat • Tool thatcomes with MongoDB • Shows • counters for I/O, time spent in write lock, ...
  • 10.
    IOStat iostat
‐x
2 iostat
‐w
1 disk0 disk1 disk2 cpu load average KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s us sy id 1m 5m 15m 12.83 3 0.04 2.01 0 0.00 12.26 2 0.02 11 5 83 0.35 0.26 0.25 11.12 75 0.81 0.00 0 0.00 0.00 0 0.00 60 24 16 0.68 0.34 0.28 4.00 3 0.01 0.00 0 0.00 0.00 0 0.00 60 23 17 0.68 0.34 0.28 avg-cpu: %user %nice %system %iowait %steal %idle 0.00 0.00 7.96 29.85 0.50 61.69 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.50 4761.19 6.47 837.31 75.62 43681.59 51.86 38.38 42.33 0.46 38.41 Monitor
disk
transfers
:
 >
200
‐
300
Mb/s
on
XL
EC2,

but
your
mileage
may
vary CPU
usage >
30
%
during
normal
operations

  • 11.
    OS • For production:Use a 64bit OS • 32bit has 2G limit • Clients can be 32 bit • MongoDB supports (little endian only): • Linux, FreeBSD, OS X • Windows • Solaris (joyent)
  • 12.
    Filesystem • All data,namespace files stored in data directory • Possible to create links • Better to aggregrate IO across disks •File Allocation
  • 13.
    Filesystem • Logfiles: • --logpath <file> • Rotate: • db.runCommand(“logRotate”) • kill -SIGUSR1 <mongod pid> •Does not work for ./mongod > <file> • MongoDB is filesystem-neutral: • ext3, ext4 and XFS are most used • ext4 / XFS preferred (posix_allocate()) • improved performance for file allocation • Support for NTFS for windows
  • 14.
    MongoDB Version Policy •Production: run even numbers • 1.4.x, 1.6.x, 1.8.x •Development •1.5.x, 1.7.x • Critical bugs are back ported to even versions
  • 15.
    Installing MongoDB • Installingfrom Source • Requires Scons, C++ compiler, Boost libraries, SpiderMonkey, PCRE • Installing from Binaries (easiest) • curl -O http://downloads.mongodb.org/_os_/_version_ • Upgrading database • Install new version of MongoDB • Stop previous version • Start new version •In case of database file changes, •mongodump / mongorestore
  • 16.
    EC2 Notes • Defaultstorage instance is EXT3 • For best performance, reformat to EXT4 / XFS • Use recent version of EXT4 • Use Striping (using MDADM or LVM) aggregates I/O •This is a good thing • EC2 can experience spikes in latency • 400-600mS •This is a bad thing
  • 17.
    More EC2 Notes •EBS snapshots can be used for backups • EBS can disappear • S3 can be used for longer term backups • Use Amazon availability zones • High Availability • Disaster Recovery
  • 18.
    Security • Mongo supportsbasic security • We encourage to run mongoDB in a safe environment • Authenticates a User on a per Database basis • Start database with --auth • Admin user stored in the admin database use admin db.addUser("administrator", "password") db.auth(“administrator”, “password”) • Regular users stored in other databases use personnel db.addUser("joe", "password") db.addUser(“fred”, “password”, true)
  • 19.
    Backup • Typically backupsare driven from a slave • Eliminates impact to client / application traffic to master
  • 20.
    Backup •Two main Strategies • mongodump / mongorestore • Filesystem backup / snapshot • Filelock + fsync
  • 21.
    mongodump • binary, compactobject dump • each consistent object is written • not necessarily consistent from start to finish • unless you lock database: • db.runCommand({fsync:1,lock:1}) • mongorestore to restore database • database does not have to be up to restore
  • 22.
    Filesystem Backup • MUST • fsync - flushes buffers to disk • lock - blocks writes db.runCommand({fsync:1,lock:1}) • Use file-system / LVM / storage snapshot • unlock db.$cmd.sys.unlock.findOne();
  • 23.
    Database Maintenance • Whendoing a lot of updates or deletes • occasional database compaction might be needed • indices and datafiles • db.repair() • With replica sets • Rolling: start up node with --repair param
  • 24.
    Durability What failuresdo you need to recover from? • Loss of a single database node? • Loss of a group of nodes?
  • 25.
    Durability - Masteronly • Write acknowledged when in memory on master only
  • 26.
    Durability - Master+ Slaves • W=2 • Write acknowledged when in memory on master + slave • Will survive failure of a single node
  • 27.
    Durability - Master+ Slaves + fsync • W=n • Write acknowledged when in memory on master + slaves • Pick a “majority” of nodes • fsync in batches (since it blocking)
  • 28.
    Slave delay • Protectionagainst app faults • Protection against administration mistakes • Slave runs X amount of time behind
  • 29.
    Scale out read shard1 shard2 shard3 mongos
/
 rep_a1 rep_a2 rep_a3 config
server mongos
/
 rep_b1 rep_b2 rep_b3 config
server mongos
/
 rep_c2 rep_c2 rep_c3 config
server write
  • 30.
    Monitoring • We like Munin .. • ... but other frameworks work as well • Primary function: • Measure stats over time • Tells you what is going on with your system
  • 31.
  • 32.
    download at mongodb.org conferences,
appearances,
and
meetups http://www.10gen.com/events Facebook









|








Twitter








|








LinkedIn http://bit.ly/mongoN
 @mongodb http://linkd.in/joinmongo