SlideShare a Scribd company logo
PERTAMINA UP. IV CILACAP                                                 REKAYASA    BARATA


                       LEMBAR PERHITUNGAN BOILER FOUNDATION
                                (DAERATOR 38-D-101)




                           PROYEK          :        CILACAP CRUDE OIL TANK

                           KLIEN           :        PERTAMINA UP IV CILACAP

                           LOKASI          :        CILACAP, JAWA TENGAH

                           NO. DOK. REK    :        CCT–00–A0–CS–005R

                           NO. DOK. PTM    :        242–C-420-010




                                          NO. PEK. : 07-1701




 1     RE-ISSUED FOR APPROVAL
 0     ISSUED FOR APPROVAL                 6/09/ 2007      HYT/GS    NIEL/AV              SR

REV                     URAIAN             TANGGAL         DIBUAT   DIPERIKSA         DISETUJUI


                                          PT. Rekayasa Industri
PEK. NO.: 07-1701                        REV
LEMBAR PERHITUNGAN BOILER FOUNDATION                                                                                        1
                                                                                  NO. DOK. PTM : 242–C-420-010
         (DAERATOR 38-D-101)                                                      NO. DOK. REK : CCT-00-A0-CS-010 R
                                                                                      TANGGAL             OLEH     DIPRS   DISTJ
                                                                                     10 Mar 08



                                         LEMBAR RIWAYAT REVISI

    No. Rev                    Tanggal                                       Uraian

         0              27 Agustus 2007                              ISSUED FOR APPROVAL
         1               10 Maret 2008                              RE-ISSUED FOR APPROVAL




                                             DAFTAR DISTRIBUSI

   Internal Engineering (by EDO):           Internal REKAYASA (by EDO):      External CONTRACTOR (by Transmittal)
 Civil Lead Eng.          1 Copy          Project Manager           1 Copy   Pertamina UP-IV                     1 Copy
 Electrical Lead Eng.     1 Copy          Deputy Project Manager    1 Copy                 For Approval
 Instrument Lead Eng.     1 Copy          Procurement Manager       1 Copy                 For Review
 Mechanical Lead Eng.     1 Copy          Project Control Manager   1 Copy                 For Info.
 Piping Lead Eng.         1 Copy          Construction Manager      1 Copy
 Process Lead Eng.        1 Copy          QA/QC Manager             1 Copy
 Engineering Manager      1 Copy




                                         PT. Rekayasa Industri
DAFTAR ISI

1. UMUM
  1.1 Gambaran Struktur                                           3
  1.2 Desain Filosofi                                             3
  1.3 Satuan Ukuran                                               3
  1.4 Program Komputer yang digunakan dalam Analisa Desain        3
  1.5 Code dan Standar
       1.5.1 Code & Standar Umum                                  3
       1.5.2 Code & Standar Khusus                                3
  1.6 Material yang digunakan dan tegangan ijin                   4

2. PEMODELAN
  2.1 Model struktur & perspektif                                 5
  2.2 Properti & Panjang Batang Struktur                          6
  2.3 Penomoran Batang                                            7

3. DATA PEMBEBANAN
 3.1 Beban Mati (Dead Load)                                       8
 3.2 Beban Hidup (Live Load)                                      8
 3.3 Beban Equipment (Equipment Load)                             8
 3.4 Beban Angin (Wind Load)                                      8
 3.5 Beban Gempa (Seimic Load)                                   10
 3.6 Kombinasi Pembebanan                                        13

4. DESAIN ANALISA
 4.1 Desain Baja                                                 13

5. DESAIN PONDASI
 5.1 Pemeriksaan Reaksi Tiang Terhadap Kapasitas Tiang Pancang   14
 5.2 Penulangan                                                  19
LAMPIRAN
 - Gambar
 - Data Equipment



                                                                      Page 2
1. UMUM


1.1     GAMBARAN STRUKTUR
        Proyek                  : CILACAP CRUDE OIL TANK
        Klien                   : PT. PERTAMINA
        Lokasi                  : Cilacap, Central Java
        Fasilitas               : Platform Deaerator
        Jenis Struktur          : - Struktur beton bertulang untuk pondasi

                                 - Struktur baja untuk plat form


1.2     DESAIN FILOSOFI
        Tujuan dari perhitungan ini untuk melakukan verifikasi integritas struktural, kekuatan, dan
        stabilitas.

        Karena baja dan beton yang digunakan sebagai material, struktural desain disesuaikan dengan
        working stress methode untuk struktur baja dari AISC dan the ultimate strength methode untuk
        beton dari American Concrete Institute (ACI).

1.3     SATUAN PENGUKURAN
        Satuan pengukuran dalam desain menggunakan metric system.

1.4     PROGRAM KOMPUTER YANG DIGUNAKAN DALAM DESAIN ANALISA
        Program Komputer yang digunakan dalam desain analisa, adalah :
          - Staad Pro
          - Math Cad
          - MS-Excel

1.5     CODE DAN STANDAR
1.5.1   Codes & Standar Umum

        - ACI 318 - 2002
        "American Concrete Institute"
        Building Code Requirement for Structural Concrete

        - ACI 315
        "Standard Practice for Detailing Reinforced Concrete Reinforcement"




                                                                                                      Page 3
- UBC 1997 Edition "Uniform Building Code"


         - SNI-03-1727-1989

          Tata cara perencanaan Pembebanan untuk bangunan gedung

        - AISC 2005 ASD Series
          Requirement for Steel Structure

1.5.2    Codes dan Standar Khusus
         - Spesifikasi Perencanaan untuk Sipil dan Struktur
         - Laporan Penyelidikan Tanah dan Studi Pondasi Untuk Pembangunan 2 (Dua) Tanki Crude
          dan Perhitungan Pondasi Pompa 014P101/102 oleh PT SOFOCO

1.6      MATERIAL YANG DIGUNAKAN DAN TEGANGAN IJIN

                                                                          −2
          Kuat tekan beton                         :    fc := 280 ⋅ kg ⋅ cm
                                                                              −2
          Tegangan leleh dari baja                 :    fy := 4000 ⋅ kg ⋅ cm       : (Ulir)
                                                                               − 2 ( Polos)
                                                        fy1 := 2400 ⋅ kg ⋅ cm
                                                                              −3
          Berat unit beton                         :    γc := 2400 ⋅ kg ⋅ m
                                                                              −3
          Berat unit baja                          :    γs := 7850 ⋅ kg ⋅ m
                                                                                 −3
          Berat unit tanah urug                    :    γsoil := 1700 ⋅ kg ⋅ m

         Daya dukung tanah

         Dari laporan penyelidikan tanah

                                   −2
           Qall := 5 ⋅ tonne ⋅ m




                                                                                                Page 4
2. PEMODELAN



2.1   MODEL STRUKTUR dan PERSPEKTIF




                                      Page 5
2.2   PROPERTY & PANJANG BATANG STRUKTUR




                                           Page 6
2.3   PENOMORAN BATANG




                         Page 7
3.    DATA PEMBEBANAN
3.1   BEBAN MATI (DL)
      - DL beban sendiri --> by Staad Pro
      - DL grating --> 35 kg/m2
      - DL handrail --> 2x3.24 kg/m         (pipa dia. 32 mm)


3.2   BEBAN HIDUP (LL)
      - LL --> (265 kg/m2)

3.3   BEBAN EQUIPMENT (E)
      Kondisi empty & operating(E1)   E1 := 8.3325tonne



3.4   BEBAN ANGIN (W)

      Beban angin harus dihitung sesuai dengan rumus yang diberikan didalam UBC 1997, chapter 16
          P = Ce x Cq x qs x Iw
              Dimana,          Ce = koefisien gust factor berdasarkan ketinggian struktur berdasarkan
                                    table 16-G UBC 1997
                              Cq = koefisien tekanan pada struktur berdasarkan tabel 16-H UBC 1997
                              Iw = faktor keutamaan struktur pada tabel 16-K UBC 1997
                              qs = tekanan angin pada standar ketinggian 33 feet berdasarkan table
                                   16-F UBC 1997
                               W = Beban angin rencana (kg/m2)




                                                                                                   Page 8
904                             914




                                                                                    1591



                2810




                                                                                    1219




                           1219                            3493



Luas area equipment ( X )                                   a1 := 1.219m ⋅ 2.81m
Luas area equipment ( Z )                                   a2 := ( 3.493m ⋅ 1.219 m ) + ( 1.591m ⋅ 0.914 m )

Jarak antara titik berat equipm. dg support                 Lev := 1200mm
Jarak antar support                                         Lh := 2032mm
Jarak antar baut pada support                               Lb := 914mm
Ce := 1.24                 Co := 1.37
                    −2
qs := 80 ⋅ kg ⋅ m          Cq2 := 0.8
Cq1 := 1                   Iw := 1.15
                                                    -2
W1 := Ce ⋅ qs ⋅ Cq1 ⋅ Iw         W1 = 114.08 kg m        ( diberikan pada struktur )
                                                    -2
W2 := Ce ⋅ qs ⋅ Cq2 ⋅ Iw         W2 = 91.264 kg m

Untuk Vessel luas area dikalikan faktor pengali (Co)

Pw1h := W2 ⋅ a1 ⋅ Co             Pw1h = 428.282 kg       (X)

Mpw1h := Pw1h ⋅ Lev              Mpw1h = 513.939 kg m
           Mpw1h
Pw1v :=                          Pw1v = 126.461 kg       (X)
             2 ⋅ Lh

Pw2h := W2 ⋅ a2 ⋅ Co             Pw2h = 714.199 kg       (Z)

Mpw2h := Pw2h ⋅ Lev              Mpw2h = 857.038 kg m

           Mpw2h
Pw2v :=                          Pw2v = 468.839 kg       (Z)      ( diberikan pada support equipment )
             2 ⋅ Lb



                                                                                                        Page 9
Mpw1h                               Mpw2h

                                                                Pw1h                          Pw2h

                                                          Lev                           Lev


                                BY1               BY1                         BY1

                                          Lh                                   Lb
                                   Pw1h            Pw1h                Pw2h           Pw2h




3.5   BEBAN GEMPA (V)
      Beban gempa untuk setiap fasilitas harus dihitung berdasarkan rumus yang tercantum dalam UBC
      1997, chapter 16

       Total gaya geser dasar rencana ditentukan dengan rumus berikut :

       V =    Cv I W
                RT
       Total gaya geser dasar rencana tidak boleh lebih dari :

       Vmax =     2.5 Ca I W
                      R
       Total gaya geser dasar rencana tidak boleh kurang dari :

       Vmin =    0.11 Ca I W

       Dimana,          V      :  Total gaya horizontal atau geser pada dasar
                        Ca     :  Koefisien gempa dasar, table 16-Q UBC 1997
                        Cv     :  Koefisien gempa dasar, table 16-R UBC 1997
                        I      :  Faktor keutamaan/importance factor, table 16-K UBC 1997
                        R      :  Numerical Coeffiicient yang mewakili kapasitas daktilitas dari
                                 system yang menahan beban lateral, table 16-N & table 16-P
                                 UBC 1997
                        T      : Periode getar alami struktur
                        W      : Total Beban mati, beban hidup yang dikurangi, beban pipa dan
                                 beban mesin/peralatan




                                                                                                     Page 10
Ketentuan yang berlaku untuk proyek ini adalah sebagai berikut :
  1. Seismic Risk Zone 3 ( Z = 0.3)
  2. Important factor I = 1.25 untuk semua struktur
  3. Profile tanah adalah tipe tanah lunak (Soft Soil Profile SE, UBC 1997)
  4. Periode Getar struktur, T dihitung berdasarkan rumus berikut :

                                T = Ct (hn)3/4

  Dimana                       Ct = 0.0835 untuk steel moment resisting frames
                               Ct = 0.0731 untuk reinforced concrete moment resisting
                                    frames dan eccentrically braced frames
                               Ct = 0.0488 untuk bangunan-bangunan lain
                               hn = ketinggian struktur yang ditinjau (m)
                                                     3
                                                     4
                                 T := 0.0731 ⋅ 9.5            T = 0.396



  Dari tabel UBC didapat :
                             I := 1.25           Cv := 0.84
                             Ca := 0.36          R := 5.6
  Gaya geser yang diperoleh =
                         I                                                    I       Vmin := 0.11 ⋅ Ca ⋅ I W
                                                                                  W
        V := Cv ⋅                W                   Vmax := 4 ⋅ 2.5 ⋅ Ca ⋅
                        R ⋅T                                                  R
                                                         Vmax = 0.804                 Vmin = 0.05 W
        V = 0.474                W                                            W

 Karena V>Vmax maka V yang digunakan adalah V=0.201 W

Beban gempa akibat DL+0.5 LL dihitung dengan StaadPro dan didistribusikan ke sambungan kolom
dan beam

Beban gempa untuk equipment dihitung berdasarkan rumus dalam UBC 1997, chapter 1632

                    I ⎛            hx ⎞
 Veh := ap ⋅ Ca ⋅       ⋅⎜1 + 3           Wed
                    R ⎝            hr ⎠




                                                                                                                Page 11
Wed : Equipment weight
    ap      : Structure Component Amplification Factor, varies from 1~2.5
    hx      : element elevation respect to grade
    hr      : structure roof elevation respect to grade

 Berdasar data yang diperoleh diambil :

ap := 2.5       (maksimum)
                                           Wed := E1
hx := 9.5 ⋅ m
hr := 9.5m + 2.18m


                      I ⎛           hx ⎞
 Veh := ap ⋅ Ca ⋅         ⋅⎜1 + 3          ⋅ Wed
                      R ⎝           hr ⎠


Berat Equipment                                      Wed = 8.332 tonne
Beban gempa rencana                                  Veh = 5758.467 kg            ( diberikan pada support )
Mve1h := Veh ⋅ Lev                  Mve1h = 6910.161 kg m

            Mve1h
Pw1v :=                             Pw1v = 1700.335 kg           (X)
             2 ⋅ Lh

            Mve1h
Pw2v :=                             Pw2v = 3780.175 kg           (Z)
             2 ⋅ Lb




                              Mve1h                                      Mve1h

                                                           Veh                           Veh

                                                     Lev                           Lev


                  BY1                         BY1                        BY1

                              Lh                                          Lb
                  Pw1v                        Pw1v                Pw2v           Pw2v




                                                                                                               Page 12
3.6   KOMBINASI PEMBEBANAN
      Untuk desain stabilitas pondasi dan   Untuk desain penulangan
      steel structure
                                             1.4DL+1.4E(1)
       DL+E(1)
                                             0.9DL+0.9E(1)+1.3WX
       0.75DL+0.75E(1)+0.75WX
                                             0.9DL+0.9E(1)+1.3WZ
       0.75DL+0.75E(1)+0.75WZ
                                             0.9DL+0.9E(1)+1.43VX
       0.75DL+0.75E(1)+0.75VX
                                             0.9DL+0.9E(1)+1.43VZ
       0.75DL+0.75E(1)+0.75VZ
                                             1.4DL+1.4E(1)+1.7LL
       DL+LL+E(1)
                                             1.05DL+1.275LL+1.05E(1)+1.275WX
       0.75DL+0.75LL+0.75E(1)+0.75WX
                                             1.05DL+1.275LL+1.05E(1)+1.275WZ
       0.75DL+0.75LL+0.75E(1)+0.75WZ
                                             1.05DL+1.275LL+1.05E(1)+1.4VX
       0.75DL+0.75LL+0.75E(1)+0.75VX
                                             1.05DL+1.275LL+1.05E(1)+1.4VZ
       0.75DL+0.75LL+0.75E(1)+0.75VZ




                                                                               Page 13
4     DESAIN ANALISA

4.1   DESAIN BAJA
      Desain baja menggunakan analisa dengan STAADPro berdasar AISC Series
      Hasil :
                                                                        ( 1.33) ⋅ 950 cm
      - horisontal displ. maksimum = 1.5 cm (join 15)arah X < δall :=                      δall = 6.317 cm   ( ok)
                                                                              200
                                                                        ( 1.33) ⋅ 270 cm
      - vertikal displ. maksimum = 0.228 cm (join 17)arah X < δall :=                      δall = 1.796 cm   ( ok)
                                                                             200
      - rasio maksimum = 0.33 (member 1) >> kolom
                          0.332 (member 29)>>balok
                          0.741 (member 66)>>bracing




                                                                                                             Page 14
5.        DESAIN PONDASI

      Dimensi Pondasi :
      Lebar pondasi                      :   bf := 1.1m
      Panjang pondasi                    :   df := 1.1m
      Panjang pedestal                   :   bp := 0.45m
      Lebar pedestal                     :   dp := 0.30m
      Tinggi pondasi                     :   hf := 0.45m
      Tinggi pedestal                    :   hp := 0.6m
      Tinggi tanah diatas pondasi        :   hs := 0.3m
      Total tinggi pondasi               :   h := hf + hp                                h = 1.05 m
      Lebar grade beam                   :   bg := 250mm
      Tinggi grade beam                  :   dg := 450mm
      Bentang grade beam                 :   Lg1 := 4860mm
                                             Lg2 := 2700mm
      Berat pondasi                      :   Wf := γc ⋅ ( bf ⋅ df ⋅ hf + bp ⋅ dp ⋅ hp)   Wf = 1501.2 kg
      Berat tanah diatas pondasi         :   Ws := γsoil ⋅ ( bf ⋅ df − bp ⋅ dp) ⋅ hs     Ws = 548.25 kg
      Berat grade beam                   :   Wg := γc ⋅ bg ⋅ dg ⋅ 0.5 ⋅ ( Lg1 + Lg2)     Wg = 1020.6 kg
      Berat pondasi                      :   D := Wf + Ws + Wg                           D = 3070.05 kg

                                                                       bp


                                                              hp
                           bp                                                                     hs

     bg            dp               df
                                             dg                                                   hf


                                                                        bf
                           bf




                                                                                                          Page 15
5.1 Pemeriksaan Reaksi Tiang Terhadap Kapasitas Tiang Pancang

   A. Pemeriksaan kapasitas axial

   Gaya tekan yang diijinkan (Pall) :
    Pall1 := 40tonne           (dari data vendor)
    Pall2 := 45tonne           (dari laporan geoteknik)

   Dipakai :   Pall := min ( Pall1 , Pall2)
   Gaya tekan maksimum :          (dari output STAADPro untuk Load comb pondasi)
    Fy := 4340kg

   Total vertical load :                  VL := Fy + D                                   VL = 7.41 tonne
                                                  ⎛ VL ⎞
   Jumlah tiang yg diperlukan :           Σn :=   ⎜                                      Σn = 0.185
                                                  ⎝ Pall ⎠
   Jumlah pile yg diambil :                                                              Σn := 1

   Dimensi tiang pancang ( triangular ) :                                                S := 320 ⋅ mm


                                                    S
   luas penampang pile                    Apl :=        ⋅ [ S ⋅ ( sin ( 60 ⋅ deg ) ) ]
                                                    2

                                                          4Apl
   ekivalensi diameter                    Dia1 :=                                        Dia1 = 237.605 mm
                                                             π

                                                    ⎛        S         ⎞
                                                    ⎜        2
                                          Dia2 := 2 ⎜
                                                    ⎝ sin ( 60 ⋅ deg ) ⎠                 Dia2 = 369.504 mm

                                          Dia := max ( Dia1 , Dia2)                      Dia = 369.504 mm

   Jarak minimum ke tepi pondasi :        semin := 1.2 ⋅ Dia                             semin = 0.443 m

          VL
  Pv :=                       Pv = 7.41 tonne
          Σn

  Status = "OK     Pv<Pall"




                                                                                                             Page 16
Gaya tarik yang diijinkan (Pall) :
 Pall := 6.41tonne           (dari data vendor)
 Pall := 15tonne             (dari laporan geoteknik)
Dipakai Pall:6.41tonne
Gaya tarik yang terjadi : (dari output STAADPro untuk Load comb pondasi)
 Fyt := −1.285 ⋅ tonne
 Pvt := D − Fy
 Pvt = −1269.95 kg

Status = "OK     Pvt<Pall"



B. Pemeriksaan Reaksi Tiang Terhadap Kapasitas Lateral

      Diameter of pile :                Dia = 369.504 mm

      Jumlah total tiang :              Σnt := 8

   Gaya lateral yang diijinkan (Hall) :
   Hall := 2.25tonne       (dari laporan geoteknik)
   Gaya lateral maksimum yang terjadi :            (dari output STAADPro untuk Load comb pondasi)

     Fz := 623kg

   Hmax := Fz

   Hmax = 0.623 tonne

   Status = "OK      Hmax<Hall"




                                                                                                    Page 17
C. Pemeriksaan pile head treatment

Pile cut off harus berjarak 75 mm sampai 100 dari bawah pilecap (M.J. Tomlinson).
Panjang tendon/tulangan untuk menyatukan tiang dan pile cap untuk praktis digunakan
40d ( d = pc-wire diameter ).




                  pc wire
                                           Pile beton yang dipotong

       40d                                                  H = beban horisontal




               h = 75 mm




  Jarak PCO dari bawah pondasi d = 19 mm                                           pco := 75mm
  Dari data vendor d = 19 mm
  Panjang pc wire = 40 x 19 = 760 mm

  Check terhadap concrete bearing pressure
                                                                                                     −2
  Compressive concrete strength untuk pile cap :                                   fc := 280 ⋅ kg ⋅ cm
                                                                                                         −2
  Allowable bearing pressure :                        fcb := 0.33 ⋅ fc             fcb = 92.4 kg ⋅ cm
  Bearing force :       H/A < fcb
             Dimana : A = bearing area = ( Dia x h )
                        Dia = diameter pile
                        Hmax = maximum horizontal load
                            h := 10cm
                            A := Dia ⋅ h

                            Hmax                   −2
                                    = 1.686 kg ⋅ cm           Hmax/A < fcb           Status OK
                              A
                            Status = "OK     Hmax/A < fc"




                                                                                                              Page 18
5.2 Penulangan

          A Penulangan Pile cap

        Pemodelan struktur dengan asumsi pile cap menahan beban axial
                                                       dp

                                    GL
                                    .




                                q



                                                                    L

                                                       q

                                                       df

    Beban aksial maksimum dari output Staadpro untuk load comb penulangan :
     Fyr := 7356kg
                             1.4D + Fyr                                                −1
    Beban :          qu :=                                     qu = 10.595 tonne ⋅ m
                                    bf

                      L := 0.5 ⋅ ( df − dp)


  Penulangan pile cap :

                                         qu        2
  Ultimate momen :           Mult :=          ⋅L                                       Mult = 0.848 tonne ⋅ m
                                         2


   Luas selimut beton               dc := 7.5 ⋅ cm
                                                                                                             1
   Diameter tulangan                rdia := 1.3 ⋅ cm        Tinggi efektif                  d := hf − dc −       ⋅ rdia
                                                                                                             2
   Beban per lebar pondasi df = 1.1 m                                                       d = 0.369 m




                                                                                                                          Page 19
Perhitungan :
ρmin := 0.0018

           Mult                                                                              −2
Rn :=                                                                    Rn = 0.63 kg cm
                       2
        0.9 ⋅ df ⋅ d

       0.85 ⋅ fc   ⎛                2 ⋅ Rn   ⎞
ρ :=               ⋅⎜1 −     1−                                          ρ = 0.00016
          fy       ⎝               0.85 ⋅ fc ⎠


 ρtop :=       ρmin if ρ ≤ ρmin
               ρ if ρmin < ρ


 ρtop = 0.0018

 ρbot := ρtop
                                                                                         2
 Asbot := ρbot ⋅ df ⋅ hf                                                Asbot = 8.91 cm

 Dicoba: D-13 @ 150

 rd := 1.3cm               s := 15cm

               (
 Asteel := 0.25 ⋅ π ⋅ rd ⋅
                             2   ) df
                                   s
                                                 Asteel = 9.734 cm
                                                                  2
                                                                        Digunakan D-13 @ 150


                                                 Status = "Asteel > Asbot, Rebar . OK"




                                                                                                  Page 20
B Punching Shear

                        Dia+d

                                                                                            Dia
d                                                         hf


                  pco




    Tinggi pondasi :     hf = 0.45 m

    concrete cover : dc := 75 ⋅ mm

    rebar dia: dr := 13 ⋅ mm


    Tinggi Efektif :     d := hf − pco           d = 0.375 m

                          Vpu := ( 1.4)Pall
    Punching shear :                             Vpu = 21 tonne
                                   Vpu
                          Vpn :=                 Vpn = 24.706 tonne
                                   0.85

    Perimeter length :    bo := π ⋅ ( Dia + d) bo = 2.339 m

                                                                             0.5      −1
                                          Vpc := 1.06 ⋅   fc ⋅ bo ⋅ d ⋅ kg         ⋅ cm    Vpc = 155.573 tonne
    Allowable Punching Shear :

                                          Status = "Vpc > Vpn ----> PUNCHING SHEAR OK"




                                                                                                                 Page 21
C Penulangan Grade Beam

Panjang grade beam                            :      Lgg := 4.86m
                                                                                                                   -1
Berat grade beam                              :      Wgg := γc ⋅ bg ⋅ dg                         Wgg = 270 kg m
                                                                                                                        -1
Berat tanah diatas grade beam :                      Wsg := γsoil ⋅ bg ⋅ hs                      Wsg = 127.5 kg m
                                                                                                                   -1
Beban merata grade beam                       :      qp := 1.4( Wgg + Wsg)                       qp = 556.5 kg m



                                                                    1                2
                                                     Mg1 :=             ⋅ qp ⋅ Lgg               Mg1 = 1095.359 kg m
                                                                12

                                                     Multg := Mg1

                                                     Multg = 1095.359 kg m


 Luas selimut beton                 dc := 7.5 ⋅ cm         Diameter tulangan                 rdia := 1.3 ⋅ cm
 Beban per meter lebar              bg = 0.25 m

                                                       1
 Tinggi efektif                     d := dg − dc −         ⋅ rdia        d = 0.369 m
                                                       2
Perhitungan :
ρmin := 0.0035

           Multg                                                                                           −2
Rn :=                                                                                    Rn = 3.585 kg cm
                       2
        0.9 ⋅ bg ⋅ d

       0.85 ⋅ fc   ⎛             2 ⋅ Rn   ⎞
ρ :=               ⋅⎜1 −   1−                                                            ρ = 0.0009
          fy       ⎝            0.85 ⋅ fc ⎠

 ρtop :=       ρmin if ρ ≤ ρmin
               ρ if ρmin < ρ

 ρtop = 0.0035

 ρbot := ρtop




                                                                                                                        Page 22
2
 Asbot := ρbot ⋅ bg ⋅ d                                                                    Asbot = 3.2244 cm

 Dicoba: 3 D-13
 n := 3
 rd := 1.3cm

              (
 Asteel := 0.25 ⋅ π ⋅ rd ⋅ n
                               2   )                         Asteel = 3.982 cm
                                                                                   2
                                                                                       Digunakan 3 D13 ( top & bottom )


                                                             Status = "Asteel > Asbot, Rebar . OK"

Tulangan geser

Kuat tekan beton                           :                  fc1 := 28      MPa
Tegangan leleh baja                        :                  fy1 := 240 MPa
Tulangan sengkang                          :                  rdg := 10mm
Tinggi efektif                             :                  d = 0.369 m
                                                                φs := 0.75
          qp ⋅ Lgg
Vult :=                                                       Vult = 1352.295 kg
              2
Vult := 3895.5N

                  fc1
φVc := φs ⋅             ⋅ bg ⋅ d                  φVc = 60934.96 N
                  6

Status :=     "No Shear Reinforcement required"                      if Vult < 0.5 ⋅ φVc
              "Only Minimum Shear Reinforcement"                        if 0.5 ⋅ φVc < Vult < φVc
              "Shear Reinforcement Needed"                     if Vult > φVc

Status = "No Shear Reinforcement required"

              d            d
smax :=               if       < 600mm                      smax = 184.25 mm
              2            2
                                       d
              600mm if                         > 600mm
                                       2

Digunakan
φ 10 @ 100            Pada ujung grade beam
φ 10 @ 150            Pada tengah grade beam


                                                                                                                 Page 23

More Related Content

Viewers also liked

Steam boilers
Steam boilersSteam boilers
Steam boilers
Jitin Pillai
 
Centrifugal pump
Centrifugal pumpCentrifugal pump
Centrifugal pump
Anshumaan Tiwari
 
Crystallization
CrystallizationCrystallization
Crystallization
annaszsp9
 
Crystallization and drying
Crystallization and dryingCrystallization and drying
Crystallization and drying
Subin E K
 
Boilers
BoilersBoilers
Evaporators and their methods
Evaporators and their methods Evaporators and their methods
Evaporators and their methods
Shikha Thapa
 
Crystallization of sugar
Crystallization of sugarCrystallization of sugar
Crystallization of sugar
Ammar Babar
 
Crystallisation
CrystallisationCrystallisation
Crystallisation
bhagwadgeeta
 
Crystallization 3
Crystallization 3Crystallization 3
Crystallization 3
Jehan Essam
 
Evaporation ppt
Evaporation pptEvaporation ppt
Evaporation ppt
Umer Farooq
 
Evaporation
EvaporationEvaporation
Evaporation
masato25
 
Sugar Industry I I
Sugar  Industry  I ISugar  Industry  I I
Sugar Industry I I
yousifmagdi
 
centrifuge
centrifugecentrifuge
centrifuge
Pankaj Naliyapara
 
Boiler
BoilerBoiler
Steam boilers
Steam boilersSteam boilers
Steam boilers
sarat7
 
Sugar industry Presentaion
Sugar industry PresentaionSugar industry Presentaion
Sugar industry Presentaion
malikumar242
 
Water and fire tube boilers
Water and fire tube boilersWater and fire tube boilers
Water and fire tube boilers
Tariq Jamshaid
 
Boiler operation
Boiler operationBoiler operation
Boiler operation
Sakshi Vashist
 
NAFLD, NASH
NAFLD, NASHNAFLD, NASH
NAFLD, NASH
Shatdal Chaudhary
 
Gearbox
GearboxGearbox
Gearbox
salamony1992
 

Viewers also liked (20)

Steam boilers
Steam boilersSteam boilers
Steam boilers
 
Centrifugal pump
Centrifugal pumpCentrifugal pump
Centrifugal pump
 
Crystallization
CrystallizationCrystallization
Crystallization
 
Crystallization and drying
Crystallization and dryingCrystallization and drying
Crystallization and drying
 
Boilers
BoilersBoilers
Boilers
 
Evaporators and their methods
Evaporators and their methods Evaporators and their methods
Evaporators and their methods
 
Crystallization of sugar
Crystallization of sugarCrystallization of sugar
Crystallization of sugar
 
Crystallisation
CrystallisationCrystallisation
Crystallisation
 
Crystallization 3
Crystallization 3Crystallization 3
Crystallization 3
 
Evaporation ppt
Evaporation pptEvaporation ppt
Evaporation ppt
 
Evaporation
EvaporationEvaporation
Evaporation
 
Sugar Industry I I
Sugar  Industry  I ISugar  Industry  I I
Sugar Industry I I
 
centrifuge
centrifugecentrifuge
centrifuge
 
Boiler
BoilerBoiler
Boiler
 
Steam boilers
Steam boilersSteam boilers
Steam boilers
 
Sugar industry Presentaion
Sugar industry PresentaionSugar industry Presentaion
Sugar industry Presentaion
 
Water and fire tube boilers
Water and fire tube boilersWater and fire tube boilers
Water and fire tube boilers
 
Boiler operation
Boiler operationBoiler operation
Boiler operation
 
NAFLD, NASH
NAFLD, NASHNAFLD, NASH
NAFLD, NASH
 
Gearbox
GearboxGearbox
Gearbox
 

Similar to Daerator revisi

Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdfSpecification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
MohHElkomy
 
DOSH PTI Presentation for FPSO BERTAM LMBV (1)
DOSH PTI Presentation for FPSO BERTAM LMBV (1)DOSH PTI Presentation for FPSO BERTAM LMBV (1)
DOSH PTI Presentation for FPSO BERTAM LMBV (1)
Mohd Zaini Baharum
 
PPEJ.090.2010 rev2
PPEJ.090.2010 rev2PPEJ.090.2010 rev2
PPEJ.090.2010 rev2
Rahmat Riski
 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump House
IRJET Journal
 
Sam Sun_Sr. Mechanical Engineer
Sam Sun_Sr. Mechanical EngineerSam Sun_Sr. Mechanical Engineer
Sam Sun_Sr. Mechanical Engineer
Sam Sun
 
5062 95
5062 955062 95
5062 95
VINOD SHUKLA
 
18rf 31170-ts-002 (flange)
18rf 31170-ts-002 (flange)18rf 31170-ts-002 (flange)
18rf 31170-ts-002 (flange)
Sergio Miguel Martinez
 
Ere ction manual bhel
Ere ction manual bhelEre ction manual bhel
Ere ction manual bhel
Kunwar Dalveer Singh
 
PRESTIGE LTST 2O16 - Copy
PRESTIGE LTST 2O16 - CopyPRESTIGE LTST 2O16 - Copy
PRESTIGE LTST 2O16 - Copy
anil prashanth
 
Dbr kashmiri gate
Dbr kashmiri gateDbr kashmiri gate
Dbr kashmiri gate
Vishal Bagla
 
Development and design validation of pneumatic tool for stem seal collet fi...
Development and design validation of pneumatic tool for stem seal   collet fi...Development and design validation of pneumatic tool for stem seal   collet fi...
Development and design validation of pneumatic tool for stem seal collet fi...
Dr.Vikas Deulgaonkar
 
06 procedure of start up boiler ok
06 procedure of start up boiler ok06 procedure of start up boiler ok
06 procedure of start up boiler ok
Bunk Bonk
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF
WorldofAllLyrics
 
Standard design bop_sep10
Standard design bop_sep10Standard design bop_sep10
Standard design bop_sep10
PRABIR DATTA
 
Structural example
Structural exampleStructural example
Structural example
atlantis34
 
Stress Analysis in District Cooling Projects
Stress Analysis in District Cooling ProjectsStress Analysis in District Cooling Projects
Stress Analysis in District Cooling Projects
Amer Abdul Aziz
 
Comparative Study on CFST and RC Column in the RC Frame Structure
Comparative Study on CFST and RC Column in the RC Frame StructureComparative Study on CFST and RC Column in the RC Frame Structure
Comparative Study on CFST and RC Column in the RC Frame Structure
IRJET Journal
 
MAE 151 Group 72 Final Design Report
MAE 151 Group 72 Final Design ReportMAE 151 Group 72 Final Design Report
MAE 151 Group 72 Final Design Report
Daniella Lopez
 
Displacement for bridge movement of bearing.pdf
Displacement for bridge movement of bearing.pdfDisplacement for bridge movement of bearing.pdf
Displacement for bridge movement of bearing.pdf
gopalsudhir2
 
IRJET-Pre-Engineered Building Design of an Industrial Warehouse
IRJET-Pre-Engineered Building Design of an Industrial WarehouseIRJET-Pre-Engineered Building Design of an Industrial Warehouse
IRJET-Pre-Engineered Building Design of an Industrial Warehouse
IRJET Journal
 

Similar to Daerator revisi (20)

Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdfSpecification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
Specification for Fireproofing of Structural Steel A-CIV-SPE-000-30008-1.pdf
 
DOSH PTI Presentation for FPSO BERTAM LMBV (1)
DOSH PTI Presentation for FPSO BERTAM LMBV (1)DOSH PTI Presentation for FPSO BERTAM LMBV (1)
DOSH PTI Presentation for FPSO BERTAM LMBV (1)
 
PPEJ.090.2010 rev2
PPEJ.090.2010 rev2PPEJ.090.2010 rev2
PPEJ.090.2010 rev2
 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump House
 
Sam Sun_Sr. Mechanical Engineer
Sam Sun_Sr. Mechanical EngineerSam Sun_Sr. Mechanical Engineer
Sam Sun_Sr. Mechanical Engineer
 
5062 95
5062 955062 95
5062 95
 
18rf 31170-ts-002 (flange)
18rf 31170-ts-002 (flange)18rf 31170-ts-002 (flange)
18rf 31170-ts-002 (flange)
 
Ere ction manual bhel
Ere ction manual bhelEre ction manual bhel
Ere ction manual bhel
 
PRESTIGE LTST 2O16 - Copy
PRESTIGE LTST 2O16 - CopyPRESTIGE LTST 2O16 - Copy
PRESTIGE LTST 2O16 - Copy
 
Dbr kashmiri gate
Dbr kashmiri gateDbr kashmiri gate
Dbr kashmiri gate
 
Development and design validation of pneumatic tool for stem seal collet fi...
Development and design validation of pneumatic tool for stem seal   collet fi...Development and design validation of pneumatic tool for stem seal   collet fi...
Development and design validation of pneumatic tool for stem seal collet fi...
 
06 procedure of start up boiler ok
06 procedure of start up boiler ok06 procedure of start up boiler ok
06 procedure of start up boiler ok
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF
 
Standard design bop_sep10
Standard design bop_sep10Standard design bop_sep10
Standard design bop_sep10
 
Structural example
Structural exampleStructural example
Structural example
 
Stress Analysis in District Cooling Projects
Stress Analysis in District Cooling ProjectsStress Analysis in District Cooling Projects
Stress Analysis in District Cooling Projects
 
Comparative Study on CFST and RC Column in the RC Frame Structure
Comparative Study on CFST and RC Column in the RC Frame StructureComparative Study on CFST and RC Column in the RC Frame Structure
Comparative Study on CFST and RC Column in the RC Frame Structure
 
MAE 151 Group 72 Final Design Report
MAE 151 Group 72 Final Design ReportMAE 151 Group 72 Final Design Report
MAE 151 Group 72 Final Design Report
 
Displacement for bridge movement of bearing.pdf
Displacement for bridge movement of bearing.pdfDisplacement for bridge movement of bearing.pdf
Displacement for bridge movement of bearing.pdf
 
IRJET-Pre-Engineered Building Design of an Industrial Warehouse
IRJET-Pre-Engineered Building Design of an Industrial WarehouseIRJET-Pre-Engineered Building Design of an Industrial Warehouse
IRJET-Pre-Engineered Building Design of an Industrial Warehouse
 

Daerator revisi

  • 1. PERTAMINA UP. IV CILACAP REKAYASA BARATA LEMBAR PERHITUNGAN BOILER FOUNDATION (DAERATOR 38-D-101) PROYEK : CILACAP CRUDE OIL TANK KLIEN : PERTAMINA UP IV CILACAP LOKASI : CILACAP, JAWA TENGAH NO. DOK. REK : CCT–00–A0–CS–005R NO. DOK. PTM : 242–C-420-010 NO. PEK. : 07-1701 1 RE-ISSUED FOR APPROVAL 0 ISSUED FOR APPROVAL 6/09/ 2007 HYT/GS NIEL/AV SR REV URAIAN TANGGAL DIBUAT DIPERIKSA DISETUJUI PT. Rekayasa Industri
  • 2. PEK. NO.: 07-1701 REV LEMBAR PERHITUNGAN BOILER FOUNDATION 1 NO. DOK. PTM : 242–C-420-010 (DAERATOR 38-D-101) NO. DOK. REK : CCT-00-A0-CS-010 R TANGGAL OLEH DIPRS DISTJ 10 Mar 08 LEMBAR RIWAYAT REVISI No. Rev Tanggal Uraian 0 27 Agustus 2007 ISSUED FOR APPROVAL 1 10 Maret 2008 RE-ISSUED FOR APPROVAL DAFTAR DISTRIBUSI Internal Engineering (by EDO): Internal REKAYASA (by EDO): External CONTRACTOR (by Transmittal) Civil Lead Eng. 1 Copy Project Manager 1 Copy Pertamina UP-IV 1 Copy Electrical Lead Eng. 1 Copy Deputy Project Manager 1 Copy For Approval Instrument Lead Eng. 1 Copy Procurement Manager 1 Copy For Review Mechanical Lead Eng. 1 Copy Project Control Manager 1 Copy For Info. Piping Lead Eng. 1 Copy Construction Manager 1 Copy Process Lead Eng. 1 Copy QA/QC Manager 1 Copy Engineering Manager 1 Copy PT. Rekayasa Industri
  • 3. DAFTAR ISI 1. UMUM 1.1 Gambaran Struktur 3 1.2 Desain Filosofi 3 1.3 Satuan Ukuran 3 1.4 Program Komputer yang digunakan dalam Analisa Desain 3 1.5 Code dan Standar 1.5.1 Code & Standar Umum 3 1.5.2 Code & Standar Khusus 3 1.6 Material yang digunakan dan tegangan ijin 4 2. PEMODELAN 2.1 Model struktur & perspektif 5 2.2 Properti & Panjang Batang Struktur 6 2.3 Penomoran Batang 7 3. DATA PEMBEBANAN 3.1 Beban Mati (Dead Load) 8 3.2 Beban Hidup (Live Load) 8 3.3 Beban Equipment (Equipment Load) 8 3.4 Beban Angin (Wind Load) 8 3.5 Beban Gempa (Seimic Load) 10 3.6 Kombinasi Pembebanan 13 4. DESAIN ANALISA 4.1 Desain Baja 13 5. DESAIN PONDASI 5.1 Pemeriksaan Reaksi Tiang Terhadap Kapasitas Tiang Pancang 14 5.2 Penulangan 19 LAMPIRAN - Gambar - Data Equipment Page 2
  • 4. 1. UMUM 1.1 GAMBARAN STRUKTUR Proyek : CILACAP CRUDE OIL TANK Klien : PT. PERTAMINA Lokasi : Cilacap, Central Java Fasilitas : Platform Deaerator Jenis Struktur : - Struktur beton bertulang untuk pondasi - Struktur baja untuk plat form 1.2 DESAIN FILOSOFI Tujuan dari perhitungan ini untuk melakukan verifikasi integritas struktural, kekuatan, dan stabilitas. Karena baja dan beton yang digunakan sebagai material, struktural desain disesuaikan dengan working stress methode untuk struktur baja dari AISC dan the ultimate strength methode untuk beton dari American Concrete Institute (ACI). 1.3 SATUAN PENGUKURAN Satuan pengukuran dalam desain menggunakan metric system. 1.4 PROGRAM KOMPUTER YANG DIGUNAKAN DALAM DESAIN ANALISA Program Komputer yang digunakan dalam desain analisa, adalah : - Staad Pro - Math Cad - MS-Excel 1.5 CODE DAN STANDAR 1.5.1 Codes & Standar Umum - ACI 318 - 2002 "American Concrete Institute" Building Code Requirement for Structural Concrete - ACI 315 "Standard Practice for Detailing Reinforced Concrete Reinforcement" Page 3
  • 5. - UBC 1997 Edition "Uniform Building Code" - SNI-03-1727-1989 Tata cara perencanaan Pembebanan untuk bangunan gedung - AISC 2005 ASD Series Requirement for Steel Structure 1.5.2 Codes dan Standar Khusus - Spesifikasi Perencanaan untuk Sipil dan Struktur - Laporan Penyelidikan Tanah dan Studi Pondasi Untuk Pembangunan 2 (Dua) Tanki Crude dan Perhitungan Pondasi Pompa 014P101/102 oleh PT SOFOCO 1.6 MATERIAL YANG DIGUNAKAN DAN TEGANGAN IJIN −2 Kuat tekan beton : fc := 280 ⋅ kg ⋅ cm −2 Tegangan leleh dari baja : fy := 4000 ⋅ kg ⋅ cm : (Ulir) − 2 ( Polos) fy1 := 2400 ⋅ kg ⋅ cm −3 Berat unit beton : γc := 2400 ⋅ kg ⋅ m −3 Berat unit baja : γs := 7850 ⋅ kg ⋅ m −3 Berat unit tanah urug : γsoil := 1700 ⋅ kg ⋅ m Daya dukung tanah Dari laporan penyelidikan tanah −2 Qall := 5 ⋅ tonne ⋅ m Page 4
  • 6. 2. PEMODELAN 2.1 MODEL STRUKTUR dan PERSPEKTIF Page 5
  • 7. 2.2 PROPERTY & PANJANG BATANG STRUKTUR Page 6
  • 8. 2.3 PENOMORAN BATANG Page 7
  • 9. 3. DATA PEMBEBANAN 3.1 BEBAN MATI (DL) - DL beban sendiri --> by Staad Pro - DL grating --> 35 kg/m2 - DL handrail --> 2x3.24 kg/m (pipa dia. 32 mm) 3.2 BEBAN HIDUP (LL) - LL --> (265 kg/m2) 3.3 BEBAN EQUIPMENT (E) Kondisi empty & operating(E1) E1 := 8.3325tonne 3.4 BEBAN ANGIN (W) Beban angin harus dihitung sesuai dengan rumus yang diberikan didalam UBC 1997, chapter 16 P = Ce x Cq x qs x Iw Dimana, Ce = koefisien gust factor berdasarkan ketinggian struktur berdasarkan table 16-G UBC 1997 Cq = koefisien tekanan pada struktur berdasarkan tabel 16-H UBC 1997 Iw = faktor keutamaan struktur pada tabel 16-K UBC 1997 qs = tekanan angin pada standar ketinggian 33 feet berdasarkan table 16-F UBC 1997 W = Beban angin rencana (kg/m2) Page 8
  • 10. 904 914 1591 2810 1219 1219 3493 Luas area equipment ( X ) a1 := 1.219m ⋅ 2.81m Luas area equipment ( Z ) a2 := ( 3.493m ⋅ 1.219 m ) + ( 1.591m ⋅ 0.914 m ) Jarak antara titik berat equipm. dg support Lev := 1200mm Jarak antar support Lh := 2032mm Jarak antar baut pada support Lb := 914mm Ce := 1.24 Co := 1.37 −2 qs := 80 ⋅ kg ⋅ m Cq2 := 0.8 Cq1 := 1 Iw := 1.15 -2 W1 := Ce ⋅ qs ⋅ Cq1 ⋅ Iw W1 = 114.08 kg m ( diberikan pada struktur ) -2 W2 := Ce ⋅ qs ⋅ Cq2 ⋅ Iw W2 = 91.264 kg m Untuk Vessel luas area dikalikan faktor pengali (Co) Pw1h := W2 ⋅ a1 ⋅ Co Pw1h = 428.282 kg (X) Mpw1h := Pw1h ⋅ Lev Mpw1h = 513.939 kg m Mpw1h Pw1v := Pw1v = 126.461 kg (X) 2 ⋅ Lh Pw2h := W2 ⋅ a2 ⋅ Co Pw2h = 714.199 kg (Z) Mpw2h := Pw2h ⋅ Lev Mpw2h = 857.038 kg m Mpw2h Pw2v := Pw2v = 468.839 kg (Z) ( diberikan pada support equipment ) 2 ⋅ Lb Page 9
  • 11. Mpw1h Mpw2h Pw1h Pw2h Lev Lev BY1 BY1 BY1 Lh Lb Pw1h Pw1h Pw2h Pw2h 3.5 BEBAN GEMPA (V) Beban gempa untuk setiap fasilitas harus dihitung berdasarkan rumus yang tercantum dalam UBC 1997, chapter 16 Total gaya geser dasar rencana ditentukan dengan rumus berikut : V = Cv I W RT Total gaya geser dasar rencana tidak boleh lebih dari : Vmax = 2.5 Ca I W R Total gaya geser dasar rencana tidak boleh kurang dari : Vmin = 0.11 Ca I W Dimana, V : Total gaya horizontal atau geser pada dasar Ca : Koefisien gempa dasar, table 16-Q UBC 1997 Cv : Koefisien gempa dasar, table 16-R UBC 1997 I : Faktor keutamaan/importance factor, table 16-K UBC 1997 R : Numerical Coeffiicient yang mewakili kapasitas daktilitas dari system yang menahan beban lateral, table 16-N & table 16-P UBC 1997 T : Periode getar alami struktur W : Total Beban mati, beban hidup yang dikurangi, beban pipa dan beban mesin/peralatan Page 10
  • 12. Ketentuan yang berlaku untuk proyek ini adalah sebagai berikut : 1. Seismic Risk Zone 3 ( Z = 0.3) 2. Important factor I = 1.25 untuk semua struktur 3. Profile tanah adalah tipe tanah lunak (Soft Soil Profile SE, UBC 1997) 4. Periode Getar struktur, T dihitung berdasarkan rumus berikut : T = Ct (hn)3/4 Dimana Ct = 0.0835 untuk steel moment resisting frames Ct = 0.0731 untuk reinforced concrete moment resisting frames dan eccentrically braced frames Ct = 0.0488 untuk bangunan-bangunan lain hn = ketinggian struktur yang ditinjau (m) 3 4 T := 0.0731 ⋅ 9.5 T = 0.396 Dari tabel UBC didapat : I := 1.25 Cv := 0.84 Ca := 0.36 R := 5.6 Gaya geser yang diperoleh = I I Vmin := 0.11 ⋅ Ca ⋅ I W W V := Cv ⋅ W Vmax := 4 ⋅ 2.5 ⋅ Ca ⋅ R ⋅T R Vmax = 0.804 Vmin = 0.05 W V = 0.474 W W Karena V>Vmax maka V yang digunakan adalah V=0.201 W Beban gempa akibat DL+0.5 LL dihitung dengan StaadPro dan didistribusikan ke sambungan kolom dan beam Beban gempa untuk equipment dihitung berdasarkan rumus dalam UBC 1997, chapter 1632 I ⎛ hx ⎞ Veh := ap ⋅ Ca ⋅ ⋅⎜1 + 3 Wed R ⎝ hr ⎠ Page 11
  • 13. Wed : Equipment weight ap : Structure Component Amplification Factor, varies from 1~2.5 hx : element elevation respect to grade hr : structure roof elevation respect to grade Berdasar data yang diperoleh diambil : ap := 2.5 (maksimum) Wed := E1 hx := 9.5 ⋅ m hr := 9.5m + 2.18m I ⎛ hx ⎞ Veh := ap ⋅ Ca ⋅ ⋅⎜1 + 3 ⋅ Wed R ⎝ hr ⎠ Berat Equipment Wed = 8.332 tonne Beban gempa rencana Veh = 5758.467 kg ( diberikan pada support ) Mve1h := Veh ⋅ Lev Mve1h = 6910.161 kg m Mve1h Pw1v := Pw1v = 1700.335 kg (X) 2 ⋅ Lh Mve1h Pw2v := Pw2v = 3780.175 kg (Z) 2 ⋅ Lb Mve1h Mve1h Veh Veh Lev Lev BY1 BY1 BY1 Lh Lb Pw1v Pw1v Pw2v Pw2v Page 12
  • 14. 3.6 KOMBINASI PEMBEBANAN Untuk desain stabilitas pondasi dan Untuk desain penulangan steel structure 1.4DL+1.4E(1) DL+E(1) 0.9DL+0.9E(1)+1.3WX 0.75DL+0.75E(1)+0.75WX 0.9DL+0.9E(1)+1.3WZ 0.75DL+0.75E(1)+0.75WZ 0.9DL+0.9E(1)+1.43VX 0.75DL+0.75E(1)+0.75VX 0.9DL+0.9E(1)+1.43VZ 0.75DL+0.75E(1)+0.75VZ 1.4DL+1.4E(1)+1.7LL DL+LL+E(1) 1.05DL+1.275LL+1.05E(1)+1.275WX 0.75DL+0.75LL+0.75E(1)+0.75WX 1.05DL+1.275LL+1.05E(1)+1.275WZ 0.75DL+0.75LL+0.75E(1)+0.75WZ 1.05DL+1.275LL+1.05E(1)+1.4VX 0.75DL+0.75LL+0.75E(1)+0.75VX 1.05DL+1.275LL+1.05E(1)+1.4VZ 0.75DL+0.75LL+0.75E(1)+0.75VZ Page 13
  • 15. 4 DESAIN ANALISA 4.1 DESAIN BAJA Desain baja menggunakan analisa dengan STAADPro berdasar AISC Series Hasil : ( 1.33) ⋅ 950 cm - horisontal displ. maksimum = 1.5 cm (join 15)arah X < δall := δall = 6.317 cm ( ok) 200 ( 1.33) ⋅ 270 cm - vertikal displ. maksimum = 0.228 cm (join 17)arah X < δall := δall = 1.796 cm ( ok) 200 - rasio maksimum = 0.33 (member 1) >> kolom 0.332 (member 29)>>balok 0.741 (member 66)>>bracing Page 14
  • 16. 5. DESAIN PONDASI Dimensi Pondasi : Lebar pondasi : bf := 1.1m Panjang pondasi : df := 1.1m Panjang pedestal : bp := 0.45m Lebar pedestal : dp := 0.30m Tinggi pondasi : hf := 0.45m Tinggi pedestal : hp := 0.6m Tinggi tanah diatas pondasi : hs := 0.3m Total tinggi pondasi : h := hf + hp h = 1.05 m Lebar grade beam : bg := 250mm Tinggi grade beam : dg := 450mm Bentang grade beam : Lg1 := 4860mm Lg2 := 2700mm Berat pondasi : Wf := γc ⋅ ( bf ⋅ df ⋅ hf + bp ⋅ dp ⋅ hp) Wf = 1501.2 kg Berat tanah diatas pondasi : Ws := γsoil ⋅ ( bf ⋅ df − bp ⋅ dp) ⋅ hs Ws = 548.25 kg Berat grade beam : Wg := γc ⋅ bg ⋅ dg ⋅ 0.5 ⋅ ( Lg1 + Lg2) Wg = 1020.6 kg Berat pondasi : D := Wf + Ws + Wg D = 3070.05 kg bp hp bp hs bg dp df dg hf bf bf Page 15
  • 17. 5.1 Pemeriksaan Reaksi Tiang Terhadap Kapasitas Tiang Pancang A. Pemeriksaan kapasitas axial Gaya tekan yang diijinkan (Pall) : Pall1 := 40tonne (dari data vendor) Pall2 := 45tonne (dari laporan geoteknik) Dipakai : Pall := min ( Pall1 , Pall2) Gaya tekan maksimum : (dari output STAADPro untuk Load comb pondasi) Fy := 4340kg Total vertical load : VL := Fy + D VL = 7.41 tonne ⎛ VL ⎞ Jumlah tiang yg diperlukan : Σn := ⎜ Σn = 0.185 ⎝ Pall ⎠ Jumlah pile yg diambil : Σn := 1 Dimensi tiang pancang ( triangular ) : S := 320 ⋅ mm S luas penampang pile Apl := ⋅ [ S ⋅ ( sin ( 60 ⋅ deg ) ) ] 2 4Apl ekivalensi diameter Dia1 := Dia1 = 237.605 mm π ⎛ S ⎞ ⎜ 2 Dia2 := 2 ⎜ ⎝ sin ( 60 ⋅ deg ) ⎠ Dia2 = 369.504 mm Dia := max ( Dia1 , Dia2) Dia = 369.504 mm Jarak minimum ke tepi pondasi : semin := 1.2 ⋅ Dia semin = 0.443 m VL Pv := Pv = 7.41 tonne Σn Status = "OK Pv<Pall" Page 16
  • 18. Gaya tarik yang diijinkan (Pall) : Pall := 6.41tonne (dari data vendor) Pall := 15tonne (dari laporan geoteknik) Dipakai Pall:6.41tonne Gaya tarik yang terjadi : (dari output STAADPro untuk Load comb pondasi) Fyt := −1.285 ⋅ tonne Pvt := D − Fy Pvt = −1269.95 kg Status = "OK Pvt<Pall" B. Pemeriksaan Reaksi Tiang Terhadap Kapasitas Lateral Diameter of pile : Dia = 369.504 mm Jumlah total tiang : Σnt := 8 Gaya lateral yang diijinkan (Hall) : Hall := 2.25tonne (dari laporan geoteknik) Gaya lateral maksimum yang terjadi : (dari output STAADPro untuk Load comb pondasi) Fz := 623kg Hmax := Fz Hmax = 0.623 tonne Status = "OK Hmax<Hall" Page 17
  • 19. C. Pemeriksaan pile head treatment Pile cut off harus berjarak 75 mm sampai 100 dari bawah pilecap (M.J. Tomlinson). Panjang tendon/tulangan untuk menyatukan tiang dan pile cap untuk praktis digunakan 40d ( d = pc-wire diameter ). pc wire Pile beton yang dipotong 40d H = beban horisontal h = 75 mm Jarak PCO dari bawah pondasi d = 19 mm pco := 75mm Dari data vendor d = 19 mm Panjang pc wire = 40 x 19 = 760 mm Check terhadap concrete bearing pressure −2 Compressive concrete strength untuk pile cap : fc := 280 ⋅ kg ⋅ cm −2 Allowable bearing pressure : fcb := 0.33 ⋅ fc fcb = 92.4 kg ⋅ cm Bearing force : H/A < fcb Dimana : A = bearing area = ( Dia x h ) Dia = diameter pile Hmax = maximum horizontal load h := 10cm A := Dia ⋅ h Hmax −2 = 1.686 kg ⋅ cm Hmax/A < fcb Status OK A Status = "OK Hmax/A < fc" Page 18
  • 20. 5.2 Penulangan A Penulangan Pile cap Pemodelan struktur dengan asumsi pile cap menahan beban axial dp GL . q L q df Beban aksial maksimum dari output Staadpro untuk load comb penulangan : Fyr := 7356kg 1.4D + Fyr −1 Beban : qu := qu = 10.595 tonne ⋅ m bf L := 0.5 ⋅ ( df − dp) Penulangan pile cap : qu 2 Ultimate momen : Mult := ⋅L Mult = 0.848 tonne ⋅ m 2 Luas selimut beton dc := 7.5 ⋅ cm 1 Diameter tulangan rdia := 1.3 ⋅ cm Tinggi efektif d := hf − dc − ⋅ rdia 2 Beban per lebar pondasi df = 1.1 m d = 0.369 m Page 19
  • 21. Perhitungan : ρmin := 0.0018 Mult −2 Rn := Rn = 0.63 kg cm 2 0.9 ⋅ df ⋅ d 0.85 ⋅ fc ⎛ 2 ⋅ Rn ⎞ ρ := ⋅⎜1 − 1− ρ = 0.00016 fy ⎝ 0.85 ⋅ fc ⎠ ρtop := ρmin if ρ ≤ ρmin ρ if ρmin < ρ ρtop = 0.0018 ρbot := ρtop 2 Asbot := ρbot ⋅ df ⋅ hf Asbot = 8.91 cm Dicoba: D-13 @ 150 rd := 1.3cm s := 15cm ( Asteel := 0.25 ⋅ π ⋅ rd ⋅ 2 ) df s Asteel = 9.734 cm 2 Digunakan D-13 @ 150 Status = "Asteel > Asbot, Rebar . OK" Page 20
  • 22. B Punching Shear Dia+d Dia d hf pco Tinggi pondasi : hf = 0.45 m concrete cover : dc := 75 ⋅ mm rebar dia: dr := 13 ⋅ mm Tinggi Efektif : d := hf − pco d = 0.375 m Vpu := ( 1.4)Pall Punching shear : Vpu = 21 tonne Vpu Vpn := Vpn = 24.706 tonne 0.85 Perimeter length : bo := π ⋅ ( Dia + d) bo = 2.339 m 0.5 −1 Vpc := 1.06 ⋅ fc ⋅ bo ⋅ d ⋅ kg ⋅ cm Vpc = 155.573 tonne Allowable Punching Shear : Status = "Vpc > Vpn ----> PUNCHING SHEAR OK" Page 21
  • 23. C Penulangan Grade Beam Panjang grade beam : Lgg := 4.86m -1 Berat grade beam : Wgg := γc ⋅ bg ⋅ dg Wgg = 270 kg m -1 Berat tanah diatas grade beam : Wsg := γsoil ⋅ bg ⋅ hs Wsg = 127.5 kg m -1 Beban merata grade beam : qp := 1.4( Wgg + Wsg) qp = 556.5 kg m 1 2 Mg1 := ⋅ qp ⋅ Lgg Mg1 = 1095.359 kg m 12 Multg := Mg1 Multg = 1095.359 kg m Luas selimut beton dc := 7.5 ⋅ cm Diameter tulangan rdia := 1.3 ⋅ cm Beban per meter lebar bg = 0.25 m 1 Tinggi efektif d := dg − dc − ⋅ rdia d = 0.369 m 2 Perhitungan : ρmin := 0.0035 Multg −2 Rn := Rn = 3.585 kg cm 2 0.9 ⋅ bg ⋅ d 0.85 ⋅ fc ⎛ 2 ⋅ Rn ⎞ ρ := ⋅⎜1 − 1− ρ = 0.0009 fy ⎝ 0.85 ⋅ fc ⎠ ρtop := ρmin if ρ ≤ ρmin ρ if ρmin < ρ ρtop = 0.0035 ρbot := ρtop Page 22
  • 24. 2 Asbot := ρbot ⋅ bg ⋅ d Asbot = 3.2244 cm Dicoba: 3 D-13 n := 3 rd := 1.3cm ( Asteel := 0.25 ⋅ π ⋅ rd ⋅ n 2 ) Asteel = 3.982 cm 2 Digunakan 3 D13 ( top & bottom ) Status = "Asteel > Asbot, Rebar . OK" Tulangan geser Kuat tekan beton : fc1 := 28 MPa Tegangan leleh baja : fy1 := 240 MPa Tulangan sengkang : rdg := 10mm Tinggi efektif : d = 0.369 m φs := 0.75 qp ⋅ Lgg Vult := Vult = 1352.295 kg 2 Vult := 3895.5N fc1 φVc := φs ⋅ ⋅ bg ⋅ d φVc = 60934.96 N 6 Status := "No Shear Reinforcement required" if Vult < 0.5 ⋅ φVc "Only Minimum Shear Reinforcement" if 0.5 ⋅ φVc < Vult < φVc "Shear Reinforcement Needed" if Vult > φVc Status = "No Shear Reinforcement required" d d smax := if < 600mm smax = 184.25 mm 2 2 d 600mm if > 600mm 2 Digunakan φ 10 @ 100 Pada ujung grade beam φ 10 @ 150 Pada tengah grade beam Page 23