SlideShare a Scribd company logo
1 of 3
Download to read offline
Enthalpy, ∆H (kJ/h)
[HYSYS]
Enthalpy. ∆H (kJ/s) [HYSYS] Total Enthalpy (kW)
E-101 2 → 3 Cold, C1 -103.00 -58.40 44.60 5.6686 910149.3767 252.8193
E-103 11 → 12 Cold, C2 41.50 80.00 38.50 12.4022 1718939.9793 477.4833
E-104 15 → 16 Cold, C3 -253.00 150.00 403.00 0.4379 635245.9502 176.4572
E-102 7 → 8 Hot, H1 150.00 50.00 100.00 5.6144 2021179.1707 561.4387
E-105 18 → 19 Hot, H2 159.00 50.00 109.00 7.6944 3019301.1578 838.6948
E-108 20 → 21 Hot, H3 60.30 10.00 50.30 0.8485 153652.7240 42.6813
E-109 22 → 23 Hot, H4 106.00 30.00 76.00 2.6086 713713.3865 198.2537
∆Tmin (℃) 10.00 ∆Tmin/2 (℃) 5.00
Stream Name Stream Type Supply Temperature, TS(℃)
Target
Temperature,
TT(℃)
Heat Capacity Flowrate, CP
(kW/℃)
Supply Temperature, TS(℃) Target Temperature, TT(℃) ∆Tmin/2 (℃)
2 → 3 Cold, C1 -103.00 -58.40 5.6686 -98.00 -53.40 5.00
11 → 12 Cold, C2 41.50 80.00 12.4022 46.50 85.00 5.00
15 → 16 Cold, C3 -253.00 150.00 0.4379 -248.00 155.00 5.00
7 → 8 Hot, H1 150.00 50.00 5.6144 145.00 45.00 5.00
18 → 19 Hot, H2 159.00 50.00 7.6944 154.00 45.00 5.00
20 → 21 Hot, H3 60.30 10.00 0.8485 55.30 5.00 5.00
22 → 23 Hot, H4 106.00 30.00 2.6086 101.00 25.00 5.00
First Trial Second Trial
1 155.00 0 0.4379
1.00 0.4379 0.4379 Deficit
2 154.00 C3 -0.4379 0.0000
9.00 -7.2566 -65.3093 Surplus
3 145.00 C3-H2 64.8714 65.3093
44.00 -12.8710 -566.3229 Surplus
4 101.00 C3-H1-H2 631.1943 631.6322
16.00 -15.4796 -247.6732 Surplus
5 85.00 C3-H1-H2-H4 878.8676 879.3054
29.70 -3.0774 -91.3991 Surplus
6 55.30 C2+C3-H1-H2-H4 970.2667 970.7046
8.80 -3.9259 -34.5483 Surplus
7 46.50 C2+C3-H1-H2-H3-H4 1004.8150 1005.2529
1.50 -16.3281 -24.4922 Surplus
8 45.00 C3-H1-H2-H3-H4 1029.3072 1029.7451
20.00 -3.0193 -60.3856 Surplus
9 25.00 C3-H4-H3 1089.6927 1090.1306
20.00 -0.4107 -8.2135 Surplus
10 5.00 C3-H3 1097.9063 1098.3441
58.40 0.4379 25.5710 Deficit
11 -53.40 C3 1072.3353 1072.7732
44.60 6.1065 272.3478 Deficit
12 -98.00 C1+C3 799.9875 800.4254
150.00 0.4379 65.6789 Deficit
13 -248.00 C3 734.3086 734.7465
Minimum Hot Utility, ∆Qh,min 0.4379
Minimum Cold Utility, ∆Qc,min 734.7465
Pinch Temperature, Tpinch 154.00
Hot Pinch Temperature, Tpinch hot 159.00
Cold Pinch Temperature, Tpinch cold 149.00
906.3219
906.3219
0.00
Stream Requires Temperature Reduction / Increment
Heat Exchanger Stream Name Stream Type
Supply
Temperature,
TS(℃)
Target Temperature, TT(℃)
Temperature Difference,
∆T(℃)
Heat Capacity Flowrate, CP (kJ/s.℃)
(kW/℃) [ Formula:
CP = ∆H / ∆T ]
Based on HE requirement
Temperature, T (℃) Stream Data Population
Temperature Difference, ∆T
(℃)
Total Cold CP - Total Hot CP,
∑CPC-∑CPH (kW/℃)
Enthalpy Difference, ∆H (kW)
[Formula: ∆H = ∆T*(∑CPC-∑CPH)]
Deficit / Surplus
906.7598
1641.0685
Cold and Hot Stream Shifted Temperature
Temperature Interval Constructed Based on Shifted Temperature
Temperature Interval Heat Balance Heat Cascade
Utility (kW)
∆Hh - Qc,min
∆Hc - Qh,min
% Difference
Utility, Q (kW)
Pinch Temperature (℃)
Heat Recovery, Qrec (kW)
Hot Stream Shifted Temperature, ℃ T∗
= T −
T
2
Cold Stream Shifted Temperature, ℃ T∗
= T +
T
2
C1
C3
C2
H1
H2
H3
H4
216.1544 261.3303
CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc XX CPh ≥ CPc XX CPh ≥ CPc XX
Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√
Th > Tc XX Th > Tc √√ Th > Tc √√ Th > Tc √√ Th > Tc √√ Th > Tc √√
∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√
∆H:H2 (kW) 577.3645 ∆H:H2 (kW) 838.6948 ∆H:H2 (kW) 324.5452 ∆H:H1 (kW) 561.4387 ∆H:H1 (kW) 561.4387
∆H:C1 (kW) 252.8193 ∆H:C3 (kW) 0.0000 ∆H:C2 (kW) 477.4833 ∆H:C2 (kW) 152.9381 ∆H:C2 (kW) 477.4833
Balance ∆H (kW) 324.5452 Balance ∆H (kW) 838.6948 Balance ∆H (kW) 152.9381 Balance ∆H (kW) 408.5005 Balance ∆H (kW) 83.9553
∆H (kW) [C1] 252.8193 ∆H (kW) [C3] 0.0000 ∆H (kW) [H2] 324.5452 ∆H (kW) [C2] 152.9381 ∆H (kW) [C2] 477.4833
CP (kW/℃) [H2] 7.6944 CP (kW/℃) [H2] 7.6944 CP (kW/℃) [C2] 12.4022 CP (kW/℃) [H1] 5.6144 CP (kW/℃) [H1] 5.6144
Temp Supply, Ts (℃) 125.04 Temp Supply, Ts (℃) 159.00 Temp Target, Tt (℃) 80.00 Temp Target, Tt (℃) 150.00 Temp Target, Tt (℃) 150.00
Temp Intermediate T4* (℃) Temp Intermediate T1* (℃) Temp Intermediate T3* (℃) Temp Intermediate T4* (℃) Temp Intermediate T3* (℃)
CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√
Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√
Th > Tc XX Th > Tc √√ Th > Tc √√ Th > Tc √√
∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√
∆H:H4 (kW) 198.2537 ∆H:H1 (kW) 561.4387 ∆H:H2 (kW) 838.6948 ∆H:H1 (kW) 561.4387
∆H:C3 (kW) 0.0000 ∆H:C3 (kW) 176.0193 ∆H:C2 (kW) 261.3303 ∆H:C2 (kW) 216.1544
Balance ∆H (kW) 198.2537 Balance ∆H (kW) 385.4193 Balance ∆H (kW) 577.3645 Balance ∆H (kW) 345.2843
∆H (kW) [C3] 0.0000 ∆H (kW) [C3] 176.0193 ∆H (kW) [C2] 261.3303 ∆H (kW) [C2] 216.1544
CP (kW/℃) [H4] 2.6086 CP (kW/℃) [H1] 5.6144 CP (kW/℃) [H2] 7.6944 CP (kW/℃) [H1] 5.6144
Temp Supply, Ts (℃) 106.00 Temp Supply, Ts (℃) 150.00 Temp Supply, Tt (℃) 159.00 Temp Target, Tt (℃) 150.00
Temp Intermediate T1* (℃) Temp Intermediate T1* (℃) Temp Intermediate T3* (℃) Temp Intermediate T3* (℃)
HEAT EXCHANGER NETWORK (HEN)
FEASIBILITY STUDY (BELOW PINCH)
Stream: C3 → H3 [HE3] Stream: H2 → C1 [HE1] Stream: H2 → C3 Stream: C2 → H2 Stream: C2 → H1 [HE3] Stream: C2 → H1
T4* T1* T3* T4* T3*
[ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ]
(Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream)
(Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H)
92.18 159.00 53.83 122.76 64.95
[HE1] Stream: H4 → C3 [HE1] Stream: C3 → H1 [HE2] Stream: H2→ C2 [S2] [HE4] Stream: C2 [S1] → H1
[ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ]
(Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream)
T1* T1* T3* T3*
(Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H)
106.00 118.65 125.04 111.50
CPh ≥ CPc , Nh ≥ Nc
CPh ≤ CPc , Nh ≤ Nc
150℃
60.3℃
10℃
-253℃
-58.4℃
102.16℃
T3*=69.30℃
-103℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
149℃
159℃
T1* = 136.12℃
-253℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
80℃
103.21℃
50℃
T3*
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
46.99℃
150℃
T4*
41.5℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
80℃
150℃
T3*
41.5℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
5.6144
6.7878
216.1544 kW
261.3303 kW
80℃
150℃
T4* = 111.5℃
41.5℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
80℃
150℃
T2* = 102.16℃
41.5℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
H1: 150℃
H2: 159℃
H3: 60.3℃
H4: 106℃
C1: -103℃
C3: -253℃
C2: 41.5℃
H1: 50℃
H2: 50℃
H3: 10℃
H4: 30℃
C1: -58.4℃
C2: 80℃
C3: 150℃
159℃
149℃
BELOW PINCH
ABOVE PINCH
5.6686
0.4379
12.4022
5.6144
7.6944
0.8485
2.6086
CP (kW/℃)
252.8193
176.4572
477.4833
561.4387
838.6948
42.6813
198.2537
∆H (kW)
0 kW
662.2376 kW
0 kW
409.4183 kW
83.9553 kW
HE1
T1* = 136.07℃
176.4572 kW
HE2
T2* = 103.21℃
252.8193 kW
HE3
T3* = 64.95℃
477.4833 kW
83.9553 kW
C
42.6813 kW
C
198.2537 kW
C
0 kW
409.4183 kW
C
0.4379 kW
H
149℃
150℃
T1*
-253℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
149℃
106℃
T1*
-253℃
𝐓𝟏∗
= 𝐓𝐒 −
∆𝐇
𝐂𝐏
H1 561.4387 Total Hot
H2 838.6948 1641.0685
H3 42.6813
H4 198.2537
C1 252.8193 Total Cold
C2 [S1] 261.3294 906.7598
C2 [S2] 216.1539
C3 176.4572 Qc,min
734.3086
Type of utility
Before
integration
After integration Heat Recovery Percentage saving (%)
Hot utility 906.7598 0.4379 906.3219 99.95
Cold utility 1641.0685 734.7465 906.3219 55.23
Total 2547.8283 735.1844 1812.6438 71.14
Cost of
Utilities
Before integration Cost of Utilities After integration Cost of Utilities
(RM/kW.h) (kW) (RM) (kW) (RM)
LP Steam 0.2195 906.7598 RM1,576,471.03 0.4379 RM761.32
Cooling Water 0.0055 1641.0685 RM71,886.51 734.7465 RM32,185.35
Total 0.2250 2547.8283 RM1,648,357.54 735.1844 RM32,946.67
Cost of
Utilities
Cost of Utilities Cost of Utilities
PERCENTAGE COST UTILITY SAVED
($/GJ) (RM/kJ) (RM/kW.h) 98.00
LP Steam 14.05 0.000060977 0.2195
Cooling Water 0.354 0.000001536 0.0055
1 USD 4.34 RM
1 day 24 hour
1 hour 60 min
1 min 60 s
1 GJ 1000000 kJ
Utilities Shifted Temp
0.4379 155.00 MP
0.0000 154.00
65.3093 145.00
631.6322 101.00
879.3054 85.00
970.7046 55.30
1005.2529 46.50
1029.7451 45.00 CW
1090.1306 25.00
1098.3441 5.00 R
1072.7732 -53.40 R
800.4254 -98.00
734.7465 -248.00 338.0266
Type of utility
Heat Requirement of Heat and Cold Utilities Before and After Heat Integration
Type of utility
216.1544
261.3303
0 kW
0 kW
C2: 41.5℃
5.6144
6.7878
H1: 150℃
H2: 159℃
H4: 106℃
H3: 60.3℃
C1: -103℃
C3: -253℃
H1: 50℃
H2: 50℃
H3: 10℃
H4: 30℃
C2: 80℃
C3: 150℃
C1: -58.4℃
159℃
149℃
BELOW PINCH
ABOVE PINCH
5.6686
0.4379
5.6144
7.6944
0.8485
2.6086
CP (kW/℃)
252.8193
176.0358
561.4387
838.6948
42.6813
198.2537
∆H (kW)
0 kW
401.3287 kW
662.6590 kW
345.2843 kW
0.4379 kW
H
HE1
176.0358 kW
T1* = 136.12℃
0 kW
216.1544 kW
T4* = 111.50℃
HE4
148.5094 kW
198.2537 kW
C
42.6813 kW
C
148.5094 kW
C
345.2843 kW
C
HE2
261.3303 kW
T2* = 102.16℃
HE3
252.8193 kW
T3* = 69.30℃
152.00
154.00
156.00
158.00
160.00
162.00
0 1 2 3 4 5 6 7 8 9 10
Cascade Heat Flow, ∆H (kW)
Grand Composite Curve (GCC)
-300
-250
-200
-150
-100
-50
0
50
100
150
200
0 200 400 600 800 1000
Shifter
Temperature,
T*
(℃)
Cascade Heat Flow, ∆H (kW)
Grand Composite Curve (GCC)

More Related Content

Similar to CPE664_Design_Project_2_Production_of_23.pdf

Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
CangTo Cheah
 
Dimethyl Ether Production
Dimethyl Ether ProductionDimethyl Ether Production
Dimethyl Ether Production
Aziz Albattah
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
CangTo Cheah
 
L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentation
Bernard Chung
 
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
Md Khairul Islam Rifat
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
rhysemo
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Centro Studi Galileo
 

Similar to CPE664_Design_Project_2_Production_of_23.pdf (20)

Box type Bitzer condensing unit
Box type Bitzer condensing unitBox type Bitzer condensing unit
Box type Bitzer condensing unit
 
L pac presentation
L pac presentationL pac presentation
L pac presentation
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Dimethyl Ether Production
Dimethyl Ether ProductionDimethyl Ether Production
Dimethyl Ether Production
 
1_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec20101_Wheatstone Summer_30Dec2010
1_Wheatstone Summer_30Dec2010
 
L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentation
 
1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)1 palmer international consulting_presentation_artc_singapore_2014 (10)
1 palmer international consulting_presentation_artc_singapore_2014 (10)
 
Natural gas conversion pocketbook
Natural gas conversion pocketbookNatural gas conversion pocketbook
Natural gas conversion pocketbook
 
6 ta data sheet - flypartsguy.com - 8.2018
6 ta   data sheet - flypartsguy.com -  8.20186 ta   data sheet - flypartsguy.com -  8.2018
6 ta data sheet - flypartsguy.com - 8.2018
 
tablas termodinámicas en ingles
tablas termodinámicas en inglestablas termodinámicas en ingles
tablas termodinámicas en ingles
 
Power Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsPower Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and Plots
 
Gas Flare Stack Process
Gas Flare Stack ProcessGas Flare Stack Process
Gas Flare Stack Process
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
Effect of Exhaust Gas Recirculation on Combustion and Emission Performance of...
 
Gross turbine cycle_heat_rate_ch-8.2
Gross turbine cycle_heat_rate_ch-8.2Gross turbine cycle_heat_rate_ch-8.2
Gross turbine cycle_heat_rate_ch-8.2
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
 
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
Airah Natural Refrigerants Special Interest Group Sydney 30 October 2008
 
10 na data sheet - flypartsguy.com - 9.2018
10 na   data sheet - flypartsguy.com - 9.201810 na   data sheet - flypartsguy.com - 9.2018
10 na data sheet - flypartsguy.com - 9.2018
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
Adipic Acid Plant Energy Balance
Adipic Acid Plant Energy BalanceAdipic Acid Plant Energy Balance
Adipic Acid Plant Energy Balance
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 

CPE664_Design_Project_2_Production_of_23.pdf

  • 1. Enthalpy, ∆H (kJ/h) [HYSYS] Enthalpy. ∆H (kJ/s) [HYSYS] Total Enthalpy (kW) E-101 2 → 3 Cold, C1 -103.00 -58.40 44.60 5.6686 910149.3767 252.8193 E-103 11 → 12 Cold, C2 41.50 80.00 38.50 12.4022 1718939.9793 477.4833 E-104 15 → 16 Cold, C3 -253.00 150.00 403.00 0.4379 635245.9502 176.4572 E-102 7 → 8 Hot, H1 150.00 50.00 100.00 5.6144 2021179.1707 561.4387 E-105 18 → 19 Hot, H2 159.00 50.00 109.00 7.6944 3019301.1578 838.6948 E-108 20 → 21 Hot, H3 60.30 10.00 50.30 0.8485 153652.7240 42.6813 E-109 22 → 23 Hot, H4 106.00 30.00 76.00 2.6086 713713.3865 198.2537 ∆Tmin (℃) 10.00 ∆Tmin/2 (℃) 5.00 Stream Name Stream Type Supply Temperature, TS(℃) Target Temperature, TT(℃) Heat Capacity Flowrate, CP (kW/℃) Supply Temperature, TS(℃) Target Temperature, TT(℃) ∆Tmin/2 (℃) 2 → 3 Cold, C1 -103.00 -58.40 5.6686 -98.00 -53.40 5.00 11 → 12 Cold, C2 41.50 80.00 12.4022 46.50 85.00 5.00 15 → 16 Cold, C3 -253.00 150.00 0.4379 -248.00 155.00 5.00 7 → 8 Hot, H1 150.00 50.00 5.6144 145.00 45.00 5.00 18 → 19 Hot, H2 159.00 50.00 7.6944 154.00 45.00 5.00 20 → 21 Hot, H3 60.30 10.00 0.8485 55.30 5.00 5.00 22 → 23 Hot, H4 106.00 30.00 2.6086 101.00 25.00 5.00 First Trial Second Trial 1 155.00 0 0.4379 1.00 0.4379 0.4379 Deficit 2 154.00 C3 -0.4379 0.0000 9.00 -7.2566 -65.3093 Surplus 3 145.00 C3-H2 64.8714 65.3093 44.00 -12.8710 -566.3229 Surplus 4 101.00 C3-H1-H2 631.1943 631.6322 16.00 -15.4796 -247.6732 Surplus 5 85.00 C3-H1-H2-H4 878.8676 879.3054 29.70 -3.0774 -91.3991 Surplus 6 55.30 C2+C3-H1-H2-H4 970.2667 970.7046 8.80 -3.9259 -34.5483 Surplus 7 46.50 C2+C3-H1-H2-H3-H4 1004.8150 1005.2529 1.50 -16.3281 -24.4922 Surplus 8 45.00 C3-H1-H2-H3-H4 1029.3072 1029.7451 20.00 -3.0193 -60.3856 Surplus 9 25.00 C3-H4-H3 1089.6927 1090.1306 20.00 -0.4107 -8.2135 Surplus 10 5.00 C3-H3 1097.9063 1098.3441 58.40 0.4379 25.5710 Deficit 11 -53.40 C3 1072.3353 1072.7732 44.60 6.1065 272.3478 Deficit 12 -98.00 C1+C3 799.9875 800.4254 150.00 0.4379 65.6789 Deficit 13 -248.00 C3 734.3086 734.7465 Minimum Hot Utility, ∆Qh,min 0.4379 Minimum Cold Utility, ∆Qc,min 734.7465 Pinch Temperature, Tpinch 154.00 Hot Pinch Temperature, Tpinch hot 159.00 Cold Pinch Temperature, Tpinch cold 149.00 906.3219 906.3219 0.00 Stream Requires Temperature Reduction / Increment Heat Exchanger Stream Name Stream Type Supply Temperature, TS(℃) Target Temperature, TT(℃) Temperature Difference, ∆T(℃) Heat Capacity Flowrate, CP (kJ/s.℃) (kW/℃) [ Formula: CP = ∆H / ∆T ] Based on HE requirement Temperature, T (℃) Stream Data Population Temperature Difference, ∆T (℃) Total Cold CP - Total Hot CP, ∑CPC-∑CPH (kW/℃) Enthalpy Difference, ∆H (kW) [Formula: ∆H = ∆T*(∑CPC-∑CPH)] Deficit / Surplus 906.7598 1641.0685 Cold and Hot Stream Shifted Temperature Temperature Interval Constructed Based on Shifted Temperature Temperature Interval Heat Balance Heat Cascade Utility (kW) ∆Hh - Qc,min ∆Hc - Qh,min % Difference Utility, Q (kW) Pinch Temperature (℃) Heat Recovery, Qrec (kW) Hot Stream Shifted Temperature, ℃ T∗ = T − T 2 Cold Stream Shifted Temperature, ℃ T∗ = T + T 2 C1 C3 C2 H1 H2 H3 H4
  • 2. 216.1544 261.3303 CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc XX CPh ≥ CPc XX CPh ≥ CPc XX Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Th > Tc XX Th > Tc √√ Th > Tc √√ Th > Tc √√ Th > Tc √√ Th > Tc √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆H:H2 (kW) 577.3645 ∆H:H2 (kW) 838.6948 ∆H:H2 (kW) 324.5452 ∆H:H1 (kW) 561.4387 ∆H:H1 (kW) 561.4387 ∆H:C1 (kW) 252.8193 ∆H:C3 (kW) 0.0000 ∆H:C2 (kW) 477.4833 ∆H:C2 (kW) 152.9381 ∆H:C2 (kW) 477.4833 Balance ∆H (kW) 324.5452 Balance ∆H (kW) 838.6948 Balance ∆H (kW) 152.9381 Balance ∆H (kW) 408.5005 Balance ∆H (kW) 83.9553 ∆H (kW) [C1] 252.8193 ∆H (kW) [C3] 0.0000 ∆H (kW) [H2] 324.5452 ∆H (kW) [C2] 152.9381 ∆H (kW) [C2] 477.4833 CP (kW/℃) [H2] 7.6944 CP (kW/℃) [H2] 7.6944 CP (kW/℃) [C2] 12.4022 CP (kW/℃) [H1] 5.6144 CP (kW/℃) [H1] 5.6144 Temp Supply, Ts (℃) 125.04 Temp Supply, Ts (℃) 159.00 Temp Target, Tt (℃) 80.00 Temp Target, Tt (℃) 150.00 Temp Target, Tt (℃) 150.00 Temp Intermediate T4* (℃) Temp Intermediate T1* (℃) Temp Intermediate T3* (℃) Temp Intermediate T4* (℃) Temp Intermediate T3* (℃) CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√ CPh ≥ CPc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Nh ≥ Nc √√ Th > Tc XX Th > Tc √√ Th > Tc √√ Th > Tc √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆T ≥ 10℃ √√ ∆H:H4 (kW) 198.2537 ∆H:H1 (kW) 561.4387 ∆H:H2 (kW) 838.6948 ∆H:H1 (kW) 561.4387 ∆H:C3 (kW) 0.0000 ∆H:C3 (kW) 176.0193 ∆H:C2 (kW) 261.3303 ∆H:C2 (kW) 216.1544 Balance ∆H (kW) 198.2537 Balance ∆H (kW) 385.4193 Balance ∆H (kW) 577.3645 Balance ∆H (kW) 345.2843 ∆H (kW) [C3] 0.0000 ∆H (kW) [C3] 176.0193 ∆H (kW) [C2] 261.3303 ∆H (kW) [C2] 216.1544 CP (kW/℃) [H4] 2.6086 CP (kW/℃) [H1] 5.6144 CP (kW/℃) [H2] 7.6944 CP (kW/℃) [H1] 5.6144 Temp Supply, Ts (℃) 106.00 Temp Supply, Ts (℃) 150.00 Temp Supply, Tt (℃) 159.00 Temp Target, Tt (℃) 150.00 Temp Intermediate T1* (℃) Temp Intermediate T1* (℃) Temp Intermediate T3* (℃) Temp Intermediate T3* (℃) HEAT EXCHANGER NETWORK (HEN) FEASIBILITY STUDY (BELOW PINCH) Stream: C3 → H3 [HE3] Stream: H2 → C1 [HE1] Stream: H2 → C3 Stream: C2 → H2 Stream: C2 → H1 [HE3] Stream: C2 → H1 T4* T1* T3* T4* T3* [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) 92.18 159.00 53.83 122.76 64.95 [HE1] Stream: H4 → C3 [HE1] Stream: C3 → H1 [HE2] Stream: H2→ C2 [S2] [HE4] Stream: C2 [S1] → H1 [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] [ Formula: ∆H = CP*∆T ] (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) (Choose the lowest ∆H value between the two stream) T1* T1* T3* T3* (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) (Choose the stream with balance ∆H) 106.00 118.65 125.04 111.50 CPh ≥ CPc , Nh ≥ Nc CPh ≤ CPc , Nh ≤ Nc 150℃ 60.3℃ 10℃ -253℃ -58.4℃ 102.16℃ T3*=69.30℃ -103℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 149℃ 159℃ T1* = 136.12℃ -253℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 80℃ 103.21℃ 50℃ T3* 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 46.99℃ 150℃ T4* 41.5℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 80℃ 150℃ T3* 41.5℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 5.6144 6.7878 216.1544 kW 261.3303 kW 80℃ 150℃ T4* = 111.5℃ 41.5℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 80℃ 150℃ T2* = 102.16℃ 41.5℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 H1: 150℃ H2: 159℃ H3: 60.3℃ H4: 106℃ C1: -103℃ C3: -253℃ C2: 41.5℃ H1: 50℃ H2: 50℃ H3: 10℃ H4: 30℃ C1: -58.4℃ C2: 80℃ C3: 150℃ 159℃ 149℃ BELOW PINCH ABOVE PINCH 5.6686 0.4379 12.4022 5.6144 7.6944 0.8485 2.6086 CP (kW/℃) 252.8193 176.4572 477.4833 561.4387 838.6948 42.6813 198.2537 ∆H (kW) 0 kW 662.2376 kW 0 kW 409.4183 kW 83.9553 kW HE1 T1* = 136.07℃ 176.4572 kW HE2 T2* = 103.21℃ 252.8193 kW HE3 T3* = 64.95℃ 477.4833 kW 83.9553 kW C 42.6813 kW C 198.2537 kW C 0 kW 409.4183 kW C 0.4379 kW H 149℃ 150℃ T1* -253℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏 149℃ 106℃ T1* -253℃ 𝐓𝟏∗ = 𝐓𝐒 − ∆𝐇 𝐂𝐏
  • 3. H1 561.4387 Total Hot H2 838.6948 1641.0685 H3 42.6813 H4 198.2537 C1 252.8193 Total Cold C2 [S1] 261.3294 906.7598 C2 [S2] 216.1539 C3 176.4572 Qc,min 734.3086 Type of utility Before integration After integration Heat Recovery Percentage saving (%) Hot utility 906.7598 0.4379 906.3219 99.95 Cold utility 1641.0685 734.7465 906.3219 55.23 Total 2547.8283 735.1844 1812.6438 71.14 Cost of Utilities Before integration Cost of Utilities After integration Cost of Utilities (RM/kW.h) (kW) (RM) (kW) (RM) LP Steam 0.2195 906.7598 RM1,576,471.03 0.4379 RM761.32 Cooling Water 0.0055 1641.0685 RM71,886.51 734.7465 RM32,185.35 Total 0.2250 2547.8283 RM1,648,357.54 735.1844 RM32,946.67 Cost of Utilities Cost of Utilities Cost of Utilities PERCENTAGE COST UTILITY SAVED ($/GJ) (RM/kJ) (RM/kW.h) 98.00 LP Steam 14.05 0.000060977 0.2195 Cooling Water 0.354 0.000001536 0.0055 1 USD 4.34 RM 1 day 24 hour 1 hour 60 min 1 min 60 s 1 GJ 1000000 kJ Utilities Shifted Temp 0.4379 155.00 MP 0.0000 154.00 65.3093 145.00 631.6322 101.00 879.3054 85.00 970.7046 55.30 1005.2529 46.50 1029.7451 45.00 CW 1090.1306 25.00 1098.3441 5.00 R 1072.7732 -53.40 R 800.4254 -98.00 734.7465 -248.00 338.0266 Type of utility Heat Requirement of Heat and Cold Utilities Before and After Heat Integration Type of utility 216.1544 261.3303 0 kW 0 kW C2: 41.5℃ 5.6144 6.7878 H1: 150℃ H2: 159℃ H4: 106℃ H3: 60.3℃ C1: -103℃ C3: -253℃ H1: 50℃ H2: 50℃ H3: 10℃ H4: 30℃ C2: 80℃ C3: 150℃ C1: -58.4℃ 159℃ 149℃ BELOW PINCH ABOVE PINCH 5.6686 0.4379 5.6144 7.6944 0.8485 2.6086 CP (kW/℃) 252.8193 176.0358 561.4387 838.6948 42.6813 198.2537 ∆H (kW) 0 kW 401.3287 kW 662.6590 kW 345.2843 kW 0.4379 kW H HE1 176.0358 kW T1* = 136.12℃ 0 kW 216.1544 kW T4* = 111.50℃ HE4 148.5094 kW 198.2537 kW C 42.6813 kW C 148.5094 kW C 345.2843 kW C HE2 261.3303 kW T2* = 102.16℃ HE3 252.8193 kW T3* = 69.30℃ 152.00 154.00 156.00 158.00 160.00 162.00 0 1 2 3 4 5 6 7 8 9 10 Cascade Heat Flow, ∆H (kW) Grand Composite Curve (GCC) -300 -250 -200 -150 -100 -50 0 50 100 150 200 0 200 400 600 800 1000 Shifter Temperature, T* (℃) Cascade Heat Flow, ∆H (kW) Grand Composite Curve (GCC)