SlideShare a Scribd company logo
Final	Project	Report	
                                             	
	
	
COPPER	CONTRIBUTIONS	TO	FIGHT	
CLIMATE	CHANGE		
     ESTIMATES FOR LATIN AMERICA COUNTRIES




                         International Energy Initiative (IEI) Team
                              Prof. Dr. Gilberto M. Jannuzzi - Coordinator
                              Dr. Conrado A. Melo - Technical Consultant




                      Prepared for International Copper Association (ICA)
                             and Procobre – Instituto Brasileiro do Cobre




                                                                             1
Table	of	Contents	

1.  Executive Summary .................................................................................................. 5 
2.  Introduction ............................................................................................................... 8 
3.  Objective ................................................................................................................... 9 
4.  Methodology ........................................................................................................... 10 
4.1.  End-use technologies .......................................................................................... 10 
4.2.  Renewable generation technologies .................................................................... 11 
5.  Energy Efficiency and Copper Content of the Evaluated Technologies .................. 13 
5.1.  Electric motors ..................................................................................................... 13 
5.2.  Distribution transformers ...................................................................................... 14 
5.3.  Refrigerators ........................................................................................................ 17 
5.4.  Air conditioning .................................................................................................... 18 
5.5.  Renewable energy ............................................................................................... 18 
5.6.  Solar water heating .............................................................................................. 19 
6.  Results .................................................................................................................... 20 
7.  Conclusions ............................................................................................................ 23 
8.  Bibliography ............................................................................................................ 24 
9.  Appendix 1 - Electric Matrix and Emissions for the Selected Countries .................. 25 
9.1.  Brazil .................................................................................................................... 25 
9.2.  Mexico ................................................................................................................. 25 
9.3.  Peru ..................................................................................................................... 25 
9.4.  Chile .................................................................................................................... 27 
9.5.  Argentina ............................................................................................................. 27 
9.6.  Colombia ............................................................................................................. 28 
9.7.  Emission factor of national electrical systems...................................................... 29 
10.      Appendix 2 - Parameters Used in Estimates of ICA LA Programs Contributions. 30 
11.      Appendix 3 - Estimates of ICA LA Programs Contributions ................................. 32 
11.1.       Electric motors .................................................................................................. 32 
11.2.       Refrigerators ..................................................................................................... 32 
11.3.       Air conditioning ................................................................................................. 33 
11.4.       Solar water heating........................................................................................... 33 
11.5.       Distribution transformers .................................................................................. 34 




                                                                                                                                        2
List	of	Tables	

Table 1 – Project Scope: equipment, countries and type of study. .................................. 9 
Table 2 – Relation between the use of copper and efficiency of 22kW electric induction
motors ........................................................................................................................... 14 
Table 3 – Electric motors’ market in Brazil and Mexico ................................................. 14 
Table 4 – Distribution of single-phase transformers according to power in Brazil (2007)
 ...................................................................................................................................... 14 
Table 5 – Distribution of three-phase transformers according to power in Brazil (2007) 15 
Table 6 – European parameters for losses and use of copper in distribution
transformers .................................................................................................................. 15 
Table 7 – Relation between the use of copper and efficiency for distribution
transformers .................................................................................................................. 15 
Table 8 – Copper increment in 15kV single-phase transformers to reduce losses by
20% ............................................................................................................................... 17 
Table 9 – Copper increment in 15kV three-phase transformers to reduce losses by 20%
 ...................................................................................................................................... 17 
Table 10 – Additional use of copper, per component, in a 480 liters refrigerator ........... 18 
Table 11 – Additional use copper per installed capacity of renewable generation
sources .......................................................................................................................... 19 
Table 12 – Installed capacity of renewable generation sources .................................... 19 
Table 13 – Technical coefficients for CO2 mitigation per equipment type ...................... 20 
Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper .......... 20 
Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies
 ...................................................................................................................................... 21 
Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of
CO2/year)....................................................................................................................... 21 
Table 17 – Results of annual CO2 mitigation program with renewable generation (tons
of CO2/year)................................................................................................................... 22 
Table 18 – Assumptions of programs coverage: Three Phase Electric Motors ............. 30 
Table 19 – Assumptions of programs coverage: Distribution Transformers .................. 30 
Table 20 – Assumptions of programs coverage: Refrigerators ...................................... 30 
Table 21 – Assumptions of programs coverage: Air Conditioning ................................. 31 
Table 22 – Assumptions of programs coverage: Solar Heating ..................................... 31 
Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons
 ...................................................................................................................................... 32 
Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons .. 32 
Table 25 – Results of the CO2 mitigation program for air-conditioning sets: in millions of
tons ................................................................................................................................ 33 
Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons 33 
Table 27 – Estimates for distribution transformers: study of potential ........................... 34 




                                                                                                                                              3
List	of	Figures	


Figure 1 – Loss reduction curves due to copper increment in transformers .................. 16 
Figure 2 – Brazil: Domestic offer of electricity by source type - 2009 ............................ 26 
Figure 3 – Mexico: Domestic offer of electricity by source type - 2009 .......................... 26 
Figure 4 – Peru: Domestic offer of electricity by source type - 2009.............................. 27 
Figure 5 – Chile: Domestic offer of electricity by source type - 2009 ............................. 28 
Figure 6 – Argentina: Domestic offer of electricity by source type - 2009 ...................... 28 
Figure 7 – Colombia: Domestic offer of electricity by source type - 2009 ...................... 29 
Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009................. 29 




                                                                                                          4
1. Executive	Summary	

This project has the objective to estimate the contribution of the additional use of copper
in electrical equipment and power generation in reducing CO2 emissions. The study was
developed considering the introduction of more efficient electric equipment, solar water
heaters, and the contribution given by electricity generation using renewable sources in
Latin America1 countries. These two components employ technologies that have a
higher copper content when compared to the conventional technologies they replace.
The analysis comprised different periods depending on the start of fomenting and
diffusion activities of the appraised technologies, which, basically, started in 2005. The
results are presented in annual basis.

Estimates were based on indicators relating the copper content and the equipment
energy efficiency. For the renewable sources, we used factors relating the copper
content of selected technologies per unit capacity. Estimates of emissions’ reduction
with the introduction of these technologies were based on sales information of efficient
equipment and on the characteristics of each country electric system. The methodology
and assumptions used are detailed in Chapters 4 and 5 and Appendixes 1 and 2.

Table A shows the different contributions of each additional kilogram of copper applied
in building more efficient electric equipment, solar heaters, and renewable power
generation in the analyzed countries. As could be expected, countries employing a
higher share of thermal generation using fossil sources have the most significant
indicators on impacts’ mitigation. Such is the case of Mexico, Argentina, and Chile.
Electric motors are the items that exhibit the higher reduction of emissions per unit,
followed by refrigerators and air conditioners.


                       Table A – Technical CO2 mitigation coefficients per kg of additional copper 

                                                                                                                       Solar 
     Country     Electric Motors    Refrigerators  Air Conditioning      Solar Heating      Wind    SHPs    Biomass 
                                                                                                                        PV 
                                                    Tons of CO2/additional kg of copper/year 

    Argentina              0.491           0.128               0.099                      0.224  0.798        1.166    0.048 
                                                                                       ‐ 
      Brazil               0.126           0.033               0.025               0.004  0.057  0.202        0.295    0.012 
       Chile               0.471           0.123               0.095               0.033  0.230  0.819        1.198         ‐ 

     Colombia              0.221           0.058               0.044                      0.097  0.347        0.507    0.021 
                                                                                       ‐ 
     Mexico                0.614           0.207               0.159               0.033  0.360  1.282        1.874    0.077 
       Peru                0.281           0.073               0.056               0.033  0.135  0.480        0.702    0.029 

1
    Argentina, Brazil, Chile, Colombia, Mexico and Peru.


                                                                                                                                 5
Emissions’ reduction for each equipment is given in Table B. The penetration of each
efficient motor in Mexico reduces CO2 emission by 412 kg/year while in Brazil this
factor is 82 kg/year. It can be verified that for each equipment unit, solar water heaters
provide the largest contribution to emissions reductions in countries that, according to
the assumptions, use natural gas for domestic water heating.


                         Table B – Technical coefficients for CO2 mitigation, per equipment 

                   Country         Electric Motor  Refrigerator  Air Conditioning  Solar Heating1 
                                                       Tons of CO2/equipment/ year 

                 Argentina               0.31959        0.04867             0.07699             0.66759 
                 Brazil                  0.08194        0.01248             0.01974             0.07147 
                 Chile                   0.30717        0.04678             0.07399             0.66759 
                 Colombia                0.14366        0.02188             0.03461             0.66759 
                 Mexico                  0.41248        0.07852             0.12420             0.66759 
                 Peru                    0.18290        0.02785             0.04406             0.66759 
                   1
                        In Brazil solar heaters replace electric showers, for other countries it was
                        assumed that this technology replaces direct natural gas burning.



The total annual savings of electric energy, per country and equipment, are presented in
Table C. Brazil is the country where the dissemination of efficient technologies provides
the highest amount of electricity conservation (about 2 TWh/year) stressing the
penetration of efficient electric motors, which accounts for energy savings of 1.2 TWh
yearly. Solar water heating technologies in Mexico represent a total saving of 16,800
tons of natural gas.


                                  Table C – Annual results of energy conservation 

               Country        Electric Motor  Refrigerators  Air Conditioning            Solar Heating 
                                GWh/year         GWh/year          GWh/year 
              Argentina                 16.2           59.4                26.0                ‐ 
              Brazil                 1,213.5          580.8               120.1         166.3 GWh/year 
              Chile                     11.7           16.2                    6.6    2,321.0 (Tons of NG) 
              Colombia                  29.4           42.6                    8.8             ‐ 
              Mexico                  723.2           374.9                68.9  16,885.0 (Tons of NG) 
                                                                                        2,343.0 
              Peru                       9.4           17.8                 1.3 
                                                                                     (Tons of NG) 




                                                                                                              6
Table D shows the annual results of CO2 emissions mitigation. Among the analyzed
countries, Mexico represents 72% of the total CO2 reduction. In both countries, Brazil
and Mexico, the most important equipment was more efficient motors, followed by
refrigerators. However, in other countries, the situation was different, with refrigerators
and solar heaters being more important in Argentina, Chile and Peru.



                 Table D – Results of CO2 mitigation: energy end‐use technologies (CO2 tons/year) 

                Country     Electric Motors  Refrigerators  Air Conditioning  Solar Heating              Total 
               Argentina              5,983            21,901                9,585                  ‐     37,468 
               Brazil             114,714              54,904               11,349         15,723        196,690 
               Chile                  4,147             5,730                2,353           7,043        19,273 
               Colombia               4,870             7,055                1,453                  ‐     13,379 
               Mexico             430,213           222,993                 40,987         51,237        745,430 
               Peru                   1,975             3,760                 264            7,110        13,110 
               Total              561,902           316,344                 65,992         81,113  1,025,350 



The contribution of renewable sources to emissions' reduction is even larger, as can be
seen in Table E. Although Brazil has a very low emission factor compared with other
countries, the country was the largest contributor due to its higher installed capacity.
Generation using biomass is the main source to contribute towards emissions’
reduction.




     Table E – Results of annual CO2 mitigation taking renewable generation into account: (CO2 tons/year) 

              Country         Wind              SHP          Biomass         Solar Photovoltaic          Total 
             Brazil             232,165        1,633,169     3,417,274                     2,126         5,284,735 
             Argentina           17,106         606,224      1,007,575                     4,198         1,635,104 
             Chile               11,497         260,485          238,555                       ‐          510,536 
             Mexico              76,470         966,631          546,539                 10,121          1,599,761 
             Colombia             4,478         327,358           81,523                    183           413,542 
             Peru                     236       201,640           64,855                    935           267,666 
             Total              341,952        3,995,508     5,356,321                   17,563          9,711,344 




                                                                                                                      7
2. Introduction	

Technological innovation of electric equipment and devices have produced significant
improvement concerning energy-efficiency gain, which, on its turn, have an enormous
potential for environmental gain in Greenhouse Gases (GHG) mitigation. These
innovations are, in many cases, directly related to application of additional copper. For
instance, electric motors' gain in energy performance for each additional kilogram of
copper used in them allows the reduction of 3 tons of CO2e emission2, in comparison to
equipment with less intensive copper use. Emissions’ balance is very positive, as in the
production phase of these devices; the use of additional copper is responsible for only 3
kg of CO2e emissions (Keulenaer et al 2006). This means a return factor of 1000 times
in mitigation benefits provided by these applications throughout their lives (Copper
2006). Furthermore, it shall be noted that at the end of the equipment lifetime, its copper
content can be recycled and used in another application.




2
 All greenhouse gases are converted into equivalent quantities of CO2 contribution to the atmospheric
warming. Thus, for example, one ton of methane (CH4), which has an effect 21 times that of carbon
dioxide, is equivalent to 21 tons of CO2.



                                                                                                        8
3. Objective	

This study objective is to evaluate the contribution of using copper, and the consequent
increase in energetic efficiency, to fight climate changes. The study intends to diagnose
and account for the impacts of CO2, the main Greenhouse Gas (GHG), mitigation in
selected Latin America countries, considering: a) the use of more efficient technologies
into electrical equipment manufacturing, b) the use of solar water heaters, and c)
electricity generation by renewable sources, as wind, biomass, small hydropower plants
(SHP), and solar photovoltaic. Furthermore, an evaluation was developed for the
potential impact of an improvement in losses' reduction of distribution transformers.
Table 1 shows the list of evaluated equipment, countries, and type of study3.


                            Table 1 – Project Scope: equipment, countries and type of study. 

                  Equipment                            Assessed Countries                       Type of Study 
           Electric motors             Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts 
           Distribution transformers  Brazil                                                Study of potential 
           Refrigerators               Brazil, Chile and Mexico.                            Evaluation of impacts 
           Air conditioners            Brazil, Chile, Colombia, Mexico and Peru             Evaluation of impacts 
           Renewable energy(*)         Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts 
            Solar water heating      Brazil, Chile, Mexico and Peru                         Evaluation of impacts 
Note: (*) Biomass, wind, solar photovoltaic and small hydro (SHP).




3
 Additionally, the likely contribution of the programs fomented by the ICA LA for energy savings and
emissions' reduction was also estimated. (See Appendix 3, page 25).


                                                                                                                     9
4. Methodology	

To develop the project, two analysis steps were taken, as described below.


Phase	1	‐	Analysis	of	energy	efficiency	indicators	and	copper	content		
This first analysis stage objective is to evaluate relations between each equipment
energy efficiency and its copper content. The development of this step is based on a
review of national and international literature. This literature covers scientific reports,
research papers, indexed articles and related books. Details of this evaluation are
presented in Chapter 5.


Phase	2	–	Accounting	of	impacts	by	incrementing	copper	usage		
This step aims at estimating the impact of new equipment sales and increase in
electricity generation from renewable sources in each of the analyzed countries. To
perform this step, the information obtained in Step 1 was used to establish technical
coefficients for CO2 emissions' mitigation for each technology4, besides market-specific
parameters, as explained below. In the study on the available potential for distribution
transformers’ improvement, the energy potential is conserved, and the corresponding
CO2 mitigation is quantified, in a scenario that considers the total deployment of efficient
transformers in Brazil. Two models are used for emissions’ accounting: one related to
end-use technologies and other related to renewable generation technologies, as
described below.


      4.1.        End‐use	technologies	

The annual basis model used for accounting CO2 emissions' mitigation, for each end-
use energy technology evaluated, is given by Equation 1.


                                             ∗    ∗     									Equation 1 


Where:
- Me is the annual mitigation of CO2 emissions provided by the introduction of
technology e into the stock in use in year y;
- Pe is the participation of efficient equipment in annual sales;


4
    This data is presented in Chapter 5, pages 15-17.


                                                                                               10
- Vae is the sale in year y of technology e;
- CTe is the annual technical mitigation coefficient for CO2 emissions by technology e,
given by Equation 2.
                                         ∗              ∗       															Equation 2 



Where:
- Cep is the consumption of the standard equipment;
- Cee is the consumption of the efficient equipment;
- Pse is the loss factor for electrical power generation of each assessed country; and
- Fme is the electrical system average emissions' factor for each considered country.


It standouts in the electric equipment model that emissions are accounted for at the
electricity generation source; therefore, factors concerning losses in each country
electrical systems are considered in the analysis. Just in replacement of direct gas
burning by solar water heaters, emissions are estimated considering the total gas saved
multiplied by the gas emission factor.


   4.2.       Renewable	generation	technologies	

A similar procedure is used in the analysis of CO2 emissions' mitigation by renewable
generation (wind, small hydro, biomass, and solar photovoltaic). In this case, the
method used compares energy from renewable generation sources with the electrical
system expansion that would occur using an equivalent power plant representing each
country electricity generation mix. This method is conservative in the sense that it
considers the effects of renewable generation already included in the average emission
factors for the analyzed countries' electricity generation systems. A comparison carried
out against a plant based on fossil fuel (fuel oil, natural gas, diesel oil, etc.) would give a
larger mitigation impact.


Equations 3 and 4 show the method used in accounting for CO2 emissions' mitigation
for renewable generation.


                                             ∗                   Equation 3 

                                                  



                                                                                                  11
Where:
- Mer is the annual CO2 emissions’ mitigation provided by the installed capacity of
renewable technology generation r;
- CIr is the installed capacity of the r generation technology,
- CTe is the technical mitigation coefficient for CO2 emissions of generation technology
r, given by Equation 4.


                                     ∗ .    ∗     															Equation 4 

Where:
- FCr is the capacity factor of generation technology r, and
- Fme is the average emissions factor of the electrical systems for each considered
country.
- The constant 8.76 refers to the number of hours per year divided by one thousand.




                                                                                           12
5. Energy	Efficiency	and	Copper	Content	of	the	Evaluated	Technologies		


      5.1.        Electric	motors	

Electric motors are widely used in the industrial sector. Application examples are pumps
for liquids’ transfer, gas compressors, and fans. The textile industry has dedicated
machines, either for spinning and weaving of century's old technology. The cement,
pulp and paper, and chemical sectors use a large amount of pumps, compressors and
fans in their processes, as well as large conveyors, mills, agitators, sieves employing
many high-power motors, together with numerous small motors for ancillary services.
The ceramics industries employ large mixers, blowers and a multitude of conveyors.
Mining, steel mills and general metal manufacturing, besides pumps, compressors and
fans, also mills, conveyors and large quantities for specific machinery for activities as
lamination, drawing, bending, and cutting (Garcia, 2003).


According to Keulenaer et al (2006) evaluation of low voltage (22 kW) induction motors,
operating in typical system applications such as water pumping, compressed air, and
ventilation, the benefits of increasing their energetic efficiency would be quite significant
and would directly reflect in reducing emissions, for example, by some 19 tons of CO25
per motor throughout its useful life. It shall be pointed out that the emissions’ balance
between the production of the highly efficient equipment, and the amount that this
equipment shall mitigate throughout its useful life is of the order of 1000 times, i.e., each
kg of CO2 emitted during the motor production represents a reduction of one ton of CO2
emission during its operation.

Table 2 shows the direct relation between electric motors' efficiency and additional
copper usage according to Keulenaer et al (2006), who assessed three types of motors
operating under the same conditions. In this case, with the additional use of 5.1 kg of
copper, the high performance motor efficiency increased by 4.1 percentage points in
relation to the standard motor.




5
    In this case, we considered the average emission factor for 15 European countries.


                                                                                                13
Table 2 – Relation between the use of copper and efficiency of 22kW electric induction motors 

                     Parameters          Standard Efficiency      High Efficiency      Premium High Efficiency 
                  Useful life (years)                     20                    20                             20 
                  Load (%)                                50                    50                             50 
                  Efficiency (%)                         89.5                  91.8                          92.6 
                  Copper (Kg)                             8.8                  12.9                          13.9 
                                                  Source: Keulenaer et al (2006) 



Table 3 shows the market share of electric motors per power for Brazil and Mexico.


                                 Table 3 – Electric motors’ market in Brazil and Mexico 

                               Power Range                 Market share ‐ Brazil        Market share ‐ Mexico 
                  1. Up to 1 hp (Frame 63 and above)                       33.77%                       7.68% 
                  2. Over 1 hp up to 10 hp                                 50.92%                      82.13% 
                  3. Over 10 hp up to 40 hp                                11.47%                       8.44% 
                  4. Over 40 hp up to 100 hp                                   2.73%                    1.29% 
                  5. Over 100 hp up to 300 hp                                  0.99%                    0.44% 
                  6. Over 300 hp                                               0.13%                    0.02% 
                                                     Source:  Garcia (2003) 



   5.2.          Distribution	transformers	

Distribution transformers are designed to step voltage up or down to attend specific
needs of electrical grid. However, the use of this equipment introduces power losses
into the system. As an example, these losses amount, approximately, to 30% of the
total losses of the electricity distribution system in Brazil, CEPEL (2008). According to
CEPEL’s (2008) data, in 2007 the number of installed transformers in Brazil amounted
to 1.55 million single-phase transformers plus 1.10 million of three-phase transformers.
Tables 4 and 5 show transformers’ distribution according to power in the Brazilian
Electricity Distribution System.


              Table 4 – Distribution of single‐phase transformers according to power in Brazil (2007) 

                                    5 kVA      10 kVA      15 kVA       25 kVA          Other       Total 
                       Units        323,587    904,663     237,600        75,509        10,748    1,552,107 
                         %           20.8%      58.3%           15.3%        4.9%         0.7%      100.0% 
                                                      Source: CEPEL, 2008 




                                                                                                                     14
Table 5 – Distribution of three‐phase transformers according to power in Brazil (2007) 

                        15 kVA     30 kVA        45 kVA       75 kVA        112.5 kVA       150 kVA         Other        Total
            Units       175,878     231,614       256,125      233,604           113,007         54,717        39,250  1,104,195
             %            15.9%         21.0%      23.2%           21.2%          10.2%            5.0%         3.6%     100.0%
                                                         Source: CEPEL, 2008 



The use of efficient transformers reduces energy losses substantially. Efficiently
operated high-efficiency transformers allow energy conservation gains and consequent
reduction of GHG emissions. According to Keulenaer (2006) a high performance 100
KVA distribution transformer operating at 25% load allows mitigation of approximately
37 tons of CO2e6 in its 30-year useful life. According to the same author Table 6
presents a direct relation between transformer losses and use of additional copper, for
three equipment types.


               Table 6 – European parameters for losses and use of copper in distribution transformers 

                                         Parameters           AA’          CC’       C‐Amorphous
                                   Useful life (years)        30           30               30
                                   Load (%)                   25           25               25
                                   Copper losses (kW)        1.750      1.475              1.475
                                   Iron losses (kW)          0.32          0.21            0.06
                                   Copper (Kg)                85           115             155
                                                      Source: Keulenaer (2006)
                                                                     



According to studies developed by LAT-EFEI (The High Voltage Laboratory) of UNIFEI
(The Federal University of Itajubá, Brazil) additional copper in transformers should allow
significant losses reduction in power distribution networks of Brazil. Table 7 shows the
difference in losses for 30, 45 and 75 kVA transformers, in MWh/year for standard and
high-efficiency equipment, used in Brazil.


              Table 7 – Relation between the use of copper and efficiency for distribution transformers 

                           Transformer  Standard (MWh/year)             Efficient (MWh/year)              % 
                              30 kVA                        2.9558                         2.1525         27.2% 
                              45 kVA                        3.6429                         2.7105         25.6% 
                              75 kVA                        6.4560                         4.7790         26.0% 




6
    In this case we considered the average emission factor for 15 European countries.


                                                                                                                                   15
Figure 1 illustrates the direct relation between the increment in the mass of copper and
technical losses reduction in distribution transformers.




                Figure 1 – Loss reduction curves due to copper increment in transformers 
                                          Source: LAT‐EFEI UNIFEI 




Tables 8 and 9 show the increment in copper mass for single and three-phase
transformers, for various transformer capacities, according to the LAT-EFEI UNIFEI
study. In this case the copper increment was calculated for a 20% reduction in total
losses.




                                                                                            16
Table 8 – Copper increment in 15kV single‐phase transformers to reduce losses by 20% 

                          Standard Mass   Losses Reduction  Mass Increment  Mass Increment  
                Power 
                               (kg)                 (%)                      (%)             (kg) 
                 5 kVA                 7.41                      20                 29.11            2.15 
                10 kVA             11.88                         20                 28.91            3.43 
                15 kVA             20.13                         20                 24.61            4.95 
                25 kVA             22.96                         20                 23.94            5.49 
                                                Source: LAT‐EFEI – UNIFEI 
                                                              
                                                              
               Table 9 – Copper increment in 15kV three‐phase transformers to reduce losses by 20% 

                           Standard Mass  Losses Reduction  Mass Increment  Mass Increment  
                Power 
                                (kg)                  (%)                     (%)             (kg) 
                 15 kVA                23.68                      20                 18.72             4.43 
                 30 kVA                27.63                      20                 21.92             6.05 
                 45 kVA                35.10                      20                 16.72             5.86 
                 75 kVA                49.75                      20                 17.81             8.86 
              112.5 kVA                67.08                      20                 24.67            16.55 
                150 kVA                66.64                      20                 20.27            13.50 
                                                Source: LAT‐EFEI ‐ UNIFEI 




   5.3.       Refrigerators		

Highly efficient refrigerators concerning electricity usage are manufactured with a larger
application of copper in several components. Compressors are components with
intense use of copper. The difference in usage of this conductive metal in efficient
equipment may exceed by 20% the amount used in less efficient equipment. Table 10
shows, for a standard 480 liters equipment, the use of additional copper per component
of the refrigerator.      This equipment with a 22% increase in energy efficiency uses
386.45 g of additional copper.




                                                                                                               17
Table 10 – Additional use of copper, per component, in a 480 liters refrigerator 

               Component                                     Weight (g)     Efficiency + 22% (g)    Difference (g) 
               Electric cable                                    101.42                   123.73            22.31 
               Compressor service tube                            25.80                     31.48           5.678 
               Drier filter service  tube                         26.34                     32.13            5.79 
               Drier filter                                       76.12                     92.87           16.75 
               Ground wire                                        18.32                     22.35            4.03 
               Plastic plug                                       41.88                     51.09            9.21 
               Evaporator (suction line tip + capillary)         166.72                   203.40            36.68 
               Compressor                                      1,300.00                 1,586.00           286.00 
               Total                                           1,757.00                 2,143.00           386.45 
                                        Source: National manufacturer ‐ Private information  




   5.4.         Air	conditioning	

Air conditioners are used for treatment of indoor air. Such treatment consists in
regulating the quality of the indoor air, i.e., its temperature, humidity, cleanness and
movement. For this purpose, the air conditioning system may include air heating,
cooling, humidification, renewal, filtering, and ventilation functions applied to the
ambient air.

No studies were found referring the relation between use of additional copper and
energy efficiency of air conditioners. A standard equipment of 17,700 BTU/hr. contains
about 3.64 kg of copper. For its installation there is an additional demand of 1.56 kg,
which totals 5.2 kg of copper per installed equipment.




   5.5.         Renewable	energy		

In relation to electricity generation from renewable sources, the following technologies
are considered: wind, small hydropower (SHP), biomass and solar PV. Concentrated
solar photovoltaic technology was not considered, because it is not yet used in Latin
America. Table 11 shows the use of copper per MW of installed capacity for each of
these technologies. Table 12 shows the installed capacity for each considered country.




                                                                                                                      18
Table 11 – Additional use copper per installed capacity of renewable generation sources 

                                                                      
                                    Technology          Copper demand per technology
                                                                      
                                    Wind                   2.5 tons of copper/MW
                                    SHPs                   2.0 tons of copper/MW
                                    Biomass                1.2 tons of copper/MW
                                    Photovoltaic           8.8 tons of copper/MW
                                         Source: Leonardo Energy and KEMA, 2009



                          Table 12 – Installed capacity of renewable generation sources 

                                 Wind              SHP            Biomass       Photovoltaic        Total 
               Country 
                                 (MW)              (MW)            (MW)            (MW)             (MW) 
                                           *                                *
             Brazil                 1,638                4,043        9,644                20         10,879 
             Argentina                   31               380           720                10          1,141 
             Chile                       20               159           166                0             345 
             Mexico                      85               377           243                15            720 
             Colombia                    18               472           134                1             625 
             Peru                         1               210              77              4             291 
             Total                   1,591               5,641         6,720               50         14,001 
                                                    *
                       Source: Jannuzzi et al, 2010 Values updated according to www.aneel.gov.br/




   5.6.         Solar	water	heating	

Collecting plates are responsible for absorption of solar radiation. Heat from the sun, captured
by the solar heater plates, is transferred to water circulating inside copper tubing.


A basic water heating system using solar energy consists of solar collector plates and a thermal
reservoir (boiler). The thermal reservoir, also known as boiler, is a container to store heated
water. It is built in copper, steel or polypropylene cylinders, insulated with CFC-free
polyurethane foam, which does not harm the ozone layer. It stores the heated water for later
use. The cold water tank feeds the solar heater thermal reservoir, keeping it full. On the
average, it is known that each installed square meter of solar heaters demands 5kg of copper.




                                                                                                                19
6. Results	

Table 13 shows technical mitigation coefficients for CO2 emissions provided by the
introduction of one end use unit of energy efficient technology. As shown in Equation 2
(Section 4.1), besides depending on the difference in energy consumption between the
so-called standard and efficient technologies, these coefficients depended of the
electrical systems losses and also of the assessed countries' energy matrix. Thus,
these coefficients reflect, to some extent, the carbon content embedded in the countries’
energy matrix. It is noteworthy that replacing direct burning of natural gas with solar
water heaters has the highest mitigation coefficient7.


                          Table 13 – Technical coefficients for CO2 mitigation per equipment type 

                         Country       Electric Motors  Refrigerators  Air Conditioning  Solar Heating1 
                                                              Tons. of CO2/equipment/year 
                       Argentina               0.31959           0.04867              0.07699            0.66759 
                       Brazil                  0.08194           0.01248              0.01974            0.07147 
                       Chile                   0.30717           0.04678              0.07399            0.66759 
                       Colombia                0.14366           0.02188              0.03461            0.66759 
                       Mexico                  0.41248           0.07852              0.12420            0.66759 
                       Peru                    0.18290           0.02785              0.04406            0.66759 
                          1
                            In Brazil, solar heaters replace electric showers and in other countries, this
                          technology replaces direct burning of natural gas.


From the technical coefficients shown in Table 13 and the assessment of copper
content presented in Chapter 5, Table 14 shows CO2 mitigation coefficients per kg of
copper added to the efficient equipment.



                   Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper 

                          Country        Electric Motors  Refrigerators  Air Conditioning  Solar Heating 
                                                          Tons. of CO2/kg of additional copper/year

                   Argentina                        0.491             0.128                0.099             0.033 
                   Brazil                           0.126             0.033                0.025             0.004 
                   Chile                            0.471             0.123                0.095             0.033 
                   Colombia                         0.221             0.058                0.044             0.033 
                   Mexico                           0.614             0.207                0.159             0.033 
                   Peru                             0.281             0.073                0.056             0.033 




7
    In this case, estimates consider solar heaters with 4m2 of area replace 220m3 of natural gas per year.


                                                                                                                      20
Table 15 shows CO2 emissions mitigation coefficients for renewable generation, already
considering each country characteristics (Appendix 1) and the considerations
introduced by equations 3 and 4, of Section 4.2.

               Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies  

                            Country            Wind             SHP          Biomass          Solar PV 
                                                             Tons of CO2/Installed MW/year

                        Brazil                   141.7              403.9         354.3             106.3 
                        Argentina                559.8          1,595.3         1,399.4             419.8 
                        Chile                    574.8          1,638.3         1,437.1             431.1 
                        Mexico                   899.7          2,564.0         2,249.1             674.7 
                        Colombia                 243.4              693.6         608.4             182.5 
                        Peru                     336.9              960.2         842.3             252.7 




Table 16 shows the results of CO2 emissions mitigation estimates resulting from annual
sale of efficient equipment.                  The major mitigation impact due to the introduction of
efficient equipment among the analyzed countries occurs in Mexico, where every year
some 750 thousand tons of carbon are avoided to be emitted into the atmosphere.


               Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of CO2/year) 

        Country         Electric Motors        Refrigerators          Air Conditioning     Solar Heating         Total 
   Argentina                         5,983                21,901                 9,585                      ‐        37,468 
   Brazil                         114,714                 54,904               11,349              15,723           196,690 
   Chile                             4,147                 5,730                 2,353              7,043            19,273 
   Colombia                          4,870                 7,055                 1,453                      ‐        13,379 
   Mexico                         430,213              222,993                 40,987              51,237           745,430 
   Peru                              1,975                 3,760                   264              7,110            13,110 
   Total                          561,902              316,344                 65,992              81,113         1,025,350 




Unconventional renewable generation (excluding hydropower) is still insignificant in
Latin America. In this case mitigation estimates are based on the effective generation by
these renewable sources. The comparison is made against a scenario of absence of
these sources and their substitution by conventional generation (using each country
generation mix matrix).




                                                                                                                               21
Table 17 shows the results of these estimates for wind power, small hydro, biomass and
photovoltaic generation. According to the estimates each year 9.7 million tons of CO2
emissions are mitigated due to the installed capacity of these types of renewable
generation. Over one-half of this mitigation comes from Brazil, a country that, despite
having an average factor of CO2 emissions lower than other countries, has a higher
installed capacity of these types of sources.


      Table 17 – Results of annual CO2 mitigation program with renewable generation (tons of CO2/year) 

             Country         Wind               SHP            Biomass           Solar PV         Total 
          Brazil               232,165         1,633,169         3,417,274             2,126      5,284,735 
          Argentina             17,106           606,224         1,007,575             4,198      1,635,104 
          Chile                 11,497           260,485           238,555                   0     510,536 
          Mexico                76,470           966,631           546,539            10,121      1,599,761 
          Colombia                4,478          327,358            81,523               183       413,542 
          Peru                       236         201,640            64,855               935       267,666 
          Total                341,952         3,995,508         5,356,321            17,563      9,711,344 
                          Note: Values calculated using the technical coefficients (Table 15)



Appendix 1 shows the characterization study of electric matrixes and respective CO2
emission factors of the analyzed countries. Appendix 2 depicts other parameters and
assumptions underlying the estimates. Appendix 3 gives the ICA LA activities
contribution estimates in the markets of studied countries.




                                                                                                               22
7. Conclusions	

The paper presented a methodology to estimate the impact of CO2 emissions' mitigation
resulting from the diffusion of efficient use of electricity, due to the substitution of natural
gas by solar heaters and also due to the increased participation of renewable
generation sources (wind, small hydro, biomass and solar photovoltaic).                    This
methodology allowed the elaboration of technical coefficients that can produce
estimates for a market evaluation (for total annual sales or a part thereof) and, for
renewable generation capacity, of CO2 emissions’ mitigation impacts. Also, the study
presented technical coefficients relating mitigation impacts and the corresponding
additional copper for energy end use equipment.

These coefficients and the estimated penetration rates of efficient equipment in
Argentina, Brazil, Chile, Mexico, Colombia and Peru markets were used to estimate the
total reduction in CO2 emissions. These coefficients directly reflect the electricity
generation matrix of the assessed countries. In this sense, a higher coefficient value
indicates a larger participation of fossil sources (oil and oil products, natural gas, coal).

Based on these coefficients, and on annual sales’ market data of more efficient
technologies, annual impacts were estimated in terms of energy conservation. In the
electricity sector, 3.5 TWh is saved annually due to introduction of efficient electrical
equipment. The case of Brazil is noteworthy, for the country participates with about 2
TWh per annum to this total. The substitution of natural gas heaters by solar heaters
also resulted in significant impacts that correspond annually to a saving of about 21,400
tons of natural gas.

In terms of CO2 emissions’ mitigation the results were quite significant, particularly in
countries whose energy matrix is more carbon intensive. The penetration of
technologies for energy-efficient end use is responsible for mitigating annually about 1
million tons of CO2, in the countries analyzed with Mexico alone accounting for 72% of
the total.

The impact of renewable generation is even greater, with some 9.7 million tons of CO2
avoided emissions into the atmosphere annually. Although the Brazilian emissions’
factor is very low compared to other countries, the country was the major contributor
due to its higher installed capacity. Generation from biomass has the larger participation
in reducing emissions.



                                                                                                   23
8. Bibliography	

BAE.       2010.       Balance         Anual       de      Energía        2009        –     From        web-site:
http://www.gob.cl/informa/2010/11/10/ministerio-de-energia-entrega-balance-anual-de-energia-2009.htm
BEN. 2010. Balanço Energético Nacional 2010 – From web-site: https://ben.epe.gov.br/
BNE.      2010.       Balance        de     Energía       del     Perú       2010      –     From       web-site:
http://www.minem.gob.pe/publicacion.php?idSector=12&idPublicacion=418
Copper (2006) ECI. Information site providing up to date life cycle data on its key
products. Available at: www.copper-life-cycle.org
Garcia. A.G.P (2003). Impacto da lei de eficiência energética para motores elétricos no
potencial de conservação de energia na indústria. Dissertação de Mestrado. Programas
de Pós-Graduação de Engenharia da Universidade Federal do Rio de Janeiro.
(Impact of the Law on Energy Efficiency for electrical motors, on the energy conservation potential of the industry.
MS Dissertation. Graduate Programs in Engineering of the Federal University of Rio de Janeiro).

Hans De Keulenaer. Constantin Herrmann. Francesco Parasiliti. (2006) 22 kW induction
motors with increasing efficiency. Available at:
http://www.leonardo-energy.org/Files/Case1-22kW-50.pdf
Hans De Keulenaer (2006) 100 kVA distribution transformer designs with increasing
efficiency. Available at: http://www.leonardo-energy.org/repository/Library/Papers/Case7-trafo-100-
25.pdf
INE. 2010. Instituto Nacional de Estadística – Web-site: http://www.ine.cl
IEA. 2011. International Energy Agency. CO2 emissions from fuel combustion. IEA
Statistics.
Jannuzzi, G.M.; Rodríguez, O.B.; Dedecca,J.G.; Nogueira, L.G.; Gomes, R.D.M,
Navarro, J. (2010). Energias renováveis para geração de eletricidade na América
Latina: mercado, tecnologias e perspectivas. Relatório de Projeto desenvolvido para
“International Copper Association” (Renewable generation of electricity in Latin America: market,
technology and perspectives. Project Report developed for the “International Copper Association”).

Available at:
http://www.procobre.org/archivos/pdf/energia_sustentable/generacion_de_electricidad_pr.pdf
Leonardo Energy and KEMA. 2009. System integration of distributed generation -
renewable energy systems in different European countries.
Available at: http://www.leonardo-energy.org/files/root/pdf/2009/System_Integration_DG_RES.pdf
POISE. 2011. Programa de Obras e Inversiones del Sector Eléctrico 2011_2025 –
Coordinación  de    Planificación –    CFE    –    Available     at   web-site:
http://www.sener.gob.mx/portal/Default.aspx?id=1453#
SEN.       2010.      Estadísticas         del     Sector       Eléctrico.      Available        at     web-site:
http://www.sener.gob.mx/portal/industria_electrica_mexicana.html
UPME. 2010. Balances_EnergEticos_Nacionales_30-mar-11 – Colombia - Balances
Energéticos Nacionales 1975-2009 - Ing. Oscar Uriel Imitola Acero. Director General
y Ing. Enrique Garzón Lozano. Subdirector de Información.




                                                                                                                       24
9. Appendix	1	‐	Electric	Matrix	and	Emissions	for	the	Selected	Countries	

In following we present the power generation matrices for countries with ICA LA
actuation to promote the use of copper: Brazil, Mexico, Chile, Argentina, Peru and
Colombia. These countries have different electricity generation matrices, with some with
more intensive use of fossil fuels such as petroleum, coal and natural gas than others.


   9.1.       Brazil	

The electricity generation in Brazil by public plants and self-producers reached 509.2
TWh in 2010, a result 10.0% higher than 2009, according to the 2009/2010 analysis of
the National Energy Balances (BEN). The main source is hydropower, which increased
3.7% in 2010. Figure 2 shows that Brazil presents an electricity generation matrix
predominantly formed by renewable sources, with internal hydraulic generation
accounting for more than 74% of the supply. Adding imports, which are also produced
by renewable sources, it can be stated that some 86% of Brazilian electricity comes
from renewable sources (BEN, 2010).


   9.2.       Mexico	

According to the Statistics of the Mexican Electricity Sector (SEN, 2010) the public
power generation capacity, in December 2009 (51,686 MW) increased 1.14% over 2008
(51,105 MW). The most important hydropower plant of the country, with 4,800 MW, is
located in the Grijalva River and is interconnected to plants as Angostura, Chicoasén,
Peñitas and Malpaso. In December 2009, according to the Planning Coordination
(POISE, 2011), they represented 42.2% of all hydroelectric capacity in operation.
However, in 2009, stand out the reduction in hydropower generation due to drought in
Mexico. This reduction was offset by gas thermal plants using fossil fuel. Figure 3
illustrates the diversity of Mexican electrical matrix in 2009.


   9.3.       Peru	

Peru presents a predominantly fossil-based electricity generation matrix. According to
the NBS (2010) data, natural gas is the main fuel with 45.1%, followed by hydropower
with 22.5%. Figure 4 shows the Peruvian electricity generation matrix for 2009.



                                                                                           25
Domestic offer of electricity by source type ‐ 2009 
                                                     Hydraulic (76.9 %)

                                                     Coal and derivatives (1.3 %)

                                                     Nuclear (2.5 %)

                                                     Petroleum derivatives (2.9 %)

                                                     Natural Gas (2.6 %)

                                                     Wind (0.2 %)

                                                     Biomass (5.4 %)

                                                     Importation (partly
                                                     hydraulic) (8.2 %)



Figure 2 – Brazil: Domestic offer of electricity by source type ‐ 2009 



    Domestic offer of electricity by source type – 2009


                                                        Hydraulic (22%)
                                                        Nuclear (2.6%)
                                                        Geothermal & Wind (2%)
                                                        Carbon Electric (9.1%)
                                                        Internal Combustion (0.4%)
                                                        Gas Turbines (4.9%)
                                                        Combined Cycle (34%)
                                                        Conventional Thermo (25%)




Figure 3 – Mexico: Domestic offer of electricity by source type ‐ 2009 




                                                                                     26
Domestic offer of electricity by source type – 2009




                                                                        Natural Gas (45.1%)

                                                                        Uranium (3.3 %)

                                                                        Mineral Coal (4.2 %)

                                                                        Crude Petroleum (11.7 %)

                                                                        Liquid & Natural Gas (13.2 %)

                                                                        Hydraulic (22.5 %)




                   Figure 4 – Peru: Domestic offer of electricity by source type ‐ 2009 



   9.4.      Chile	

In Chile, hydroelectric power account for 43% of electricity generation, coal based
generation is 27%, and oil base accounts for 18%. Natural gas contributes with slightly
less than 9%, non-conventional renewable resources contributed with no more than 3%
of generation (wind and biomass) (INE, 2010). Figure 5 shows the electricity generation
matrix of Chile in 2009.


   9.5.      Argentina	

In Argentina about 90% of energy consumption uses fossil fuels, with main sources
being natural gas and oil (BAE, 2010). Figure 6 shows the electric generation matrix in
2009.




                                                                                                        27
Domestic offer of electricity by source type – 2009




                                                                                  Hydraulic (43%)
                                                                                  Coal (27%)
                                                                                  Petroleum (18%)
                                                                                  Natural Gas (9%)
                                                                                  Others (3%)




                  Figure 5 – Chile: Domestic offer of electricity by source type ‐ 2009 



                     Domestic offer of electricity by source type – 2009


                                                                                 Hydraulic (5 %)
                                                                                 Mineral Coal 1%)
                                                                                 Nuclear (3 %)
                                                                                 Petroleum (39 %)
                                                                                 Natural Gas (48 %)
                                                                                 Firewood (2 %)
                                                                                 Biomass (1 %)
                                                                                 Others (1 %)




                Figure 6 – Argentina: Domestic offer of electricity by source type ‐ 2009 



   9.6.      Colombia	

In Colombia, coal-base electricity generation is predominant with 47.3%, followed by oil
with 33.8% and natural gas with 10.4%. Figure 7 shows the Colombian electricity
generation matrix for 2009 (UPME, 2010).




                                                                                                      28
Domestic offer of electricity by source type – 2009




                                                                                   Hydraulic (4.2 %)
                                                                                   Biomass (4.3%)
                                                                                   Mineral Coal(47.3 %)
                                                                                   Petroleum (33.8 %)
                                                                                   Natural Gas (10.4 %)




                   Figure 7 – Colombia: Domestic offer of electricity by source type ‐ 2009 



   9.7.      Emission	factor	of	national	electrical	systems	

The average emission factor of the national electric systems directly reflects the
composition of countries’ energy matrix. As shown in the previous sections, the majority
of the surveyed countries have generation matrices heavily dependent on fossil-based
generation, what implies in large emission factors. Figure 8 shows, according to an IEA
(2011) study, the average CO2 emission factors for the electric power sectors of the
analyzed countries. These factors are usually calculated based on the average
emissions of all power plants generating energy.


                            600
              CO2 per KWh
               Grams of 




                            500

                            400

                            300

                            200

                            100

                              0
                                  2000   2002   2003   2004   2005   2006   2007   2008     2009
                   Brazil         88      85    79      85    84      81    73      89       64
                   Mexico         539    559    558    571    495    509    482    479       430
                   Chile          267    349    279    295    322    318    304    408       411
                   Argentina      338    258    275    308    313    311    352    366       355
                   Peru           154    146    152    212    209    183    199    240       236
                   Colombia       160    154    152    117    131    127    127    107       175


                  Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009 



                                                                                                          29
Source: IEA (2011) 
10. Appendix	 2	 ‐	 Parameters	 Used	 in	 Estimates	 of	 ICA	 LA	 Programs	
   Contributions		

Tables 18 to 22 show, for each evaluated device, the assumptions used in the impacts’
estimation process for the programs developed by ICA LA to promote the diffusion of
efficient equipment.
                    Table 18 – Assumptions of programs coverage: Three Phase Electric Motors  

          Country             Start           End            Total Market        Efficient          ICA influence 
                                                                 Units              %                    % 

      Argentina               2007         In progress                 374,400                5%              100%
      Brazil                  2002         In progress            2,000,000              70%                  90%
      Chile                   2006         In progress                  90,000           15%                  100%
      Colombia                2007         In progress                 226,000           15%                  50%
      Mexico                  2006         In progress            1,490,000              70%                  95%
      Peru                    2007         In progress                 540,000                2%              100%
      Total                                                       4,720,400 
                                                                                                 


                     Table 19 – Assumptions of programs coverage: Distribution Transformers 

          Country             Start           End            Total Market        Efficient          ICA influence 

                                                                 Units              %                    % 
                                 
      Argentina               2007         In progress                   1,900                0%               0%
      Brazil                  2006         In progress                 150,000           20%                  90%
      Chile                   2007         In progress                   8,600           30%                  90%
      Colombia                2007         In progress                 110,000           10%                  60%
      Mexico                  2007         In progress                 127,500                3%              100%
      Peru                    2007         In progress                    450                 0%               0%
      Total                                                            398,450


                           Table 20 – Assumptions of programs coverage: Refrigerators 

          Country             Start           End            Total Market        Efficient          ICA influence 

                                                                 Units              %                    % 
                                 
      Argentina               2007            2011                     900,000           50%                   0%

      Brazil                  2006         In progress            5,500,000              80%                   5% 

      Chile                   2007         In progress                 245,000           50%                  50%
      Colombia                2007            2011                     645,000           50%                   0%

      Mexico                  2007         In progress            3,550,000              80%                   5% 

      Peru                    2007            2011                     450,000           30%                   0%
           Total                                              11,290,000



                                                                                                                     30
 

               Table 21 – Assumptions of programs coverage: Air Conditioning  

    Country        Start            End           Total Market       Efficient         ICA influence 

                                                     Units              %                   % 
                      
Argentina          2007            2011                415,000                 30%                 0%
Brazil             2006         In progress           1,150,000                50%                 5%
Chile              2007         In progress            106,000                 30%                50%
Colombia           2007            2011                140,000                 30%                 3%
Mexico             2007         In progress            660,000                 50%                 5%
Peru               2007            2011                     30,000             20%                 3%
Total                                                 2,501,000 
                                                                                    
                                               

                Table 22 – Assumptions of programs coverage: Solar Heating 

    Country        Start            End           Total Market       Efficient         ICA influence 

                                                      m2                %                   % 
                      
Argentina            ‐               ‐                 ‐                 ‐                  0% 
Brazil             2005         In progress            880,000                100%                100%
Chile              2005         In progress                 42,200            100%                100%
Colombia             ‐               ‐                           ‐                ‐                0%
Mexico             2005         In progress            307,000                100%                100%
Peru               2005         In progress                 42,600            100%                100%
Total                                                 1,271,800 
                                                                                    




                                                                                                         31
11.         Appendix	3	‐	Estimates	of	ICA	LA	Programs	Contributions		


    11.1.                Electric	motors	

Table 23 shows the results of CO2 emissions’ impact mitigation estimate program for
electric motors. Although Brazil is the country with the longer program (started in 2002),
Mexico is the country that showed the highest cumulative mitigation result, with some
11.4 million tons of CO2. This opposition is mainly explained by the large difference
between emission factors for these countries. It is noteworthy that only Brazil and
Mexico present results based on motors' categories market share. For other countries,
estimates use the Brazilian equivalent model. Operation hypothesis consider 480 hours
per month (16 hr. /day x 30 days/month) at 50% load.
                     Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons 

 Country            2002     2003         2004      2005       2006         2007         2008    2009      2010       2011         2012    Accumulated Total 
Argentina               ‐        ‐            ‐          ‐               ‐  0.006  0.012  0.018  0.024  0.030  0.036                                      0.126 
Brazil              0.103  0.206  0.310  0.413  0.516  0.619  0.723  0.826  0.929  1.032  1.136                                                           6.814 
Chile                   ‐        ‐            ‐          ‐  0.004  0.008  0.012  0.017  0.021  0.025  0.029                                               0.116 
Colombia                ‐        ‐            ‐          ‐               ‐  0.002  0.005  0.007  0.010  0.012  0.015                                      0.051 
Mexico                  ‐        ‐            ‐          ‐  0.409  0.817  1.226  1.635  2.044  2.452  2.861                                           11.444 
Peru                    ‐        ‐            ‐          ‐               ‐  0.002  0.004  0.006  0.008  0.010  0.012                                      0.041 
Total               0.103  0.206  0.310  0.413  0.929  1.456  1.982  2.509  3.035  3.561  4.088                                                       18.592 




    11.2.                Refrigerators	

Table 24 shows estimates results for refrigerators. Mexico is the country with the
greatest mitigation result, about 234,000 tons of CO2. In Brazil the program cumulative
impact is 77 thousand tons and in Chile, this figure is 60 thousand tons.
                      Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons 

                             2006           2007            2008            2009           2010          2011         2012          Accumulated Total 
          Argentina                  ‐              ‐               ‐               ‐              ‐             ‐            ‐                      ‐ 
          Brazil              0.003          0.005            0.008          0.011          0.014         0.016        0.019                     0.077 
          Chile                      ‐       0.003            0.006          0.009          0.011         0.014        0.017                     0.060 
          Colombia                   ‐              ‐               ‐               ‐              ‐             ‐            ‐                      ‐ 
          Mexico                     ‐       0.011            0.022          0.033          0.045         0.056        0.067                     0.234 
          Peru                       ‐              ‐               ‐               ‐              ‐             ‐            ‐                      ‐ 
            Total             0.003          0.020            0.036          0.053          0.070         0.087        0.103                     0.371 




                                                                                                                                                                   32
11.3.           Air	conditioning	

Table 25 shows the estimates results for air conditioners. Once again, the greatest
mitigation impact provided by the program goes to Mexico where for the estimated
period of 2007 to 2012 were not emitted into the atmosphere 43,000 tons of CO2.


             Table 25 – Results of the CO2 mitigation program for air‐conditioning sets: in millions of tons 

       Country         2006           2007            2008         2009          2010              2011              2012              Accumulated Total 
     Argentina                 ‐              ‐               ‐            ‐             ‐                 ‐                 ‐                         ‐ 
     Brazil           0.00057  0.00113  0.00170  0.00227  0.00284  0.00340  0.00397                                                              0.01589 
     Chile                     ‐  0.00118  0.00235  0.00353  0.00471  0.00588  0.00706                                                           0.02471 
     Colombia                  ‐  0.00004  0.00009  0.00013  0.00017  0.00022  0.00026                                                           0.00092 
     Mexico                    ‐  0.00205  0.00410  0.00615  0.00820  0.01025  0.01230                                                           0.04304 
     Peru                      ‐  0.00001  0.00002  0.00002  0.00003  0.00004  0.00005                                                           0.00017 
     Total            0.00057  0.00441  0.00826  0.01210  0.01595  0.01979  0.02364                                                              0.08471 




   11.4.           Solar	water	heating	

Table 26 shows results for solar heating programs. Here usage impacts of solar heating
were simulated by replacing, in Brazil, the use of electric showers, and in other
countries, the use of natural gas. Despite these programs being recent, the cumulative
CO2 emissions' mitigation impact is significant. In the period ranging from 2005 to 2012
about 2.9 million tons were not emitted into the atmosphere due to the diffusion of this
technology by the program.


                Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons 


     Country         2005           2006       2007           2008      2009         2010            2011             2012              Accumulated Total 

    Argentina             ‐             ‐              ‐           ‐            ‐             ‐                 ‐                 ‐                         ‐ 
    Brazil            0.016         0.031          0.047       0.063    0.079        0.094            0.110            0.126                        0.566 
    Chile             0.007         0.014          0.021       0.028    0.035        0.042            0.049            0.056                        0.254 
    Colombia              ‐             ‐              ‐           ‐            ‐             ‐                 ‐                 ‐                         ‐ 
    Mexico            0.051         0.102          0.154       0.205    0.256        0.307            0.359            0.410                        1.845 
    Peru              0.007         0.014          0.021       0.028    0.036        0.043            0.050            0.057                        0.256 
    Total             0.081         0.162          0.243       0.324    0.406        0.487            0.568            0.649                        2.920 




                                                                                                                                                                 33
11.5.       Distribution	transformers	

For distribution transformers a study was made for the Brazilian potential. Technical
losses data was obtained (total = empty + copper) from the study conducted by the
Electric Power Research Center of ELETROBRÁS (CEPEL) requested by the
International Cooper Association (ICA). Based on data for the various transformers’
categories market share, their efficiencies, and use of copper, the CO2 emissions’
mitigation potential was estimated.


Table 27 shows results of potential energy conservation estimates, use of copper, and
CO2 mitigation with the application of single phase (1Ø) and three phase (3Ø)
distribution transformers with a 20% higher efficiency. In this case, we considered
replacing the current Brazilian stock.


                        Table 27 – Estimates for distribution transformers: study of potential 

         Conserved      Conserved          Additional         Total         Reduction in      Total CO2         Emissions 
          energy        energy per         copper per       additional      supply need       emissions’     avoided by using 
Type 
           (total)         unit               unit           copper        during lifetime     avoided          additional 
                                                                                                                  copper 
         GWh/year        kWh/year              kg              Tons             GWh           Tons of CO2    Tons of CO2/  kg  of 
                                                                                                                   copper 
1 Ø             385          248.39                  3.5          5,435             13,397      1,083,856                0.1994 
3 Ø            1.232       1,116.50                  7.9          8,673             42,843      3,466,017                0.3996 
Total          1.618                                            14,108              56,241      4,549,874                          




                                                                                                                                      34

More Related Content

Viewers also liked

How can bioenergy add value and help revitalize rural areas ?
How can bioenergy add value and help revitalize rural areas ? How can bioenergy add value and help revitalize rural areas ?
How can bioenergy add value and help revitalize rural areas ?
AEBIOM2
 
Is your API misbehaving?(Keith-Casey)
Is your API misbehaving?(Keith-Casey)Is your API misbehaving?(Keith-Casey)
Is your API misbehaving?(Keith-Casey)
Future Insights
 
Solar hydrogen -_h2homesystem
Solar hydrogen -_h2homesystemSolar hydrogen -_h2homesystem
Solar hydrogen -_h2homesystemDivakar Triple H
 
2011년 보안 이슈와 2012년 보안 위협 예측
2011년 보안 이슈와 2012년 보안 위협 예측2011년 보안 이슈와 2012년 보안 위협 예측
2011년 보안 이슈와 2012년 보안 위협 예측
Youngjun Chang
 
2장화물운송사업의 이해[ppt]
2장화물운송사업의 이해[ppt]2장화물운송사업의 이해[ppt]
2장화물운송사업의 이해[ppt]emarketingceo
 
조사방법론_130529
조사방법론_130529조사방법론_130529
조사방법론_130529Hyesung Lee
 
Edwardian Proofs as Futuristic Programs
Edwardian Proofs as Futuristic ProgramsEdwardian Proofs as Futuristic Programs
Edwardian Proofs as Futuristic Programs
Valeria de Paiva
 
주민참여예산 위원 추첨 결과
주민참여예산 위원 추첨 결과주민참여예산 위원 추첨 결과
주민참여예산 위원 추첨 결과마경근 마
 
녹색 장난감 Research 1012849 박도담
녹색 장난감 Research 1012849 박도담녹색 장난감 Research 1012849 박도담
녹색 장난감 Research 1012849 박도담도담 박
 
캐주얼 게임 마케팅의 과거와 미래
캐주얼 게임 마케팅의 과거와 미래캐주얼 게임 마케팅의 과거와 미래
캐주얼 게임 마케팅의 과거와 미래
Soon-Kwun Chung
 
120925 [im]possible living
120925 [im]possible living120925 [im]possible living
120925 [im]possible livingmakeacube
 
치과사역 선교사님의 기도편지 in cambodia
치과사역 선교사님의 기도편지 in cambodia치과사역 선교사님의 기도편지 in cambodia
치과사역 선교사님의 기도편지 in cambodia
Kyoungin Kim
 
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
Donghan Kim
 
여성이 새로 짜는 세상 11호 (소식지, 2002)
여성이 새로 짜는 세상 11호 (소식지, 2002)여성이 새로 짜는 세상 11호 (소식지, 2002)
여성이 새로 짜는 세상 11호 (소식지, 2002)여성환경연대
 
뉴스젤리 기사 메이킹스토리 "귀농산장"
뉴스젤리 기사 메이킹스토리 "귀농산장"뉴스젤리 기사 메이킹스토리 "귀농산장"
뉴스젤리 기사 메이킹스토리 "귀농산장"
Newsjelly
 
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
Olaf Janssen
 
기아자동차 인력거사업
기아자동차 인력거사업기아자동차 인력거사업
기아자동차 인력거사업
수환 박
 
Michigan No Fault Benefit Overview
Michigan No Fault Benefit OverviewMichigan No Fault Benefit Overview
Michigan No Fault Benefit Overview
Buckfire & Buckfire, P.C.
 

Viewers also liked (20)

Udev
UdevUdev
Udev
 
How can bioenergy add value and help revitalize rural areas ?
How can bioenergy add value and help revitalize rural areas ? How can bioenergy add value and help revitalize rural areas ?
How can bioenergy add value and help revitalize rural areas ?
 
Is your API misbehaving?(Keith-Casey)
Is your API misbehaving?(Keith-Casey)Is your API misbehaving?(Keith-Casey)
Is your API misbehaving?(Keith-Casey)
 
Solar hydrogen -_h2homesystem
Solar hydrogen -_h2homesystemSolar hydrogen -_h2homesystem
Solar hydrogen -_h2homesystem
 
2011년 보안 이슈와 2012년 보안 위협 예측
2011년 보안 이슈와 2012년 보안 위협 예측2011년 보안 이슈와 2012년 보안 위협 예측
2011년 보안 이슈와 2012년 보안 위협 예측
 
2장화물운송사업의 이해[ppt]
2장화물운송사업의 이해[ppt]2장화물운송사업의 이해[ppt]
2장화물운송사업의 이해[ppt]
 
조사방법론_130529
조사방법론_130529조사방법론_130529
조사방법론_130529
 
Edwardian Proofs as Futuristic Programs
Edwardian Proofs as Futuristic ProgramsEdwardian Proofs as Futuristic Programs
Edwardian Proofs as Futuristic Programs
 
주민참여예산 위원 추첨 결과
주민참여예산 위원 추첨 결과주민참여예산 위원 추첨 결과
주민참여예산 위원 추첨 결과
 
녹색 장난감 Research 1012849 박도담
녹색 장난감 Research 1012849 박도담녹색 장난감 Research 1012849 박도담
녹색 장난감 Research 1012849 박도담
 
캐주얼 게임 마케팅의 과거와 미래
캐주얼 게임 마케팅의 과거와 미래캐주얼 게임 마케팅의 과거와 미래
캐주얼 게임 마케팅의 과거와 미래
 
120925 [im]possible living
120925 [im]possible living120925 [im]possible living
120925 [im]possible living
 
치과사역 선교사님의 기도편지 in cambodia
치과사역 선교사님의 기도편지 in cambodia치과사역 선교사님의 기도편지 in cambodia
치과사역 선교사님의 기도편지 in cambodia
 
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
IOT(사물인터넷)-제1회 iTalks 세미나-Dhankim-2014-4-2
 
13 20101009실험동물 박창길
13 20101009실험동물 박창길13 20101009실험동물 박창길
13 20101009실험동물 박창길
 
여성이 새로 짜는 세상 11호 (소식지, 2002)
여성이 새로 짜는 세상 11호 (소식지, 2002)여성이 새로 짜는 세상 11호 (소식지, 2002)
여성이 새로 짜는 세상 11호 (소식지, 2002)
 
뉴스젤리 기사 메이킹스토리 "귀농산장"
뉴스젤리 기사 메이킹스토리 "귀농산장"뉴스젤리 기사 메이킹스토리 "귀농산장"
뉴스젤리 기사 메이킹스토리 "귀농산장"
 
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
TheEuropeanLibrary.org - a (non technical) case study. Olaf Janssen lecturing...
 
기아자동차 인력거사업
기아자동차 인력거사업기아자동차 인력거사업
기아자동차 인력거사업
 
Michigan No Fault Benefit Overview
Michigan No Fault Benefit OverviewMichigan No Fault Benefit Overview
Michigan No Fault Benefit Overview
 

Similar to Copper contributions to fight climate change 1

Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
Marcellus Drilling News
 
undp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisundp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisGiovanna Christo
 
Textbook retscreen pv
Textbook retscreen pvTextbook retscreen pv
Textbook retscreen pv
Ernesto J. Perino
 
Democratic Republic of the Congo - Energy Outlook
Democratic Republic of the Congo - Energy OutlookDemocratic Republic of the Congo - Energy Outlook
Democratic Republic of the Congo - Energy Outlook
Rachit Kansal
 
Raffaele Salvucci s111179 Thesis
Raffaele Salvucci s111179 ThesisRaffaele Salvucci s111179 Thesis
Raffaele Salvucci s111179 Thesisraffaele00
 
Global-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdfGlobal-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdf
SimonBAmadisT
 
Report 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyReport 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyUthishran Ratnakumar
 
Semester Project 3: Security of Power Supply
Semester Project 3: Security of Power SupplySemester Project 3: Security of Power Supply
Semester Project 3: Security of Power Supply
Søren Aagaard
 
Airah Discussion Paper Energy Modelling Protocol Alignment 300911
Airah Discussion Paper   Energy Modelling Protocol Alignment 300911Airah Discussion Paper   Energy Modelling Protocol Alignment 300911
Airah Discussion Paper Energy Modelling Protocol Alignment 300911
Phil Wilkinson F.AIRAH F.IEAust M.ASHRAE
 
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas EmissionsStudy: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Marcellus Drilling News
 
Macroeconomic Impact Solar Thermal Industry Spain
Macroeconomic Impact Solar Thermal Industry SpainMacroeconomic Impact Solar Thermal Industry Spain
Macroeconomic Impact Solar Thermal Industry SpainSteve Reeve
 
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
Ports-To-Plains Blog
 
NUREG_CR_5850
NUREG_CR_5850NUREG_CR_5850
NUREG_CR_5850srgreene
 
2008 Testing and Inspection Programs Final
2008 Testing and Inspection Programs Final2008 Testing and Inspection Programs Final
2008 Testing and Inspection Programs FinalEdward D. Naylor Jr.
 
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
Maghrenov
 
Agriculture and food security
Agriculture and food securityAgriculture and food security
Agriculture and food securityMondoloka
 

Similar to Copper contributions to fight climate change 1 (20)

Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
Assessment of New York City Natural Gas Market Fundamentals and Life Cycle Fu...
 
undp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisundp2014-sustainable-energy-cis
undp2014-sustainable-energy-cis
 
Textbook retscreen pv
Textbook retscreen pvTextbook retscreen pv
Textbook retscreen pv
 
Democratic Republic of the Congo - Energy Outlook
Democratic Republic of the Congo - Energy OutlookDemocratic Republic of the Congo - Energy Outlook
Democratic Republic of the Congo - Energy Outlook
 
tese
tesetese
tese
 
Raffaele Salvucci s111179 Thesis
Raffaele Salvucci s111179 ThesisRaffaele Salvucci s111179 Thesis
Raffaele Salvucci s111179 Thesis
 
Global-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdfGlobal-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdf
 
Spanish energy forecast
Spanish energy forecastSpanish energy forecast
Spanish energy forecast
 
Report 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyReport 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable Technology
 
Semester Project 3: Security of Power Supply
Semester Project 3: Security of Power SupplySemester Project 3: Security of Power Supply
Semester Project 3: Security of Power Supply
 
Airah Discussion Paper Energy Modelling Protocol Alignment 300911
Airah Discussion Paper   Energy Modelling Protocol Alignment 300911Airah Discussion Paper   Energy Modelling Protocol Alignment 300911
Airah Discussion Paper Energy Modelling Protocol Alignment 300911
 
Mémoire M1
Mémoire M1Mémoire M1
Mémoire M1
 
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas EmissionsStudy: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
Study: LNG and Coal Life Cycle Assessment of Greenhouse Gas Emissions
 
Macroeconomic Impact Solar Thermal Industry Spain
Macroeconomic Impact Solar Thermal Industry SpainMacroeconomic Impact Solar Thermal Industry Spain
Macroeconomic Impact Solar Thermal Industry Spain
 
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
It's not just about Alberta: Oilsands generate thousands of jobs, billions in...
 
NUREG_CR_5850
NUREG_CR_5850NUREG_CR_5850
NUREG_CR_5850
 
2008 Testing and Inspection Programs Final
2008 Testing and Inspection Programs Final2008 Testing and Inspection Programs Final
2008 Testing and Inspection Programs Final
 
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
Maghrenov deliverable 3.3 - Synthetic roadmap adapted to regional climatic ec...
 
Energy Policy (Volume II Action Plans) - Updated
Energy Policy (Volume II   Action Plans) - UpdatedEnergy Policy (Volume II   Action Plans) - Updated
Energy Policy (Volume II Action Plans) - Updated
 
Agriculture and food security
Agriculture and food securityAgriculture and food security
Agriculture and food security
 

More from Gilberto De Martino Jannuzzi

Capacidades e limitações brasileiras para redução de emissões GE
Capacidades e limitações brasileiras para redução de emissões GECapacidades e limitações brasileiras para redução de emissões GE
Capacidades e limitações brasileiras para redução de emissões GE
Gilberto De Martino Jannuzzi
 
20151110 sj campos
20151110 sj campos20151110 sj campos
20151110 sj campos
Gilberto De Martino Jannuzzi
 
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
Gilberto De Martino Jannuzzi
 
20150514 hospital
20150514 hospital20150514 hospital
20150514 hospital
Gilberto De Martino Jannuzzi
 
15616 1442-5-30
15616 1442-5-3015616 1442-5-30
Revista do IDEC
Revista do IDECRevista do IDEC
Electricity Governance Initiative: 2014 Meeting Report
Electricity Governance Initiative: 2014 Meeting ReportElectricity Governance Initiative: 2014 Meeting Report
Electricity Governance Initiative: 2014 Meeting Report
Gilberto De Martino Jannuzzi
 
20140829 cpfl jannuzzi
20140829 cpfl jannuzzi20140829 cpfl jannuzzi
20140829 cpfl jannuzzi
Gilberto De Martino Jannuzzi
 
Evaluating Public Policy Mechanisms for Climate Change
Evaluating Public Policy Mechanisms for Climate ChangeEvaluating Public Policy Mechanisms for Climate Change
Evaluating Public Policy Mechanisms for Climate Change
Gilberto De Martino Jannuzzi
 
Desafios das Fontes Limpas de Energia: Algumas considerações
Desafios das Fontes Limpas de Energia: Algumas consideraçõesDesafios das Fontes Limpas de Energia: Algumas considerações
Desafios das Fontes Limpas de Energia: Algumas considerações
Gilberto De Martino Jannuzzi
 
Contribui›es do cobre ao comb ate as mudanças climaticas 1
Contribui›es do cobre ao comb ate as mudanças climaticas 1Contribui›es do cobre ao comb ate as mudanças climaticas 1
Contribui›es do cobre ao comb ate as mudanças climaticas 1Gilberto De Martino Jannuzzi
 
Contribuci—n del cobre para com batir los cambios climáticos 1
Contribuci—n del cobre para com batir los cambios climáticos 1Contribuci—n del cobre para com batir los cambios climáticos 1
Contribuci—n del cobre para com batir los cambios climáticos 1Gilberto De Martino Jannuzzi
 
Tools and methods for integrated resource planning: improving energy efficien...
Tools and methods for integrated resource planning: improving energy efficien...Tools and methods for integrated resource planning: improving energy efficien...
Tools and methods for integrated resource planning: improving energy efficien...Gilberto De Martino Jannuzzi
 
Detailed comparison of Brazilian and French obligation schemes to promote ene...
Detailed comparison of Brazilian and French obligation schemes to promote ene...Detailed comparison of Brazilian and French obligation schemes to promote ene...
Detailed comparison of Brazilian and French obligation schemes to promote ene...Gilberto De Martino Jannuzzi
 
Serviços ancilares através da geração distribuída: reserva de potência ativa ...
Serviços ancilares através da geração distribuída: reserva de potência ativa ...Serviços ancilares através da geração distribuída: reserva de potência ativa ...
Serviços ancilares através da geração distribuída: reserva de potência ativa ...
Gilberto De Martino Jannuzzi
 

More from Gilberto De Martino Jannuzzi (20)

Capacidades e limitações brasileiras para redução de emissões GE
Capacidades e limitações brasileiras para redução de emissões GECapacidades e limitações brasileiras para redução de emissões GE
Capacidades e limitações brasileiras para redução de emissões GE
 
20151110 sj campos
20151110 sj campos20151110 sj campos
20151110 sj campos
 
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
A tecnologia fotovoltaica, novos negócios e novos desafios para as concession...
 
20150514 hospital
20150514 hospital20150514 hospital
20150514 hospital
 
15616 1442-5-30
15616 1442-5-3015616 1442-5-30
15616 1442-5-30
 
Revista do IDEC
Revista do IDECRevista do IDEC
Revista do IDEC
 
Electricity Governance Initiative: 2014 Meeting Report
Electricity Governance Initiative: 2014 Meeting ReportElectricity Governance Initiative: 2014 Meeting Report
Electricity Governance Initiative: 2014 Meeting Report
 
20140829 cpfl jannuzzi
20140829 cpfl jannuzzi20140829 cpfl jannuzzi
20140829 cpfl jannuzzi
 
Evaluating Public Policy Mechanisms for Climate Change
Evaluating Public Policy Mechanisms for Climate ChangeEvaluating Public Policy Mechanisms for Climate Change
Evaluating Public Policy Mechanisms for Climate Change
 
20140321 geopolítica da energia
20140321 geopolítica da energia20140321 geopolítica da energia
20140321 geopolítica da energia
 
Desafios das Fontes Limpas de Energia: Algumas considerações
Desafios das Fontes Limpas de Energia: Algumas consideraçõesDesafios das Fontes Limpas de Energia: Algumas considerações
Desafios das Fontes Limpas de Energia: Algumas considerações
 
3inovafv conclusoes
3inovafv conclusoes3inovafv conclusoes
3inovafv conclusoes
 
Contribui›es do cobre ao comb ate as mudanças climaticas 1
Contribui›es do cobre ao comb ate as mudanças climaticas 1Contribui›es do cobre ao comb ate as mudanças climaticas 1
Contribui›es do cobre ao comb ate as mudanças climaticas 1
 
Contribuci—n del cobre para com batir los cambios climáticos 1
Contribuci—n del cobre para com batir los cambios climáticos 1Contribuci—n del cobre para com batir los cambios climáticos 1
Contribuci—n del cobre para com batir los cambios climáticos 1
 
Tools and methods for integrated resource planning: improving energy efficien...
Tools and methods for integrated resource planning: improving energy efficien...Tools and methods for integrated resource planning: improving energy efficien...
Tools and methods for integrated resource planning: improving energy efficien...
 
Detailed comparison of Brazilian and French obligation schemes to promote ene...
Detailed comparison of Brazilian and French obligation schemes to promote ene...Detailed comparison of Brazilian and French obligation schemes to promote ene...
Detailed comparison of Brazilian and French obligation schemes to promote ene...
 
Financial times-deutschland-rio20
Financial times-deutschland-rio20Financial times-deutschland-rio20
Financial times-deutschland-rio20
 
AKR Annual Prize
AKR Annual PrizeAKR Annual Prize
AKR Annual Prize
 
Fapesp
FapespFapesp
Fapesp
 
Serviços ancilares através da geração distribuída: reserva de potência ativa ...
Serviços ancilares através da geração distribuída: reserva de potência ativa ...Serviços ancilares através da geração distribuída: reserva de potência ativa ...
Serviços ancilares através da geração distribuída: reserva de potência ativa ...
 

Copper contributions to fight climate change 1

  • 1. Final Project Report COPPER CONTRIBUTIONS TO FIGHT CLIMATE CHANGE ESTIMATES FOR LATIN AMERICA COUNTRIES International Energy Initiative (IEI) Team Prof. Dr. Gilberto M. Jannuzzi - Coordinator Dr. Conrado A. Melo - Technical Consultant Prepared for International Copper Association (ICA) and Procobre – Instituto Brasileiro do Cobre 1
  • 2. Table of Contents 1.  Executive Summary .................................................................................................. 5  2.  Introduction ............................................................................................................... 8  3.  Objective ................................................................................................................... 9  4.  Methodology ........................................................................................................... 10  4.1.  End-use technologies .......................................................................................... 10  4.2.  Renewable generation technologies .................................................................... 11  5.  Energy Efficiency and Copper Content of the Evaluated Technologies .................. 13  5.1.  Electric motors ..................................................................................................... 13  5.2.  Distribution transformers ...................................................................................... 14  5.3.  Refrigerators ........................................................................................................ 17  5.4.  Air conditioning .................................................................................................... 18  5.5.  Renewable energy ............................................................................................... 18  5.6.  Solar water heating .............................................................................................. 19  6.  Results .................................................................................................................... 20  7.  Conclusions ............................................................................................................ 23  8.  Bibliography ............................................................................................................ 24  9.  Appendix 1 - Electric Matrix and Emissions for the Selected Countries .................. 25  9.1.  Brazil .................................................................................................................... 25  9.2.  Mexico ................................................................................................................. 25  9.3.  Peru ..................................................................................................................... 25  9.4.  Chile .................................................................................................................... 27  9.5.  Argentina ............................................................................................................. 27  9.6.  Colombia ............................................................................................................. 28  9.7.  Emission factor of national electrical systems...................................................... 29  10.  Appendix 2 - Parameters Used in Estimates of ICA LA Programs Contributions. 30  11.  Appendix 3 - Estimates of ICA LA Programs Contributions ................................. 32  11.1.  Electric motors .................................................................................................. 32  11.2.  Refrigerators ..................................................................................................... 32  11.3.  Air conditioning ................................................................................................. 33  11.4.  Solar water heating........................................................................................... 33  11.5.  Distribution transformers .................................................................................. 34  2
  • 3. List of Tables Table 1 – Project Scope: equipment, countries and type of study. .................................. 9  Table 2 – Relation between the use of copper and efficiency of 22kW electric induction motors ........................................................................................................................... 14  Table 3 – Electric motors’ market in Brazil and Mexico ................................................. 14  Table 4 – Distribution of single-phase transformers according to power in Brazil (2007) ...................................................................................................................................... 14  Table 5 – Distribution of three-phase transformers according to power in Brazil (2007) 15  Table 6 – European parameters for losses and use of copper in distribution transformers .................................................................................................................. 15  Table 7 – Relation between the use of copper and efficiency for distribution transformers .................................................................................................................. 15  Table 8 – Copper increment in 15kV single-phase transformers to reduce losses by 20% ............................................................................................................................... 17  Table 9 – Copper increment in 15kV three-phase transformers to reduce losses by 20% ...................................................................................................................................... 17  Table 10 – Additional use of copper, per component, in a 480 liters refrigerator ........... 18  Table 11 – Additional use copper per installed capacity of renewable generation sources .......................................................................................................................... 19  Table 12 – Installed capacity of renewable generation sources .................................... 19  Table 13 – Technical coefficients for CO2 mitigation per equipment type ...................... 20  Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper .......... 20  Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies ...................................................................................................................................... 21  Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of CO2/year)....................................................................................................................... 21  Table 17 – Results of annual CO2 mitigation program with renewable generation (tons of CO2/year)................................................................................................................... 22  Table 18 – Assumptions of programs coverage: Three Phase Electric Motors ............. 30  Table 19 – Assumptions of programs coverage: Distribution Transformers .................. 30  Table 20 – Assumptions of programs coverage: Refrigerators ...................................... 30  Table 21 – Assumptions of programs coverage: Air Conditioning ................................. 31  Table 22 – Assumptions of programs coverage: Solar Heating ..................................... 31  Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons ...................................................................................................................................... 32  Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons .. 32  Table 25 – Results of the CO2 mitigation program for air-conditioning sets: in millions of tons ................................................................................................................................ 33  Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons 33  Table 27 – Estimates for distribution transformers: study of potential ........................... 34  3
  • 4. List of Figures Figure 1 – Loss reduction curves due to copper increment in transformers .................. 16  Figure 2 – Brazil: Domestic offer of electricity by source type - 2009 ............................ 26  Figure 3 – Mexico: Domestic offer of electricity by source type - 2009 .......................... 26  Figure 4 – Peru: Domestic offer of electricity by source type - 2009.............................. 27  Figure 5 – Chile: Domestic offer of electricity by source type - 2009 ............................. 28  Figure 6 – Argentina: Domestic offer of electricity by source type - 2009 ...................... 28  Figure 7 – Colombia: Domestic offer of electricity by source type - 2009 ...................... 29  Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009................. 29  4
  • 5. 1. Executive Summary This project has the objective to estimate the contribution of the additional use of copper in electrical equipment and power generation in reducing CO2 emissions. The study was developed considering the introduction of more efficient electric equipment, solar water heaters, and the contribution given by electricity generation using renewable sources in Latin America1 countries. These two components employ technologies that have a higher copper content when compared to the conventional technologies they replace. The analysis comprised different periods depending on the start of fomenting and diffusion activities of the appraised technologies, which, basically, started in 2005. The results are presented in annual basis. Estimates were based on indicators relating the copper content and the equipment energy efficiency. For the renewable sources, we used factors relating the copper content of selected technologies per unit capacity. Estimates of emissions’ reduction with the introduction of these technologies were based on sales information of efficient equipment and on the characteristics of each country electric system. The methodology and assumptions used are detailed in Chapters 4 and 5 and Appendixes 1 and 2. Table A shows the different contributions of each additional kilogram of copper applied in building more efficient electric equipment, solar heaters, and renewable power generation in the analyzed countries. As could be expected, countries employing a higher share of thermal generation using fossil sources have the most significant indicators on impacts’ mitigation. Such is the case of Mexico, Argentina, and Chile. Electric motors are the items that exhibit the higher reduction of emissions per unit, followed by refrigerators and air conditioners. Table A – Technical CO2 mitigation coefficients per kg of additional copper  Solar  Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Wind  SHPs  Biomass  PV  Tons of CO2/additional kg of copper/year  Argentina  0.491  0.128  0.099  0.224  0.798  1.166  0.048  ‐  Brazil  0.126  0.033  0.025  0.004  0.057  0.202  0.295  0.012  Chile  0.471  0.123  0.095  0.033  0.230  0.819  1.198  ‐  Colombia  0.221  0.058  0.044  0.097  0.347  0.507  0.021  ‐  Mexico  0.614  0.207  0.159  0.033  0.360  1.282  1.874  0.077  Peru  0.281  0.073  0.056  0.033  0.135  0.480  0.702  0.029  1 Argentina, Brazil, Chile, Colombia, Mexico and Peru. 5
  • 6. Emissions’ reduction for each equipment is given in Table B. The penetration of each efficient motor in Mexico reduces CO2 emission by 412 kg/year while in Brazil this factor is 82 kg/year. It can be verified that for each equipment unit, solar water heaters provide the largest contribution to emissions reductions in countries that, according to the assumptions, use natural gas for domestic water heating. Table B – Technical coefficients for CO2 mitigation, per equipment  Country  Electric Motor  Refrigerator  Air Conditioning  Solar Heating1  Tons of CO2/equipment/ year  Argentina  0.31959  0.04867  0.07699  0.66759  Brazil  0.08194  0.01248  0.01974  0.07147  Chile  0.30717  0.04678  0.07399  0.66759  Colombia  0.14366  0.02188  0.03461  0.66759  Mexico  0.41248  0.07852  0.12420  0.66759  Peru  0.18290  0.02785  0.04406  0.66759  1 In Brazil solar heaters replace electric showers, for other countries it was assumed that this technology replaces direct natural gas burning. The total annual savings of electric energy, per country and equipment, are presented in Table C. Brazil is the country where the dissemination of efficient technologies provides the highest amount of electricity conservation (about 2 TWh/year) stressing the penetration of efficient electric motors, which accounts for energy savings of 1.2 TWh yearly. Solar water heating technologies in Mexico represent a total saving of 16,800 tons of natural gas. Table C – Annual results of energy conservation  Country  Electric Motor  Refrigerators  Air Conditioning  Solar Heating  GWh/year  GWh/year  GWh/year  Argentina  16.2  59.4  26.0  ‐  Brazil  1,213.5  580.8  120.1  166.3 GWh/year  Chile  11.7  16.2  6.6  2,321.0 (Tons of NG)  Colombia  29.4  42.6  8.8  ‐  Mexico  723.2  374.9  68.9  16,885.0 (Tons of NG)  2,343.0  Peru  9.4  17.8  1.3  (Tons of NG)  6
  • 7. Table D shows the annual results of CO2 emissions mitigation. Among the analyzed countries, Mexico represents 72% of the total CO2 reduction. In both countries, Brazil and Mexico, the most important equipment was more efficient motors, followed by refrigerators. However, in other countries, the situation was different, with refrigerators and solar heaters being more important in Argentina, Chile and Peru. Table D – Results of CO2 mitigation: energy end‐use technologies (CO2 tons/year)  Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Total  Argentina  5,983  21,901  9,585  ‐  37,468  Brazil  114,714  54,904  11,349  15,723  196,690  Chile  4,147  5,730  2,353  7,043  19,273  Colombia  4,870  7,055  1,453  ‐  13,379  Mexico  430,213  222,993  40,987  51,237  745,430  Peru  1,975  3,760  264  7,110  13,110  Total  561,902  316,344  65,992  81,113  1,025,350  The contribution of renewable sources to emissions' reduction is even larger, as can be seen in Table E. Although Brazil has a very low emission factor compared with other countries, the country was the largest contributor due to its higher installed capacity. Generation using biomass is the main source to contribute towards emissions’ reduction. Table E – Results of annual CO2 mitigation taking renewable generation into account: (CO2 tons/year)  Country  Wind  SHP  Biomass  Solar Photovoltaic  Total  Brazil  232,165  1,633,169  3,417,274  2,126  5,284,735  Argentina  17,106  606,224  1,007,575  4,198  1,635,104  Chile  11,497  260,485  238,555  ‐  510,536  Mexico  76,470  966,631  546,539  10,121  1,599,761  Colombia  4,478  327,358  81,523  183  413,542  Peru  236  201,640  64,855  935  267,666  Total  341,952  3,995,508  5,356,321  17,563  9,711,344  7
  • 8. 2. Introduction Technological innovation of electric equipment and devices have produced significant improvement concerning energy-efficiency gain, which, on its turn, have an enormous potential for environmental gain in Greenhouse Gases (GHG) mitigation. These innovations are, in many cases, directly related to application of additional copper. For instance, electric motors' gain in energy performance for each additional kilogram of copper used in them allows the reduction of 3 tons of CO2e emission2, in comparison to equipment with less intensive copper use. Emissions’ balance is very positive, as in the production phase of these devices; the use of additional copper is responsible for only 3 kg of CO2e emissions (Keulenaer et al 2006). This means a return factor of 1000 times in mitigation benefits provided by these applications throughout their lives (Copper 2006). Furthermore, it shall be noted that at the end of the equipment lifetime, its copper content can be recycled and used in another application. 2 All greenhouse gases are converted into equivalent quantities of CO2 contribution to the atmospheric warming. Thus, for example, one ton of methane (CH4), which has an effect 21 times that of carbon dioxide, is equivalent to 21 tons of CO2. 8
  • 9. 3. Objective This study objective is to evaluate the contribution of using copper, and the consequent increase in energetic efficiency, to fight climate changes. The study intends to diagnose and account for the impacts of CO2, the main Greenhouse Gas (GHG), mitigation in selected Latin America countries, considering: a) the use of more efficient technologies into electrical equipment manufacturing, b) the use of solar water heaters, and c) electricity generation by renewable sources, as wind, biomass, small hydropower plants (SHP), and solar photovoltaic. Furthermore, an evaluation was developed for the potential impact of an improvement in losses' reduction of distribution transformers. Table 1 shows the list of evaluated equipment, countries, and type of study3. Table 1 – Project Scope: equipment, countries and type of study.  Equipment  Assessed Countries  Type of Study  Electric motors  Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts  Distribution transformers  Brazil  Study of potential  Refrigerators  Brazil, Chile and Mexico.  Evaluation of impacts  Air conditioners  Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts  Renewable energy(*)  Argentina, Brazil, Chile, Colombia, Mexico and Peru  Evaluation of impacts  Solar water heating  Brazil, Chile, Mexico and Peru  Evaluation of impacts  Note: (*) Biomass, wind, solar photovoltaic and small hydro (SHP). 3 Additionally, the likely contribution of the programs fomented by the ICA LA for energy savings and emissions' reduction was also estimated. (See Appendix 3, page 25). 9
  • 10. 4. Methodology To develop the project, two analysis steps were taken, as described below. Phase 1 ‐ Analysis of energy efficiency indicators and copper content This first analysis stage objective is to evaluate relations between each equipment energy efficiency and its copper content. The development of this step is based on a review of national and international literature. This literature covers scientific reports, research papers, indexed articles and related books. Details of this evaluation are presented in Chapter 5. Phase 2 – Accounting of impacts by incrementing copper usage This step aims at estimating the impact of new equipment sales and increase in electricity generation from renewable sources in each of the analyzed countries. To perform this step, the information obtained in Step 1 was used to establish technical coefficients for CO2 emissions' mitigation for each technology4, besides market-specific parameters, as explained below. In the study on the available potential for distribution transformers’ improvement, the energy potential is conserved, and the corresponding CO2 mitigation is quantified, in a scenario that considers the total deployment of efficient transformers in Brazil. Two models are used for emissions’ accounting: one related to end-use technologies and other related to renewable generation technologies, as described below. 4.1. End‐use technologies The annual basis model used for accounting CO2 emissions' mitigation, for each end- use energy technology evaluated, is given by Equation 1. ∗ ∗ Equation 1  Where: - Me is the annual mitigation of CO2 emissions provided by the introduction of technology e into the stock in use in year y; - Pe is the participation of efficient equipment in annual sales; 4 This data is presented in Chapter 5, pages 15-17. 10
  • 11. - Vae is the sale in year y of technology e; - CTe is the annual technical mitigation coefficient for CO2 emissions by technology e, given by Equation 2. ∗ ∗ Equation 2  Where: - Cep is the consumption of the standard equipment; - Cee is the consumption of the efficient equipment; - Pse is the loss factor for electrical power generation of each assessed country; and - Fme is the electrical system average emissions' factor for each considered country. It standouts in the electric equipment model that emissions are accounted for at the electricity generation source; therefore, factors concerning losses in each country electrical systems are considered in the analysis. Just in replacement of direct gas burning by solar water heaters, emissions are estimated considering the total gas saved multiplied by the gas emission factor. 4.2. Renewable generation technologies A similar procedure is used in the analysis of CO2 emissions' mitigation by renewable generation (wind, small hydro, biomass, and solar photovoltaic). In this case, the method used compares energy from renewable generation sources with the electrical system expansion that would occur using an equivalent power plant representing each country electricity generation mix. This method is conservative in the sense that it considers the effects of renewable generation already included in the average emission factors for the analyzed countries' electricity generation systems. A comparison carried out against a plant based on fossil fuel (fuel oil, natural gas, diesel oil, etc.) would give a larger mitigation impact. Equations 3 and 4 show the method used in accounting for CO2 emissions' mitigation for renewable generation. ∗             Equation 3    11
  • 12. Where: - Mer is the annual CO2 emissions’ mitigation provided by the installed capacity of renewable technology generation r; - CIr is the installed capacity of the r generation technology, - CTe is the technical mitigation coefficient for CO2 emissions of generation technology r, given by Equation 4. ∗ . ∗ Equation 4  Where: - FCr is the capacity factor of generation technology r, and - Fme is the average emissions factor of the electrical systems for each considered country. - The constant 8.76 refers to the number of hours per year divided by one thousand. 12
  • 13. 5. Energy Efficiency and Copper Content of the Evaluated Technologies 5.1. Electric motors Electric motors are widely used in the industrial sector. Application examples are pumps for liquids’ transfer, gas compressors, and fans. The textile industry has dedicated machines, either for spinning and weaving of century's old technology. The cement, pulp and paper, and chemical sectors use a large amount of pumps, compressors and fans in their processes, as well as large conveyors, mills, agitators, sieves employing many high-power motors, together with numerous small motors for ancillary services. The ceramics industries employ large mixers, blowers and a multitude of conveyors. Mining, steel mills and general metal manufacturing, besides pumps, compressors and fans, also mills, conveyors and large quantities for specific machinery for activities as lamination, drawing, bending, and cutting (Garcia, 2003). According to Keulenaer et al (2006) evaluation of low voltage (22 kW) induction motors, operating in typical system applications such as water pumping, compressed air, and ventilation, the benefits of increasing their energetic efficiency would be quite significant and would directly reflect in reducing emissions, for example, by some 19 tons of CO25 per motor throughout its useful life. It shall be pointed out that the emissions’ balance between the production of the highly efficient equipment, and the amount that this equipment shall mitigate throughout its useful life is of the order of 1000 times, i.e., each kg of CO2 emitted during the motor production represents a reduction of one ton of CO2 emission during its operation. Table 2 shows the direct relation between electric motors' efficiency and additional copper usage according to Keulenaer et al (2006), who assessed three types of motors operating under the same conditions. In this case, with the additional use of 5.1 kg of copper, the high performance motor efficiency increased by 4.1 percentage points in relation to the standard motor. 5 In this case, we considered the average emission factor for 15 European countries. 13
  • 14. Table 2 – Relation between the use of copper and efficiency of 22kW electric induction motors  Parameters  Standard Efficiency High Efficiency Premium High Efficiency  Useful life (years)  20 20 20  Load (%) 50 50 50  Efficiency (%)  89.5 91.8 92.6  Copper (Kg)  8.8 12.9 13.9  Source: Keulenaer et al (2006)  Table 3 shows the market share of electric motors per power for Brazil and Mexico. Table 3 – Electric motors’ market in Brazil and Mexico  Power Range  Market share ‐ Brazil Market share ‐ Mexico  1. Up to 1 hp (Frame 63 and above) 33.77% 7.68%  2. Over 1 hp up to 10 hp  50.92% 82.13%  3. Over 10 hp up to 40 hp  11.47% 8.44%  4. Over 40 hp up to 100 hp 2.73% 1.29%  5. Over 100 hp up to 300 hp 0.99% 0.44%  6. Over 300 hp  0.13% 0.02%  Source:  Garcia (2003)  5.2. Distribution transformers Distribution transformers are designed to step voltage up or down to attend specific needs of electrical grid. However, the use of this equipment introduces power losses into the system. As an example, these losses amount, approximately, to 30% of the total losses of the electricity distribution system in Brazil, CEPEL (2008). According to CEPEL’s (2008) data, in 2007 the number of installed transformers in Brazil amounted to 1.55 million single-phase transformers plus 1.10 million of three-phase transformers. Tables 4 and 5 show transformers’ distribution according to power in the Brazilian Electricity Distribution System. Table 4 – Distribution of single‐phase transformers according to power in Brazil (2007)  5 kVA  10 kVA 15 kVA 25 kVA Other Total  Units 323,587  904,663 237,600 75,509 10,748 1,552,107  % 20.8%  58.3% 15.3% 4.9% 0.7% 100.0%  Source: CEPEL, 2008  14
  • 15. Table 5 – Distribution of three‐phase transformers according to power in Brazil (2007)  15 kVA 30 kVA  45 kVA 75 kVA 112.5 kVA 150 kVA Other  Total Units  175,878  231,614  256,125 233,604 113,007 54,717 39,250  1,104,195 %  15.9%  21.0%  23.2% 21.2% 10.2% 5.0% 3.6%  100.0% Source: CEPEL, 2008  The use of efficient transformers reduces energy losses substantially. Efficiently operated high-efficiency transformers allow energy conservation gains and consequent reduction of GHG emissions. According to Keulenaer (2006) a high performance 100 KVA distribution transformer operating at 25% load allows mitigation of approximately 37 tons of CO2e6 in its 30-year useful life. According to the same author Table 6 presents a direct relation between transformer losses and use of additional copper, for three equipment types. Table 6 – European parameters for losses and use of copper in distribution transformers  Parameters AA’ CC’ C‐Amorphous Useful life (years) 30 30 30 Load (%)  25 25 25 Copper losses (kW) 1.750 1.475 1.475 Iron losses (kW) 0.32 0.21 0.06 Copper (Kg)  85 115 155 Source: Keulenaer (2006)   According to studies developed by LAT-EFEI (The High Voltage Laboratory) of UNIFEI (The Federal University of Itajubá, Brazil) additional copper in transformers should allow significant losses reduction in power distribution networks of Brazil. Table 7 shows the difference in losses for 30, 45 and 75 kVA transformers, in MWh/year for standard and high-efficiency equipment, used in Brazil. Table 7 – Relation between the use of copper and efficiency for distribution transformers  Transformer  Standard (MWh/year) Efficient (MWh/year) %  30 kVA  2.9558 2.1525 27.2%  45 kVA  3.6429 2.7105 25.6%  75 kVA  6.4560 4.7790 26.0%  6 In this case we considered the average emission factor for 15 European countries. 15
  • 16. Figure 1 illustrates the direct relation between the increment in the mass of copper and technical losses reduction in distribution transformers. Figure 1 – Loss reduction curves due to copper increment in transformers  Source: LAT‐EFEI UNIFEI  Tables 8 and 9 show the increment in copper mass for single and three-phase transformers, for various transformer capacities, according to the LAT-EFEI UNIFEI study. In this case the copper increment was calculated for a 20% reduction in total losses. 16
  • 17. Table 8 – Copper increment in 15kV single‐phase transformers to reduce losses by 20%  Standard Mass   Losses Reduction  Mass Increment  Mass Increment   Power  (kg)  (%)  (%)  (kg)  5 kVA 7.41  20 29.11 2.15  10 kVA 11.88  20 28.91 3.43  15 kVA 20.13  20 24.61 4.95  25 kVA 22.96  20 23.94 5.49  Source: LAT‐EFEI – UNIFEI      Table 9 – Copper increment in 15kV three‐phase transformers to reduce losses by 20%  Standard Mass  Losses Reduction  Mass Increment  Mass Increment   Power  (kg)  (%)  (%)  (kg)  15 kVA 23.68  20 18.72 4.43  30 kVA 27.63  20 21.92 6.05  45 kVA 35.10  20 16.72 5.86  75 kVA 49.75  20 17.81 8.86  112.5 kVA 67.08  20 24.67 16.55  150 kVA 66.64 20 20.27 13.50  Source: LAT‐EFEI ‐ UNIFEI  5.3. Refrigerators Highly efficient refrigerators concerning electricity usage are manufactured with a larger application of copper in several components. Compressors are components with intense use of copper. The difference in usage of this conductive metal in efficient equipment may exceed by 20% the amount used in less efficient equipment. Table 10 shows, for a standard 480 liters equipment, the use of additional copper per component of the refrigerator. This equipment with a 22% increase in energy efficiency uses 386.45 g of additional copper. 17
  • 18. Table 10 – Additional use of copper, per component, in a 480 liters refrigerator  Component Weight (g) Efficiency + 22% (g) Difference (g)  Electric cable   101.42 123.73 22.31  Compressor service tube  25.80 31.48 5.678  Drier filter service  tube   26.34 32.13 5.79  Drier filter 76.12 92.87 16.75  Ground wire 18.32 22.35 4.03  Plastic plug 41.88 51.09 9.21  Evaporator (suction line tip + capillary) 166.72 203.40 36.68  Compressor 1,300.00 1,586.00 286.00  Total  1,757.00 2,143.00 386.45  Source: National manufacturer ‐ Private information   5.4. Air conditioning Air conditioners are used for treatment of indoor air. Such treatment consists in regulating the quality of the indoor air, i.e., its temperature, humidity, cleanness and movement. For this purpose, the air conditioning system may include air heating, cooling, humidification, renewal, filtering, and ventilation functions applied to the ambient air. No studies were found referring the relation between use of additional copper and energy efficiency of air conditioners. A standard equipment of 17,700 BTU/hr. contains about 3.64 kg of copper. For its installation there is an additional demand of 1.56 kg, which totals 5.2 kg of copper per installed equipment. 5.5. Renewable energy In relation to electricity generation from renewable sources, the following technologies are considered: wind, small hydropower (SHP), biomass and solar PV. Concentrated solar photovoltaic technology was not considered, because it is not yet used in Latin America. Table 11 shows the use of copper per MW of installed capacity for each of these technologies. Table 12 shows the installed capacity for each considered country. 18
  • 19. Table 11 – Additional use copper per installed capacity of renewable generation sources    Technology  Copper demand per technology   Wind  2.5 tons of copper/MW SHPs  2.0 tons of copper/MW Biomass 1.2 tons of copper/MW Photovoltaic 8.8 tons of copper/MW Source: Leonardo Energy and KEMA, 2009 Table 12 – Installed capacity of renewable generation sources  Wind  SHP Biomass Photovoltaic Total  Country  (MW)  (MW)  (MW)  (MW)  (MW)  *  * Brazil  1,638 4,043 9,644 20 10,879  Argentina  31  380 720 10 1,141  Chile  20  159 166 0 345  Mexico  85  377 243 15 720  Colombia  18  472 134 1 625  Peru  1  210 77 4 291  Total  1,591  5,641 6,720 50 14,001  * Source: Jannuzzi et al, 2010 Values updated according to www.aneel.gov.br/ 5.6. Solar water heating Collecting plates are responsible for absorption of solar radiation. Heat from the sun, captured by the solar heater plates, is transferred to water circulating inside copper tubing. A basic water heating system using solar energy consists of solar collector plates and a thermal reservoir (boiler). The thermal reservoir, also known as boiler, is a container to store heated water. It is built in copper, steel or polypropylene cylinders, insulated with CFC-free polyurethane foam, which does not harm the ozone layer. It stores the heated water for later use. The cold water tank feeds the solar heater thermal reservoir, keeping it full. On the average, it is known that each installed square meter of solar heaters demands 5kg of copper. 19
  • 20. 6. Results Table 13 shows technical mitigation coefficients for CO2 emissions provided by the introduction of one end use unit of energy efficient technology. As shown in Equation 2 (Section 4.1), besides depending on the difference in energy consumption between the so-called standard and efficient technologies, these coefficients depended of the electrical systems losses and also of the assessed countries' energy matrix. Thus, these coefficients reflect, to some extent, the carbon content embedded in the countries’ energy matrix. It is noteworthy that replacing direct burning of natural gas with solar water heaters has the highest mitigation coefficient7. Table 13 – Technical coefficients for CO2 mitigation per equipment type  Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating1  Tons. of CO2/equipment/year  Argentina  0.31959  0.04867  0.07699  0.66759  Brazil  0.08194  0.01248  0.01974  0.07147  Chile  0.30717  0.04678  0.07399  0.66759  Colombia  0.14366  0.02188  0.03461  0.66759  Mexico  0.41248  0.07852  0.12420  0.66759  Peru  0.18290  0.02785  0.04406  0.66759  1 In Brazil, solar heaters replace electric showers and in other countries, this technology replaces direct burning of natural gas. From the technical coefficients shown in Table 13 and the assessment of copper content presented in Chapter 5, Table 14 shows CO2 mitigation coefficients per kg of copper added to the efficient equipment. Table 14 – Technical coefficients for CO2 mitigation per additional kg of cooper  Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating    Tons. of CO2/kg of additional copper/year Argentina  0.491  0.128  0.099  0.033  Brazil  0.126  0.033  0.025  0.004  Chile  0.471  0.123  0.095  0.033  Colombia  0.221  0.058  0.044  0.033  Mexico  0.614  0.207  0.159  0.033  Peru  0.281  0.073  0.056  0.033  7 In this case, estimates consider solar heaters with 4m2 of area replace 220m3 of natural gas per year. 20
  • 21. Table 15 shows CO2 emissions mitigation coefficients for renewable generation, already considering each country characteristics (Appendix 1) and the considerations introduced by equations 3 and 4, of Section 4.2. Table 15 – Technical coefficients for CO2 mitigation: renewable generation technologies   Country  Wind  SHP  Biomass  Solar PV    Tons of CO2/Installed MW/year Brazil  141.7  403.9  354.3  106.3  Argentina  559.8  1,595.3  1,399.4  419.8  Chile  574.8  1,638.3  1,437.1  431.1  Mexico  899.7  2,564.0  2,249.1  674.7  Colombia  243.4  693.6  608.4  182.5  Peru  336.9  960.2  842.3  252.7  Table 16 shows the results of CO2 emissions mitigation estimates resulting from annual sale of efficient equipment. The major mitigation impact due to the introduction of efficient equipment among the analyzed countries occurs in Mexico, where every year some 750 thousand tons of carbon are avoided to be emitted into the atmosphere. Table 16 – Results of CO2 mitigation: final use of energy technologies (tons of CO2/year)  Country  Electric Motors  Refrigerators  Air Conditioning  Solar Heating  Total  Argentina  5,983  21,901  9,585  ‐  37,468  Brazil  114,714  54,904  11,349  15,723  196,690  Chile  4,147  5,730  2,353  7,043  19,273  Colombia  4,870  7,055  1,453  ‐  13,379  Mexico  430,213  222,993  40,987  51,237  745,430  Peru  1,975  3,760  264  7,110  13,110  Total  561,902  316,344  65,992  81,113  1,025,350  Unconventional renewable generation (excluding hydropower) is still insignificant in Latin America. In this case mitigation estimates are based on the effective generation by these renewable sources. The comparison is made against a scenario of absence of these sources and their substitution by conventional generation (using each country generation mix matrix). 21
  • 22. Table 17 shows the results of these estimates for wind power, small hydro, biomass and photovoltaic generation. According to the estimates each year 9.7 million tons of CO2 emissions are mitigated due to the installed capacity of these types of renewable generation. Over one-half of this mitigation comes from Brazil, a country that, despite having an average factor of CO2 emissions lower than other countries, has a higher installed capacity of these types of sources. Table 17 – Results of annual CO2 mitigation program with renewable generation (tons of CO2/year)  Country  Wind  SHP  Biomass  Solar PV  Total  Brazil  232,165  1,633,169  3,417,274  2,126  5,284,735  Argentina  17,106  606,224  1,007,575  4,198  1,635,104  Chile  11,497  260,485  238,555  0  510,536  Mexico  76,470  966,631  546,539  10,121  1,599,761  Colombia  4,478  327,358  81,523  183  413,542  Peru  236  201,640  64,855  935  267,666  Total  341,952  3,995,508  5,356,321  17,563  9,711,344  Note: Values calculated using the technical coefficients (Table 15) Appendix 1 shows the characterization study of electric matrixes and respective CO2 emission factors of the analyzed countries. Appendix 2 depicts other parameters and assumptions underlying the estimates. Appendix 3 gives the ICA LA activities contribution estimates in the markets of studied countries. 22
  • 23. 7. Conclusions The paper presented a methodology to estimate the impact of CO2 emissions' mitigation resulting from the diffusion of efficient use of electricity, due to the substitution of natural gas by solar heaters and also due to the increased participation of renewable generation sources (wind, small hydro, biomass and solar photovoltaic). This methodology allowed the elaboration of technical coefficients that can produce estimates for a market evaluation (for total annual sales or a part thereof) and, for renewable generation capacity, of CO2 emissions’ mitigation impacts. Also, the study presented technical coefficients relating mitigation impacts and the corresponding additional copper for energy end use equipment. These coefficients and the estimated penetration rates of efficient equipment in Argentina, Brazil, Chile, Mexico, Colombia and Peru markets were used to estimate the total reduction in CO2 emissions. These coefficients directly reflect the electricity generation matrix of the assessed countries. In this sense, a higher coefficient value indicates a larger participation of fossil sources (oil and oil products, natural gas, coal). Based on these coefficients, and on annual sales’ market data of more efficient technologies, annual impacts were estimated in terms of energy conservation. In the electricity sector, 3.5 TWh is saved annually due to introduction of efficient electrical equipment. The case of Brazil is noteworthy, for the country participates with about 2 TWh per annum to this total. The substitution of natural gas heaters by solar heaters also resulted in significant impacts that correspond annually to a saving of about 21,400 tons of natural gas. In terms of CO2 emissions’ mitigation the results were quite significant, particularly in countries whose energy matrix is more carbon intensive. The penetration of technologies for energy-efficient end use is responsible for mitigating annually about 1 million tons of CO2, in the countries analyzed with Mexico alone accounting for 72% of the total. The impact of renewable generation is even greater, with some 9.7 million tons of CO2 avoided emissions into the atmosphere annually. Although the Brazilian emissions’ factor is very low compared to other countries, the country was the major contributor due to its higher installed capacity. Generation from biomass has the larger participation in reducing emissions. 23
  • 24. 8. Bibliography BAE. 2010. Balance Anual de Energía 2009 – From web-site: http://www.gob.cl/informa/2010/11/10/ministerio-de-energia-entrega-balance-anual-de-energia-2009.htm BEN. 2010. Balanço Energético Nacional 2010 – From web-site: https://ben.epe.gov.br/ BNE. 2010. Balance de Energía del Perú 2010 – From web-site: http://www.minem.gob.pe/publicacion.php?idSector=12&idPublicacion=418 Copper (2006) ECI. Information site providing up to date life cycle data on its key products. Available at: www.copper-life-cycle.org Garcia. A.G.P (2003). Impacto da lei de eficiência energética para motores elétricos no potencial de conservação de energia na indústria. Dissertação de Mestrado. Programas de Pós-Graduação de Engenharia da Universidade Federal do Rio de Janeiro. (Impact of the Law on Energy Efficiency for electrical motors, on the energy conservation potential of the industry. MS Dissertation. Graduate Programs in Engineering of the Federal University of Rio de Janeiro). Hans De Keulenaer. Constantin Herrmann. Francesco Parasiliti. (2006) 22 kW induction motors with increasing efficiency. Available at: http://www.leonardo-energy.org/Files/Case1-22kW-50.pdf Hans De Keulenaer (2006) 100 kVA distribution transformer designs with increasing efficiency. Available at: http://www.leonardo-energy.org/repository/Library/Papers/Case7-trafo-100- 25.pdf INE. 2010. Instituto Nacional de Estadística – Web-site: http://www.ine.cl IEA. 2011. International Energy Agency. CO2 emissions from fuel combustion. IEA Statistics. Jannuzzi, G.M.; Rodríguez, O.B.; Dedecca,J.G.; Nogueira, L.G.; Gomes, R.D.M, Navarro, J. (2010). Energias renováveis para geração de eletricidade na América Latina: mercado, tecnologias e perspectivas. Relatório de Projeto desenvolvido para “International Copper Association” (Renewable generation of electricity in Latin America: market, technology and perspectives. Project Report developed for the “International Copper Association”). Available at: http://www.procobre.org/archivos/pdf/energia_sustentable/generacion_de_electricidad_pr.pdf Leonardo Energy and KEMA. 2009. System integration of distributed generation - renewable energy systems in different European countries. Available at: http://www.leonardo-energy.org/files/root/pdf/2009/System_Integration_DG_RES.pdf POISE. 2011. Programa de Obras e Inversiones del Sector Eléctrico 2011_2025 – Coordinación de Planificación – CFE – Available at web-site: http://www.sener.gob.mx/portal/Default.aspx?id=1453# SEN. 2010. Estadísticas del Sector Eléctrico. Available at web-site: http://www.sener.gob.mx/portal/industria_electrica_mexicana.html UPME. 2010. Balances_EnergEticos_Nacionales_30-mar-11 – Colombia - Balances Energéticos Nacionales 1975-2009 - Ing. Oscar Uriel Imitola Acero. Director General y Ing. Enrique Garzón Lozano. Subdirector de Información. 24
  • 25. 9. Appendix 1 ‐ Electric Matrix and Emissions for the Selected Countries In following we present the power generation matrices for countries with ICA LA actuation to promote the use of copper: Brazil, Mexico, Chile, Argentina, Peru and Colombia. These countries have different electricity generation matrices, with some with more intensive use of fossil fuels such as petroleum, coal and natural gas than others. 9.1. Brazil The electricity generation in Brazil by public plants and self-producers reached 509.2 TWh in 2010, a result 10.0% higher than 2009, according to the 2009/2010 analysis of the National Energy Balances (BEN). The main source is hydropower, which increased 3.7% in 2010. Figure 2 shows that Brazil presents an electricity generation matrix predominantly formed by renewable sources, with internal hydraulic generation accounting for more than 74% of the supply. Adding imports, which are also produced by renewable sources, it can be stated that some 86% of Brazilian electricity comes from renewable sources (BEN, 2010). 9.2. Mexico According to the Statistics of the Mexican Electricity Sector (SEN, 2010) the public power generation capacity, in December 2009 (51,686 MW) increased 1.14% over 2008 (51,105 MW). The most important hydropower plant of the country, with 4,800 MW, is located in the Grijalva River and is interconnected to plants as Angostura, Chicoasén, Peñitas and Malpaso. In December 2009, according to the Planning Coordination (POISE, 2011), they represented 42.2% of all hydroelectric capacity in operation. However, in 2009, stand out the reduction in hydropower generation due to drought in Mexico. This reduction was offset by gas thermal plants using fossil fuel. Figure 3 illustrates the diversity of Mexican electrical matrix in 2009. 9.3. Peru Peru presents a predominantly fossil-based electricity generation matrix. According to the NBS (2010) data, natural gas is the main fuel with 45.1%, followed by hydropower with 22.5%. Figure 4 shows the Peruvian electricity generation matrix for 2009. 25
  • 26. Domestic offer of electricity by source type ‐ 2009  Hydraulic (76.9 %) Coal and derivatives (1.3 %) Nuclear (2.5 %) Petroleum derivatives (2.9 %) Natural Gas (2.6 %) Wind (0.2 %) Biomass (5.4 %) Importation (partly hydraulic) (8.2 %) Figure 2 – Brazil: Domestic offer of electricity by source type ‐ 2009  Domestic offer of electricity by source type – 2009 Hydraulic (22%) Nuclear (2.6%) Geothermal & Wind (2%) Carbon Electric (9.1%) Internal Combustion (0.4%) Gas Turbines (4.9%) Combined Cycle (34%) Conventional Thermo (25%) Figure 3 – Mexico: Domestic offer of electricity by source type ‐ 2009  26
  • 27. Domestic offer of electricity by source type – 2009 Natural Gas (45.1%) Uranium (3.3 %) Mineral Coal (4.2 %) Crude Petroleum (11.7 %) Liquid & Natural Gas (13.2 %) Hydraulic (22.5 %) Figure 4 – Peru: Domestic offer of electricity by source type ‐ 2009  9.4. Chile In Chile, hydroelectric power account for 43% of electricity generation, coal based generation is 27%, and oil base accounts for 18%. Natural gas contributes with slightly less than 9%, non-conventional renewable resources contributed with no more than 3% of generation (wind and biomass) (INE, 2010). Figure 5 shows the electricity generation matrix of Chile in 2009. 9.5. Argentina In Argentina about 90% of energy consumption uses fossil fuels, with main sources being natural gas and oil (BAE, 2010). Figure 6 shows the electric generation matrix in 2009. 27
  • 28. Domestic offer of electricity by source type – 2009 Hydraulic (43%) Coal (27%) Petroleum (18%) Natural Gas (9%) Others (3%) Figure 5 – Chile: Domestic offer of electricity by source type ‐ 2009  Domestic offer of electricity by source type – 2009 Hydraulic (5 %) Mineral Coal 1%) Nuclear (3 %) Petroleum (39 %) Natural Gas (48 %) Firewood (2 %) Biomass (1 %) Others (1 %) Figure 6 – Argentina: Domestic offer of electricity by source type ‐ 2009  9.6. Colombia In Colombia, coal-base electricity generation is predominant with 47.3%, followed by oil with 33.8% and natural gas with 10.4%. Figure 7 shows the Colombian electricity generation matrix for 2009 (UPME, 2010). 28
  • 29. Domestic offer of electricity by source type – 2009 Hydraulic (4.2 %) Biomass (4.3%) Mineral Coal(47.3 %) Petroleum (33.8 %) Natural Gas (10.4 %) Figure 7 – Colombia: Domestic offer of electricity by source type ‐ 2009  9.7. Emission factor of national electrical systems The average emission factor of the national electric systems directly reflects the composition of countries’ energy matrix. As shown in the previous sections, the majority of the surveyed countries have generation matrices heavily dependent on fossil-based generation, what implies in large emission factors. Figure 8 shows, according to an IEA (2011) study, the average CO2 emission factors for the electric power sectors of the analyzed countries. These factors are usually calculated based on the average emissions of all power plants generating energy. 600 CO2 per KWh Grams of  500 400 300 200 100 0 2000 2002 2003 2004 2005 2006 2007 2008 2009 Brazil 88 85 79 85 84 81 73 89 64 Mexico 539 559 558 571 495 509 482 479 430 Chile 267 349 279 295 322 318 304 408 411 Argentina 338 258 275 308 313 311 352 366 355 Peru 154 146 152 212 209 183 199 240 236 Colombia 160 154 152 117 131 127 127 107 175 Figure 8 – Average CO2 emissions’ factor of electric systems: 2000 – 2009  29
  • 30. Source: IEA (2011)  10. Appendix 2 ‐ Parameters Used in Estimates of ICA LA Programs Contributions Tables 18 to 22 show, for each evaluated device, the assumptions used in the impacts’ estimation process for the programs developed by ICA LA to promote the diffusion of efficient equipment. Table 18 – Assumptions of programs coverage: Three Phase Electric Motors   Country  Start  End  Total Market  Efficient  ICA influence      Units % %  Argentina  2007  In progress 374,400 5%  100% Brazil  2002  In progress 2,000,000 70%  90% Chile  2006  In progress 90,000 15%  100% Colombia  2007  In progress 226,000 15%  50% Mexico  2006  In progress 1,490,000 70%  95% Peru  2007  In progress 540,000 2%  100% Total  4,720,400      Table 19 – Assumptions of programs coverage: Distribution Transformers  Country  Start  End  Total Market  Efficient  ICA influence  Units  %  %      Argentina  2007  In progress 1,900 0%  0% Brazil  2006  In progress 150,000 20%  90% Chile  2007  In progress 8,600 30%  90% Colombia  2007  In progress 110,000 10%  60% Mexico  2007  In progress 127,500 3%  100% Peru  2007  In progress 450 0%  0% Total  398,450 Table 20 – Assumptions of programs coverage: Refrigerators  Country  Start  End  Total Market  Efficient  ICA influence  Units  %  %      Argentina  2007  2011 900,000 50%  0% Brazil  2006  In progress  5,500,000  80%  5%  Chile  2007  In progress 245,000 50%  50% Colombia  2007  2011 645,000 50%  0% Mexico  2007  In progress  3,550,000  80%  5%  Peru  2007  2011 450,000 30%  0% Total  11,290,000 30
  • 31.   Table 21 – Assumptions of programs coverage: Air Conditioning   Country  Start  End  Total Market  Efficient  ICA influence  Units  %  %      Argentina  2007  2011 415,000 30%  0% Brazil  2006  In progress 1,150,000 50%  5% Chile  2007  In progress 106,000 30%  50% Colombia  2007  2011 140,000 30%  3% Mexico  2007  In progress 660,000 50%  5% Peru  2007  2011 30,000 20%  3% Total  2,501,000        Table 22 – Assumptions of programs coverage: Solar Heating  Country  Start  End  Total Market  Efficient  ICA influence  m2  %  %      Argentina  ‐  ‐  ‐  ‐  0%  Brazil  2005  In progress 880,000 100%  100% Chile  2005  In progress 42,200 100%  100% Colombia  ‐  ‐ ‐ ‐  0% Mexico  2005  In progress 307,000 100%  100% Peru  2005  In progress 42,600 100%  100% Total  1,271,800      31
  • 32. 11. Appendix 3 ‐ Estimates of ICA LA Programs Contributions 11.1. Electric motors Table 23 shows the results of CO2 emissions’ impact mitigation estimate program for electric motors. Although Brazil is the country with the longer program (started in 2002), Mexico is the country that showed the highest cumulative mitigation result, with some 11.4 million tons of CO2. This opposition is mainly explained by the large difference between emission factors for these countries. It is noteworthy that only Brazil and Mexico present results based on motors' categories market share. For other countries, estimates use the Brazilian equivalent model. Operation hypothesis consider 480 hours per month (16 hr. /day x 30 days/month) at 50% load. Table 23 – Results of the CO2 mitigation program for electric motors: in millions of tons  Country  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  Accumulated Total  Argentina  ‐  ‐  ‐  ‐  ‐  0.006  0.012  0.018  0.024  0.030  0.036  0.126  Brazil  0.103  0.206  0.310  0.413  0.516  0.619  0.723  0.826  0.929  1.032  1.136  6.814  Chile  ‐  ‐  ‐  ‐  0.004  0.008  0.012  0.017  0.021  0.025  0.029  0.116  Colombia  ‐  ‐  ‐  ‐  ‐  0.002  0.005  0.007  0.010  0.012  0.015  0.051  Mexico  ‐  ‐  ‐  ‐  0.409  0.817  1.226  1.635  2.044  2.452  2.861  11.444  Peru  ‐  ‐  ‐  ‐  ‐  0.002  0.004  0.006  0.008  0.010  0.012  0.041  Total  0.103  0.206  0.310  0.413  0.929  1.456  1.982  2.509  3.035  3.561  4.088  18.592  11.2. Refrigerators Table 24 shows estimates results for refrigerators. Mexico is the country with the greatest mitigation result, about 234,000 tons of CO2. In Brazil the program cumulative impact is 77 thousand tons and in Chile, this figure is 60 thousand tons. Table 24 – Results of the CO2 mitigation program for refrigerators: in millions of tons  2006  2007  2008  2009  2010  2011  2012  Accumulated Total  Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Brazil  0.003  0.005  0.008  0.011  0.014  0.016  0.019  0.077  Chile  ‐  0.003  0.006  0.009  0.011  0.014  0.017  0.060  Colombia  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Mexico  ‐  0.011  0.022  0.033  0.045  0.056  0.067  0.234  Peru  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Total  0.003  0.020  0.036  0.053  0.070  0.087  0.103  0.371  32
  • 33. 11.3. Air conditioning Table 25 shows the estimates results for air conditioners. Once again, the greatest mitigation impact provided by the program goes to Mexico where for the estimated period of 2007 to 2012 were not emitted into the atmosphere 43,000 tons of CO2. Table 25 – Results of the CO2 mitigation program for air‐conditioning sets: in millions of tons  Country  2006  2007  2008  2009  2010  2011  2012  Accumulated Total  Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Brazil  0.00057  0.00113  0.00170  0.00227  0.00284  0.00340  0.00397  0.01589  Chile  ‐  0.00118  0.00235  0.00353  0.00471  0.00588  0.00706  0.02471  Colombia  ‐  0.00004  0.00009  0.00013  0.00017  0.00022  0.00026  0.00092  Mexico  ‐  0.00205  0.00410  0.00615  0.00820  0.01025  0.01230  0.04304  Peru  ‐  0.00001  0.00002  0.00002  0.00003  0.00004  0.00005  0.00017  Total  0.00057  0.00441  0.00826  0.01210  0.01595  0.01979  0.02364  0.08471  11.4. Solar water heating Table 26 shows results for solar heating programs. Here usage impacts of solar heating were simulated by replacing, in Brazil, the use of electric showers, and in other countries, the use of natural gas. Despite these programs being recent, the cumulative CO2 emissions' mitigation impact is significant. In the period ranging from 2005 to 2012 about 2.9 million tons were not emitted into the atmosphere due to the diffusion of this technology by the program. Table 26 – Results of the CO2 mitigation program for solar heaters: in millions of tons  Country  2005  2006  2007  2008  2009  2010  2011  2012  Accumulated Total  Argentina  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Brazil  0.016  0.031  0.047  0.063  0.079  0.094  0.110  0.126  0.566  Chile  0.007  0.014  0.021  0.028  0.035  0.042  0.049  0.056  0.254  Colombia  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  Mexico  0.051  0.102  0.154  0.205  0.256  0.307  0.359  0.410  1.845  Peru  0.007  0.014  0.021  0.028  0.036  0.043  0.050  0.057  0.256  Total  0.081  0.162  0.243  0.324  0.406  0.487  0.568  0.649  2.920  33
  • 34. 11.5. Distribution transformers For distribution transformers a study was made for the Brazilian potential. Technical losses data was obtained (total = empty + copper) from the study conducted by the Electric Power Research Center of ELETROBRÁS (CEPEL) requested by the International Cooper Association (ICA). Based on data for the various transformers’ categories market share, their efficiencies, and use of copper, the CO2 emissions’ mitigation potential was estimated. Table 27 shows results of potential energy conservation estimates, use of copper, and CO2 mitigation with the application of single phase (1Ø) and three phase (3Ø) distribution transformers with a 20% higher efficiency. In this case, we considered replacing the current Brazilian stock. Table 27 – Estimates for distribution transformers: study of potential  Conserved  Conserved  Additional  Total  Reduction in  Total CO2  Emissions  energy   energy per  copper per  additional  supply need  emissions’  avoided by using  Type  (total)   unit  unit  copper  during lifetime  avoided  additional  copper    GWh/year  kWh/year  kg  Tons  GWh  Tons of CO2  Tons of CO2/  kg  of  copper  1 Ø  385  248.39  3.5  5,435  13,397  1,083,856  0.1994  3 Ø  1.232  1,116.50  7.9  8,673  42,843  3,466,017  0.3996  Total  1.618     14,108  56,241  4,549,874     34