SlideShare a Scribd company logo
1 of 90
ENPI - Neighbourhood – Mediterranean & Eastern Europe


              FWC Beneficiaries Lot 4 - N° 2008/168828




     “Identification Mission for the Mediterranean Solar Plan”




                           Final Report


                              January 2010




The project is funded by            The project is implemented by
the European Union                  Resources and Logistics




 The content of this publication is the sole responsibility of RAL and can in
       no way be taken to reflect the views of the European Union
Table of contents
                                                                                                                                       Page

EXECUTIVE SUMMARY ................................................................................................................8!

1.!       INTRODUCTION .............................................................................................................16!

2.!       MAIN FINDINGS: ENERGY SITUATION AND PERSPECTIVES ...............................................18!

2.1!      Key issues .................................................................................................................18!

2.2!      Electricity sector ........................................................................................................23!

2.3!      Energy efficiency and renewable energy...................................................................31!

3.!       RECOMMENDATIONS ....................................................................................................60!

3.1!      Developing policy tools for a progressive development of an EE & RE sector in MPCs
          ...................................................................................................................................60!

3.2!      Developing appropriate financing instruments ..........................................................73!

3.3!      Supporting technology transfer..................................................................................83!

4.!       CONCLUSIONS .............................................................................................................89!




                                                                                                                                              2
List of figures



Figure 1: The Euro-Mediterranean Power Systems ...............................................................26!
Figure 2: Existing and potential future connections................................................................28!
Figure 3: Electricity Tariffs for Residential Use ......................................................................53!
Figure 4: Egyptian Sustainable Loan Mechanism approach ..................................................56!
Figure 5: Supporting schemes for RE development in the EU...............................................56




                                                                                                                        3
List of Boxes



BOX 1.....................................................................................................................................32!
BOX 2.....................................................................................................................................39!
BOX 3.....................................................................................................................................57!
BOX 4.....................................................................................................................................62!
BOX 5.....................................................................................................................................65!
BOX 6.....................................................................................................................................67!
BOX 7.....................................................................................................................................84!
BOX 8.....................................................................................................................................87!




                                                                                                                                          4
List of tables



Table 1: MPCs’ main economic & energy figures ..................................................................19
Table 2: Energy Efficiency indicators .....................................................................................21
Table 3: Generation Capacity and Annual Electricity Production and Consumption in the
    Mediterranean Basin ......................................................................................................23
Table 4: Current Electricity Laws and their status in MPCs ...................................................25
Table 5: Electricity Sector Overview in Selected Countries ...................................................30
Table 6: Energy Efficiency Institutional Arrangements in MPCs ............................................34
Table 7: Share of Renewables in Electricity (%)*...................................................................36
Table 8: RE technologies - Cost Estimates............................................................................38
Table 9: Main characteristics of RE policies in MPCs Countries............................................42
Table 10: Stakeholder Analysis Matrix ...................................................................................47
Table 11: PV Generation Costs (source: EPIA, 2008) ...........................................................52
Table 12: Generation Costs for Wind, Solar PV and CSP in MPCs .......................................52
Table 13: Existing Support Mechanisms for RE / EE projects ...............................................54
Table 14: Cost and performance parameters of high voltage AC and DC transmission
    systems ..........................................................................................................................81
Table 15: Investment costs of a sample of projects ...............................................................81




                                                                                                                                      5
Acronyms and Abbreviations
AC         Alternating Current
AFD        Agence Française de Développement
ANME       Agence Nationale de Maîtrise de l’Energie (Tunisia)
APRUE      Agence pour l’Utilisation Rationnelle de l’Energie (Algeria)
AUPTDE     Arab Union of Producers, Transporters and Distributors of Energy
BO         Build–Operate
BOT        Build–Operate–Transfer
CCT        Clean Coal Technology
CDER       Centre de Développement des Energies Renouvelables (Algeria and Morocco)
CDM        Clean Development Mechanism
CEER       Council for European Energy Regulators
CER        Certified Emission Reduction
COP        Conference of Parties
CSP        Concentrated Solar Power
DC         Direct Current
EC         European Commission
EE         Energy Efficiency
EU         European Union
EEA        Egyptian Electricity Authority
EEHC       Egyptian Electricity Holding Company
EIT        EIB: European Investment Bank
EnR Club   European National Energy Management Agencies Network
EREC       European Renewable Energy Council
ESCO       Energy Service Company
ETAP       Eco-Technologies Action Plan
FEMIP      Facility for Euro-Mediterranean Investment and Partnership
FNME       Fonds National de Maîtrise de l’Energie (Tunisia)
FODEP      Fonds de Dépollution Industrielle (Morocco & Tunisia)
GDP        Gross Domestic Product
GTZ        Deutsche Gesellschaft für Technische Zusammenarbeit
HVAC       High Voltage Direct Current
HVDC       High Voltage Alternative Current
KfW        Kreditanstalt für Wiederaufbau
IEA        International Energy Agency
IFI        International Financial Institution
IGF        Inspection Générale des Finances (France)
IPP        Independent Power Producer
KIC        Knowledge and Innovation Communities
LCECP      Lebanese Centre for Energy. Conservation Project (UNDP/GEF)
MEDELEC    Mediterranean Committee for Electricity
MEDENER    Mediterranean Energy Agencies Network
MEDREG     Mediterranean Regulators for Electricity and Gas
MEDREP     Development Program of the Renewable Energy in the Mediterranean Region
MedRing    Mediterranean energy ring study financed by the EU
MED-EMIP   Euro-Mediterranean Energy Market Integration Project financed par the EU
           Energy Efficiency in the Construction Sector in the Mediterranean Project
MED-ENEC   financed par the EU
MENA       Middle East & North Africa
MEP        Mediterranean Energy Perspectives
MPCs       Mediterranean Partner Countries
MIRA       Mediterranean Innovation and Research Coordination Action
MNI        Ministry of National Infrastructures (Israel)
MSP        Mediterranean solar Plan
MSSD       Mediterranean Strategy for Sustainable Development
                                                                                 6
NERC     National Energy Research Center (Jordan and Syria)
NIF      EU's Neighbourhood Investment Facility
NRA      Jordanian Natural Resources Authority
NREA     New & Renewable Energy Authority (Egypt)
O&M      Operation and Maintenance
OME      Observatoire Méditerranéen de l’Energie
PEC      Palestinian Energy & Environment Research Center
PERC     Palestinian Electricity Regulatory Council
PPA      Power Purchase Agreement
PPP      Public Private Partnership
PPP      Power Purchase Parity
PV       PhotoVoltaic
R&D      Research & Development
RE       Renewable Energy
RCREEE   Regional Centre for Renewable Energies and Energy Efficiency
RES      Renewable Energy Sources
SB       Single Buyer
SPB      Special Purpose Vehicle
STEG     Société Tunisienne de l'Electricité and du Gaz
SWH      Solar Water Heater
TFEC     Total Final Energy Consumption
TPA      Third Party Access
TPES     Total Primary Energy Supply
UNDP     United Nations Development Program
UfM      Union for the Mediterranean
UNEP     United Nations Environment Program
UTCE     Union for the Coordination of Electricity Transmission
VAT      Value Added Tax
WEO      World Energy Outlook (IEA)




                                                                        7
Executive summary

Context
This study was carried out at the request of the European Commission between January and
June 2009. Its main objective was to identify the most effective strategy for developing and
implementing the "Mediterranean Solar Plan” and to suggest how this plan might be
developed and implemented effectively in the region. This includes analysing the role and
coordination needs of the various actors involved.
Launched on July 13, 2008 at the Paris Summit, the Mediterranean Solar Plan (MSP) is one
of the six initiatives of the Union for the Mediterranean (UfM), which builds upon the "acquis"
of the Barcelona process.
Based on concrete projects, the UfM focuses on resource management in the Mediterranean
(water, energy), addresses environmental challenges and more broadly fosters economic
development and trade in the Mediterranean basin. The UfM specifically identified the need
to support the deployment of alternative energy sources in order to cope with rising demand
and to address security of supply concerns. Market deployment as well as the research and
development of alternative sources of energy are considered as major priorities in the effort
towards ensuring sustainable development.
The Mediterranean Solar Plan (MSP) is expected to cover numerous projects based on
various technologies involving the countries of the Southern and Eastern regions of the
Mediterranean. The general objective of the MSP is the creation of a total of 20 GW of new
generation capacity from solar and other renewable energy sources around the
Mediterranean Sea by 2020. These individual power plants are expected to respond to the
demand of local markets and to export part of the electricity generated from renewable
sources to the European Union (EU). This will be possible if sufficient interconnections are
developed and if article 9 of the EU Directive on the Promotion of the Use of Energy from
Renewable Sources1 is effectively applied. Although the quantified target set by the MSP
relates to renewable energy (RE) generation, the MSP will also include efforts to control
energy demand (the Mediterranean Energy Agencies Network -MEDENER- suggested an
objective of 20% of energy savings or 60 Mtoe by 2020) which will curb the strong increase
in domestic requirements in the countries to the south of the Mediterranean.


Main findings
Based on in-depth interviews and meetings with key stakeholders in the Mediterranean
Partner Countries (MPCs) and in the EU, a summary of the study’s main findings is
presented below.




1
    Directive 2009/28/EC of 23/04/2009 of the European Parliament and the Council




                                                                                             8
Demographic, legal and economic context
Mediterranean countries will face, by 2020, a very significant change in their energy mix:
Energy demand, in the Southern countries, is expected to double, while the increase in the
countries of the Northern Mediterranean shore will represent only 30% over the same period;
The share of RE in the total energy consumption will reach 5,3% in the North versus 3,3% in
the South. Increasing the share of RE in total energy consumption is the main challenge of
the MSP, because of its often uncompetitive generating costs.
For the moment, most MPCs have not yet implemented regulations fostering a strong
involvement of private operators in the RE sector (third-party access or specific feed-in-tariff
schemes for electricity produced from renewable sources), despite the existence of a number
of Independent Power Producers (IPPs). The MSP will cover projects promoted by both
public and private operators, such as IPPs, and will rely to a large extent on project financing.
These approaches require specific contractual structures and regulatory frameworks adapted
to Public Private Partnership (PPP) schemes.
MPCs currently have limited human capital to develop and implement ambitious policies
concerning RE and EE, and in particular to define an action plan with specific guidelines for
actions that must achieve the policy objectives of rational use of energy and of RE
development.
The reinforcement of the electrical interconnection between MPCs as well as between the
Southern and Northern shores of the Mediterranean is a key issue that needs to be
addressed for both technical as well as political reasons. For the moment, only the Maghreb
interconnected grid is connected to the European one through Morocco and Spain. The
Turkish block will be connected to the European grid between 2010 and 2012 depending on
the selected technical option. Increasing the capacities of existing connections (Morocco-
Spain, Syria-Turkey, Turkey-Bulgaria, etc.) will favour the development of new projects in the
EU.
A number of cooperation initiatives that address EE & RE issues already exist around the
Mediterranean. The MSP should support these initiatives in order to increase coordination
and to avoid unnecessary competition.


Development of Renewable Energies
The relative generating prices for renewable energy technologies remain uncompetitive when
compared to conventional technologies. Current market prices do not take into account
environmental externalities (environment and health impacts) and therefore favour traditional
energy sources. However technology and market drivers (such as energy prices) could
strongly improve the competitiveness of certain RE technologies in the short term. Other
barriers to RE deployment include:
!   Poor knowledge of renewable energy sources and their potential, by the private sector,
    the general public and policy makers in the MPCs.
!   The relative small number of domestic electricity supply companies which would be
    sufficiently robust or able to support the development of industrial clusters.
!   Lack of differentiation in existing regulations and incentives between energy production
    sources or between the different segments.
The control of energy consumption and the increased use of energy from renewable sources,
together with energy savings and increased energy efficiency are essential pillars for
developing the MSP. The analysis of international best practices leads to a number of
lessons useful in formulating the development strategy for the MSP.




                                                                                               9
International Best Practice for Implementing RE and EE Strategies
The first lesson from an international review of policies, measures and programs for EE & RE
is that there is no unique instrument but rather a successful use of a mix of properly
articulated instruments. All successful programs, taken from a variety of different countries,
illustrate the importance of a solid architecture, a coherent mix of instruments using
complementary incentives, and the promotion of already tested and innovative applications.
The second lesson is that the wide range of means used by EU countries for the
implementation of energy management in EE and in RE is aimed at meeting the
commitments of the Kyoto Protocol.
The importance of regulation was found to be an important tool in each country. The
importance of institutions dedicated to energy conservation at the national, regional and local
levels is also significant but also the legal status and responsibilities of these agencies which
vary from one country to another.
The general trend towards giving greater responsibility to the energy and financial operators
in implementing EE & RE projects is widespread.. As a result, the regulatory role of the State
becomes very important in order to set market rules that allow for the development of the
rational use of energy and for RE development.
The third lesson is the remarkable diversification of public incentives, particularly finance,
which has accelerated in recent years with the emergence of public private partnerships and
the use of specific funds for the support of different forms of investments.
In addition to traditional funding, financial mechanisms exist which provide a greater share of
assistance to private operators. Indeed, in this era of the liberalization of European energy
markets, member states are seeking to increase the role of the private sector in financing EE
& RE. These instruments may include "leasing" or "third party funding" which involve energy
service companies (ESCOs), through the development of investment funds or guarantee
funds, or by granting loans at subsidized rates and on favourable terms with banks or private
investors.
As a result, the most successful programs are those with the following characteristics:
consistency (well-defined target group and a clear articulation of the measures), the cost
spread between stakeholders and the State, flexibility, simplicity, information quality and
awareness, the participation and motivation of different actors (which implies the
acceptability of these programs by actors), continuity (introducing a policy of structural
efficiency, programmed and durable) and substantial environmental benefits.


Based on the study’s findings, recommendations to successfully implement the MSP have
been produced and are organized into three, inter-related areas:
!   Institutional Environment
!   Financing
!   Technology Transfer
A general and brief presentation of each thematic area is provided below. A summary table
regroups the detailed recommendations, along with the proposed timing for implementation.
Important details and more precise explanations are to be found in the last chapter of this
report.




                                                                                              10
1. Institutional Environment: Developing policy tools for the progressive development
of an EE & RE sector in MPCs
1.1 A comprehensive framework for an incentive EE & RE policy
A number of accompanying measures are needed which include: the reorganization of the
industries, financial support mechanisms, regulatory reform, industrial policy, and public
communication. Some measures are horizontal, such as sections of industrial policy,
communication and advocacy. Others are more specific to each sector including regulatory
aspects, financial and organizational: these measures concern the four main RE sectors:
solar thermal (solar water heating), wind, solar photovoltaic and thermodynamic solar
energy.
1.2 Relying on National energy agencies and their Mediterranean network to develop
and implement EE & RE policies
Most of the EE & RE projects implemented in the region are necessarily limited in terms of
geography and/or time scope. Moreover, the proliferation of initiatives makes it difficult to
understand the conditions and results of implemented projects. Despite this apparent
fragmentation, the energy agencies in the Mediterranean region are in agreement with the
long term need for the development and implementation of national public policies. Their
network within MEDENER offers a regional perspective. MEDENER should be reinforced
and play a key role in terms of monitoring and coordination of actions related to energy
efficiency and renewables in the Mediterranean region.
1.3 Supporting the emergence of a structured network of RE & EE industry players
Since market transformation is very difficult to achieve and consists of several stages, it
requires combinations of policy tools as well as the involvement of several actors such as
manufacturers and other private service providers, end-users and government agencies.
Concerning professionals, information sharing on objectives, facts, and other country
experiences is a powerful tool to identify options and adapt them to the local context.


2. Developing appropriate financing instruments
The development of innovative financing mechanisms will be critical for the successful
implementation of the MSP. As the estimated financing needs of the MSP will be greater
than the potential contribution of International Financial Institutions (IFIs), the key challenge
will be to identify conditions which are necessary to attract private investments to participate
in financing MSP projects. In order to achieve this, support from IFIs will be needed to
encourage the establishment of a favourable RE/EE investment framework and to
demonstrate the economic viability of certain technologies in MPCs; develop innovative
business models and test new mechanisms such as exporting electricity to the EU


3. Technology Transfer: Supporting technology transfer
Technology transfer is identified as one of the four priority areas of the MSP, based on the
principle that development of RE/EE projects in MPCs should lead to the emergence of local
industrial activity, job creation, as well as research and innovation capacities. For these
reasons, technology transfer and development of local jobs is a key issue for Governments in
MPCs. Developing an industrial capacity in the RE/EE will require significant efforts from
MPCs in order to acquire operational know-how in terms of producing equipment, operating
and maintaining RE/EE installations. In addition to developing local businesses in the clean
energy sector, manufacturing a significant share of components locally may also reduce the
investment costs of RE/EE projects, thereby contributing to address the issues related to the
competitiveness of RE/EE technologies. Technology transfer appears as a critical issue for
the implementation of the MSP, as it plays a key role in:
!   Gaining acceptance of projects by policy makers in MPCs due to its industrial
    development and job creation potential,
                                                                                              11
!   Reducing project costs by manufacturing part of the components required on-site,
!   Ensuring the development of proper operation and maintenance (O&M) capacities locally
    which will be called upon during the lifetime of the project,
!   Reinforcing cooperation between clusters and research centres from the EU and from
    MPCs.




                                                                                       12
Priorities                       Suggested measures                      Completion date

INS 1. Developing a          1.1 Developing an overall energy policy that             ! 2010
Comprehensive Framework      emphasizes energy efficiency and renewable               " 2012
for an EE and RE Incentive   energy
                                                                                      # 2020
Policy

                             1.2 Establishing a database of national EE & RE          # 2010
                             policies and projects in the MPCs                        ! 2012
                                                                                      # 2020

                             1.3 Establishing a directory of projects developed       # 2010
                             within the framework of international cooperation        ! 2012
                                                                                      ! 2020

INS 2. Relying on National   2.1 Targeted Capacity Building of Institutional          ! 2010
Energy Agencies and their    Agencies                                                 " 2012
Mediterranean Network to
                                                                                      # 2020
Develop and Implement EE
& RE policies
                             2.2 Developing Capacities to Promote the Role            ! 2010
                             of MPCs in RE Development                                # 2012
                                                                                      # 2020

                             2.3 Developing National Renewable Energy                 ! 2010
                             Action Plans                                             # 2012
                                                                                      # 2020

                             2.4 Developing a Monitoring Tool concerning the          ! 2010
                             MSP project pipeline                                     # 2012
                                                                                      # 2020

INS 3. Supporting the        3.1 Creation in each country of a dedicated MSP          # 2010
Emergence and Structuring    “one stop shop” for potential developers                 ! 2012
of an EE & RE Network
                                                                                      # 2020

                             3.2 Setting up a MSP facility dedicated to public        ! 2010
                             and private partners in order to support pre             # 2012
                             feasibility studies on RE projects
                                                                                      # 2020

                             3.3 Organization of Mediterranean Sustainable            ! 2010
                             Energy Week                                              # 2012
                                                                                      # 2020




                                                                                                    13
Priorities                      Suggested measures                       Completion date

FIN 1. Supporting the       1.1 Improving knowledge-sharing on RE/EE                  ! 2010
implementation of support   financing needs in MPCs and on the experience             # 2012
mechanisms for RE/EE        from existing support schemes in the EU
                                                                                      # 2020
development
                            1.2 Implementing support schemes appropriate              # 2010
                            for each MPC (tax credits, feed-in-tariffs,               ! 2012
                            renewable energy obligations, etc.)
                                                                                      ! 2020

FIN 2. Defining adequate    2.1 Improving knowledge on challenges facing              ! 2010
financing instruments       the financing of RE/EE in the region, including           # 2012
                            analysing options for developing innovative
                                                                                      # 2020
                            financial mechanisms at regional level, ensuring
                            the dissemination of knowledge resources in
                            order to facilitate capacity-building, updating the
                            analysis of market conditions.


                            2.2 Developing a regional guarantee facility or           ! 2010
                            credit enhancement mechanisms                             ! 2012
                                                                                      # 2020

                            2.3 Establishment of equity-type mechanism,               ! 2010
                            including a specific window aimed at ESCOS                ! 2012
                            and dedicated a Special purpose vehicle (SPVs),
                                                                                      # 2020
                            as well as a technical assistance facility

FIN 3. Developing           3.1Setting up a dedicated carbon           finance        ! 2010
complementary revenue       programme for the MSP                                     # 2012
streams from RE/EE
                                                                                      # 2020
projects
                            3.2 Defining the technical, legal and                     # 2010
                            administrative framework for the export of                ! 2012
                            electricity from MPCs to the EU network
                                                                                      # 2020

FIN 4. Analyzing possible   4.1 Analyzing financing requirements           and        ! 2010
approaches to finance       options for interconnections                              # 2012
Interconnections
                                                                                      # 2020




                                                                                                    14
TECH 1. Setting up          1.1 Developing a long-term regional strategy for       ! 2010
specialized clusters        technology-transfer in the clean energy field,         # 2012
                            building upon other initiatives developed by the
                                                                                   # 2020
                            Union for the Mediterranean (Mediterranean
                            research network, Mediterranean university
                            network, etc.).

                            1.2 Identify potential clusters in the energy field    ! 2010
                            (review of existing initiatives, call for projects,    # 2012
                            etc.)
                                                                                   # 2020

                            1.3 Supporting the emergence of specialized            # 2010
                            clusters, in particular through a dedicated            ! 2012
                            funding programme providing both technical
                                                                                   # 2020
                            assistance       (studies,   training,   public
                            communication) and co-financing for research
                            initiatives, essentially by channelling existing
                            resources for innovation support

                            1.4 Supporting the networking of regional              # 2010
                            clusters and stakeholders as a priority by             ! 2012
                            facilitating the exchange of experience and joint
                                                                                   ! 2020
                            initiatives (communication, research, etc.)
                            through the establishment of a regional focal
                            point.


TECH 2. Improving quality   2.1 Reinforcing and coordinating efforts to            # 2010
standards and training      support to the improvement of RE/EE quality            ! 2012
capabilities                standards for both equipment and services. This
                                                                                   # 2020
                            will include: training and capacity-building for the
                            implementation of quality labels, as well as co-
                            financing of testing facilities and equipments



                            2.2 Developing of bi- or multicultural training        ! 2010
                            programmes, based on current initiatives from          # 2012
                            MPCs or from EU MS
                                                                                   # 2020




                                                                                            15
1. Introduction
Primary energy demand within the Mediterranean Partner Countries (MPC2s) is
forecasted to increase by 70% over the next 20 years. Despite the substantial potential
for renewable energy (RE) production in the region, meeting this demand increase
would rely on up to 87% on fossil fuels in a 'business-as-usual' scenario, which would
lead to reduced energy security and to increased negative environmental impacts.
The DESERTEC report3 identified the development of the region's RE potential mainly
based on the very favourable solar resource conditions as well as its suitability for
accommodating large-scale solar facilities. A combination of solar, as well as other
appropriate RE technologies such as wind, could provide a long-lasting solution to the
aforementioned challenges if deployed on a large scale within the MENA region. From
a European industry perspective, Southern and Eastern Mediterranean Countries
(MPCs) present great potential in terms of solar radiation and land availability, but they
lack the regulatory framework, market, technology, and finance capacity to ensure
large-scale RE developments. Mass deployment of RE technologies would trigger
further economic development and job creation in Mediterranean countries.
In this framework, the Mediterranean Solar Plan (MSP) was established as one of the
main initiatives of the Union for the Mediterranean (UfM) at the Summit in Paris on 13-
14 July, 2008. The MSP is expected to both:
!        Develop RE in the region on a scale capable to contribute significantly to
         satisfying the increasing energy demand in the Mediterranean Partner Countries
         (MPCs);
!        Contribute to developing an integrated "Euro-Mediterranean green electricity
         market", to satisfy the MPCs' own electricity needs with renewable energy
         sources (mainly solar), and to export part of the electricity produced with
         renewable energy to consumers in other countries, and particularly to the EU.
The objectives of the MSP are in line with the goals of the EuroMed Partnership
initiated in 1995 with the Barcelona Declaration. The Euro-Mediterranean Partnership
(Regional Strategy Paper 2007-2013) aims at promoting regional trade integration,
infrastructure networks and improved environmental protection. In addition, the
EuroMed Energy Priority Action Plan established at the Limassol Conference for the
period 2008-2013 features the promotion of renewable and sustainable energy, as well
as improvements to the institutional, legislative and political framework that governs
the development and dissemination of RE technologies. In this context, the MSP has
been declared by Ministers and Heads of State and Governments as one of the key




2
    Morocco, Algeria, Tunisia, Egypt, Israel, Palestinian Territories, Lebanon, Syria and Turkey
3
 Trans-Mediterranean Renewable Energy Cooperation (November 2007). Clean Power from Deserts: The
DESERTEC Concept for Energy, Water and Climate Security. White Paper.
projects of the UfM, in order to promote both partnership with MPCs and to improve
energy security for all partners involved in the UfM.


The MSP is not restricted to any particular technology. Even though it has a specific
focus on solar CSP (Concentrated Solar Power), solar PV (Photovoltaic) and wind-
based power generation, it integrates an important component that considers energy
efficiency and will also consider smaller-scale decentralised systems based on other
RES technologies.
The priority areas which have been defined for the plan are the following:
!      Support the convergence of national energy policies with a particular stress on
       implementation of legislative, regulatory and institutional framework enabling RE
       development in order to meet the growing demand in MPC markets, with the
       possibility to export part of the electricity produced to EU markets;
!      Energy demand management, energy efficiency and energy savings;
!      Technology transfer; and,
!      Infrastructure development                   including       the      strengthening   of   electricity
       interconnections
!
The implementation of the MSP by 2020 will require adequate framework conditions in
MPCs. The fundamental conditions involve mainly regulation and policy frameworks,
adequate financing mechanisms, technology transfer and development of local
industrial capacities, as well as infrastructures. This last point relates to the adoption by
the European Parliament and the Council of Directive 2009/28/EC of 23/04/2009 on
the promotion of the use of energy from renewable sources, which provides an
opportunity for the further development of “green” electricity imports from the third
countries to the EU. In particular, Article 9 of the RES Directive enables
implementation of joint projects between Member States and third countries
concerning the generation of electricity from renewable sources. Major growth in
electricity imports from MPCs will however require a significant increase in the capacity
of transmission networks.


This report is the final report of the study carried out at the request of the European
Commission by Denis Levy and Alexis Gazzo between January and June 2009. Work
carried out includes mostly literature review and field work in 4 EU Member States
(France, Germany, Italy, Spain) and in 9 MPCs (Algeria, Egypt, Israel, Jordan,
Lebanon, Morocco, Palestinian Territories, Syria, Tunisia), during which more than 100
stakeholders were interviewed. The purpose of this report is to provide an overview of
the main framework conditions for the implementation of the MSP, and to suggest
priority areas for donor support.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                       17
2. Main findings: energy situation and perspectives
2.1       Key issues
Despite being located around a common Mediterranean sea, the countries from the
Southern and Eastern shores have contrasting energy situations with respect to their
Northern neighbours and also between themselves.
This situation can be explained by two main differences: demographic trends and
economic growth. Northern countries account for over 70% of the total Mediterranean
energy demand; while the remainder is equally divided between the Mediterranean
Maghreb and Mashrek countries.
The South and East Mediterranean Countries referred to in this report as
Mediterranean Partner Countries (MPCs) face rapid demographic growth combined
with relatively low incomes, rapid urbanization, and significant socioeconomic
development needs. These characteristics translate into a growing demand for energy
services and related infrastructure. Northern Mediterranean countries are
characterized by economies in transition from industry toward services which implies
less energy intensity.
In addition, the Mediterranean countries can be divided between energy importers and
exporters. Countries from the North are exclusively net importers of fossil fuels,
whereas the Southern countries are divided between exporters (Algeria, Egypt, Libya,
and Syria) and importers (Morocco, Tunisia, Israel, Jordan, the Palestinian Territories
and Turkey) of energy. In the Southern and Eastern Mediterranean, energy import
dependence is also high in most importing countries, with Morocco, Lebanon, Israel,
and Turkey ranking at the top. Tunisia recently became a net importer and is expected
to reach a much higher dependency level in the coming years.
Primary energy consumption in the MPCs has been growing very rapidly over the last
decades from 74.6 Mtoe in 1980 to 218.2 Mtoe in 2005 (around a 4.5 % average
annual increase over the period). This sustained increase is mainly due to
demographic growth, the improvement in the standard of living and the expansion of
the industrial, commercial and residential sectors. This growth is also driven by the
increase in electricity demand. Energy consumption per capita increased from
458 kWh to 1,577 kWh (more than 5% average annual increase over the same period).
It is important to remember that the average energy consumption per capita level in the
MPCs is much lower than in the Northern Mediterranean countries (over 5 times lower
compared to France in 2005).
Total Primary Energy Supply (TPES) is increasing faster than GDP in the region,
indicating that the economic development is becoming increasingly energy intensive.
The energy intensity increased by more than 20% over the period 1980 – 2005 (1.2%
annual growth rate over the period), as described in table 2 (see below). This average
situation hides large disparities between countries.
The average energy intensity in the region should decrease as countries in the region
implement energy efficiency and conservation programs. It is clear that there is a great
potential for energy efficiency and conservation in the region and that energy intensity
may be reduced, along with the energy-related greenhouse gas emissions.
The energy intensity of the region’s economies cannot be explained simply by
differences in their energy resources. MENA energy-abundant countries are among the
most energy-intensive. But some energy-importing countries (for example, Lebanon
and Jordan) also have quite energy-intensive economies, as well as some other
countries that are facing the gradual depletion of their fossil fuel reserves (for example
Syria). At the same time, an energy-abundant country like Algeria has a fairly low level


Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010    18
of energy intensity. Tunisia and Morocco fall below the world average (and even below
the OECD average), while others are significantly above even the MENA regional
average. There is no universal correlation between the natural resource endowment of
the region’s countries and their energy productivity.


                     Table 1: MPCs’ main economic & energy figures
                                                                                            Primary     Final energy
                                                         Primary          Final energy*      energy
                   Population         GDP per
                                                          energy                          consumption   consumption
  Country            (2006)         capita (PPP)                          Consumption
                                                       consumption
                                                                                           per capita    per capita
                     million            $ 2005                             2006 M toe
                                                        2006 M toe
                                                                                           2006 toe      2006 toe

Algeria              33.36              7 308              36,44              21,17          1,09          0,63
Egypt                75.48              4 775              62,32              42,18          0,83          0,56
Israel                7.04              27 699              21,7              13,69          3,08          1,94
Jordan                5.73              5 947              7,05**              4,7**        1,23**        0,82**
Lebanon               3.61              5 690               4,68               3,57           1,3          0,99
Morocco              31.07              4 841              12,89              10,04          0,41          0,32
Palestinian
                       3.7                n/a             1,14***            1,02***        0,31***       0,28***
territories
Syria                19.53              3 932             19,73**            12,85**        1,01**        0,66**
Tunisia               10.1              9 226               8,99               6,69          0,89          0,66
Turkey               73,92              7 154              90,11              67,76          1,22          0,92
* Non energetic usages included** Year 2005 *** Year 2000

Source: Enerdata



The energy intensity of an economy is based on its structure, whether or not energy
intensive sectors are large contributors to the GDP, and the efficiency of energy use in
each of the consuming sectors. Energy intensity is therefore a useful measure to
compare economies and trends; it is not a value judgment on the choice of a specific
economic structure. It does, however, allow decision makers to look at alternative
patterns of energy consumption for a certain rate of economic growth and to maintain
the competitiveness of their economies.
The use of purchasing power parities in measuring energy intensities greatly improves
the comparability between regions with different levels of economic development, as it
narrows the gap between regions, compared to what would be shown with exchange
rates. To achieve this, GDP and value-added data are converted at purchasing power
parities to reflect differences in general price levels. Using purchasing power parities
rates instead of exchange rates increases the value of GDP in regions with a low cost
of living and therefore decreases their energy intensities. On average, for non-OECD
countries the GDP at purchasing power parties is 2-7 times higher than if it is
expressed at exchange rates.
Energy intensity is widely used to evaluate how efficiently energy is used, and it can
provide signals to decision-makers about energy efficiency trends. However, energy
intensity is influenced by many factors, among which energy efficiency is only one
component. Changes in the structure of a country’s national economy (the “economic




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                        19
structure”) or in its energy mix can have a strong impact on the energy intensity
indicators.
The ODYSSEE4 project uses an alternative indicator, calculated from an evaluation by
end-use (bottom-up approach); this new indicator replaces the overall energy intensity
to monitor energy efficiency trends in the EU.
Most MPCs governments are aware of the benefits (in terms of economic and
environmental impacts) of promoting renewable, clean and efficient technologies in
their countries along with demand side management measures, as it leads to:
!        reduced environmental impact by eliminating mining and drilling pollution,
!        “healthier” overall economy with the new jobs provided by the new industries
         necessary to produce and support renewable energy technology,
!        a healthier population with the reduction in pollutants caused by burning fossil
         fuels,
!        a stronger national security with a reduction in dependence on foreign oil,
!        a reduction in potential conflicts as the focus shifts away from the control of oil,
!        an improvement in impoverished developing countries as new opportunities arise
         in the untapped renewable energy industry,
!        a more efficient overall economy as people are able to save significant amounts
         of money in their heating and cooling bills by using solar and wind power.

But despite the availability of the large potential resources, renewable energies are still
marginal in their contribution to electricity generation in the region.
Given the present context and in order to meet their growing electricity demand, the
MPC countries are facing three major challenges related to the development of their
respective electricity sectors:
!        Difficulties in mobilizing financial resources for new power generation capacity
         and transmission/distribution networks;
!        Electricity interconnections and the creation of regional power markets (both
         South-South and South-North);
!        Sustainable development (that is, the rational use of energy and renewable
         energy sources).
These three challenges can be seen, in the framework of the Euro-Mediterranean
Partnership, as an opportunity for investment and for the promotion of a Mediterranean
regional interconnected market. This situation also highlights the importance of
regional initiatives such as the Mediterranean Solar Plan in addressing these issues.




4
    Source : www.odyssee-indicators.org




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010             20
Table 2: Energy Efficiency indicators


Koe/$2005 at Purchasing Power Parities (PPP)                                          1980   1990    2000    2007
European Union (27)
    ! Primary energy intensity                                                    0.201      0.173   0.146   0.129
    ! Primary energy intensity adjusted to EU structure                           0.197      0.168   0.140   0.122
    ! Final energy intensity                                                      0.138      0.112   0.095   0.086
    ! Final energy intensity at 2005 GDP structure                                0.088      0.075   0.066   0.062
    ! Final energy intensity adjusted to EU economic                              0.088      0.075   0.066   0.062
        structure
Algeria
    ! Primary energy intensity                                                    0.104      0.154   0.161   0.158
    ! Primary energy intensity adjusted to EU structure                           0.064      0.103   0.120   0.137
    ! Final energy intensity                                                      0.051      0.074   0.075   0.082
    ! Final energy intensity adjusted to EU economic                              0.048      0.073   0.086   0.098
        structure
Egypt
    ! Primary energy intensity                                                    0.150      0.183   0.172   0.180
    ! Primary energy intensity adjusted to EU structure                           0.126      0.159   0.136   0.129
    ! Final energy intensity                                                      0.119      0.121   0.112   0.112
    ! Final energy intensity adjusted to EU economic                              0.095      0.113   0.097   0.092
        structure
Israel
    ! Primary energy intensity                                                    0.129      0.127   0.118   0.111
    ! Primary energy intensity adjusted to EU structure                           0.050      0.060   0.058   0.051
    ! Final energy intensity at 2005 GDP structure                                0.069      0.071   0.068   0.062
    ! Final energy intensity adjusted to EU economic                              0.038      0.043   0.041   0.036
        structure
Jordan
    ! Primary energy intensity                                                    0.154      0.257   0.231   0.219
    ! Primary energy intensity adjusted to EU structure                           0.149      0.223   0.207   n/a
    ! Final energy intensity                                                      0.114      0.181   0.165   0.146
    ! Final energy intensity adjusted to EU economic                              0.112      0.159   0.148   0.121
        structure
Lebanon
    ! Primary energy intensity                                                    0.316      0.278   0.302   0.208
    ! Primary energy intensity adjusted to EU structure                           0.208      0.209   0.303   0.216
    ! Final energy intensity                                                      0.203      0.179   0.218   0.132
    ! Final energy intensity adjusted to EU economic                              0.156      0.148   0.216   0.129
        structure
Morocco
    ! Primary energy intensity                                                    0.084      0.081   0.094   0.095
    ! Primary energy intensity adjusted to EU structure                           0.038      0.039   0.052   0.053
    ! Final energy intensity                                                      0.066      0.057   0.071   0.069
    ! Final energy intensity adjusted to EU economic                              0.028      0.027   0.037   0.038
        structure
Palestinian Territories                                                           n/a        n/a     n/a     n/a
Syria
    !     Primary energy intensity                                                0.186      0.326   0.297   0.248
    !     Primary energy intensity adjusted to EU structure                       0.265      0.233   0.191   0.168
    !     Final energy intensity                                                  0.148      0.231   0.174   0.139
    !     Final energy intensity adjusted to EU economic                          0.198      0.166   0.137   0.120
          structure




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                            21
Koe/$2005 at Purchasing Power Parities (PPP)                                          1980   1990    2000    2007
Tunisia
   ! Primary energy intensity                                                     0.115      0.121   0.113   0.097
   ! Primary energy intensity adjusted to EU structure                            0.099      0.114   0.106   0.086
   ! Final energy intensity                                                       0.083      0.091   0.084   0.067
   ! Final energy intensity adjusted to EU economic                               0.074      0.081   0.076   0.061
        structure
Source: Enerdata / Energy Efficiency Policies around the World: Review and Evaluation World Energy Council 2007




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                               22
2.2       Electricity sector
2.2.1       Overview
Energy consumption per capita is currently three and a half times lower in the Southern than
the Northern countries of the Mediterranean; however, the growth factors in the South are
significantly stronger, particularly due to demography, population growth, increasing living
standards and business needs. Thus, according to the OME5, energy demand will grow by
4.8% per year until 2020 in the South and East6, compared to 1.3% in the North7
As a result of these demand forecasts, the region must develop additional production
capacity of 191 GW (106 in the South and East and 85 in the North) compared to the current
installed capacity of 424 GW today (103 in the South and 321 North)8.


          Table 3: Generation Capacity and Annual Electricity Production and
                       Consumption in the Mediterranean Basin
                              Generation Capacity            Annual Production         Consumption
                                        GW                           TWh              (per capita) kWh
Northern shore 2005                     321                          1 380                  6 471
Northern shore 2020                     406                          1 780                  8 815
Southern and Eastern
                                        103                           500                   1 862
shores 2005
Southern and Eastern
                                        209                          1 000                  3 077
shores 2020
Source: Energy perspective in the Mediterranean 2008, OME December 2008



Some countries in the Southern & Eastern Mediterranean region face strong demand for
electricity, due to their economic development trends and population growth. The electrical
power sectors in these countries are mostly structured around vertically integrated state-
owned monopolies. Tariffs are set by governments and include a social bracket in the tariff
structure in order to ensure that all people have access to electricity, including the poor.




5
    Energy perspective in the Mediterranean 2008, OME December 2008
6
 South and East Mediterranean Countries: Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, Israel, Palestinian
Territories, Lebanon, Syria, Turkey
7
 North Mediterranean Countries: Portugal, Spain, France, Italy, Albania, Bosnia – Herzegovina, Croatia,
Macedonia, Serbia, Slovenia, Greece, Malta, Cyprus
8
    Source: Energy perspective in the Mediterranean 2008, OME December 2008
Over the last 30 years, the MPCs have developed their electrical systems and have recently
begun power sector restructuring, which has contributed to their economic growth and
expanded access to electricity. Some countries have delegated the distribution function to
the private sector, and others have elaborated new electricity laws that create regulatory
bodies and unbundled natural monopoly functions (transmission) from potentially competitive
functions (generation and supply). Most of the countries (Morocco9, Algeria, Tunisia, Egypt,
Palestinian Territories10 and Turkey) have introduced independent power producers (IPPs)
on the basis of long-term power purchase agreements (PPAs). As a result, about 16% of the
current installed capacity of Morocco, Turkey, Tunisia, and Egypt is in the hands of private
producers. Concerning distribution, Jordan, Lebanon and the Palestinian Territories have
concessions dating back from the first half of twentieth century, while in the late 1990’s,
Morocco awarded distribution concession contracts (Casablanca, Rabat, Tangiers and
Tetouan) to private companies. In Egypt, six private companies are licensed to distribute
electricity in different areas.
Nevertheless, state controlled utilities remain predominant in the MPCs region. The share of
private generation should slightly increase over the coming years with the completion of
several projects (Algeria, Morocco, Tunisia…). The introduction of the new electricity laws in
some of the countries, in theory, may also further increase the share of the private sector in
power generation.
Irrespective of the form of liberalization which is likely to emerge, most of the MPC
governments and energy utilities are favourable to introducing competition and regional
trade, as well as the following reforms:
!        Legal separation of activities within the gas and electricity sectors;
!        Corporatization11 of public enterprises;
!        Introduction of the private sector for new power generation or energy production;
!        Fragmentation of the sector for distribution;
!        Tariff levels which meet revenue requirements, phasing out of cross subsidies and
         adjustment to market and international prices, and the creation of funds or stabilization
         mechanisms to handle lifeline tariffs for the poor or to extend uniform tariffs throughout
         the country;
!        The need to gradually go beyond single buyer arrangements towards third party
         access.
!




9
  Where more than 60% of electricity is generated by private companies (mainly with foreign shareholders)
including RE generation from wind
10
     in Gaza a 140 MW gas turbine plant started commercial operations in 2004
11
  Corporatization refers to the transformation of state assets into state-owned corporations in order to introduce
corporate management techniques to their administration.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                           24
In several MPCs, electricity production is open to IPPs and energy is purchased by a "quasi
single buyer"; conditions are fixed by the "quasi single buyer" and not by the regulator. The
"single buyer" also imports / exports electricity as is the case in Morocco.
The governments and representatives from the electric power sectors of a majority of MPCs
envisage the gradual introduction of a wholesale market (or even a retail market) open to
large industrial consumers (mainly those connected to the 225-400 kV main grid, i.e. a small
number of industries). Regulated Third Party Access (TPA) will therefore be introduced for
participants in the free market. The market arrangements will involve bilateral contracts
between generators and distribution companies or eligible consumers, a spot market and / or
balancing mechanisms, as well as settlement mechanisms and solutions for the system
operator to acquire ancillary services. Independent system operators and a market operator
(for regulating the Wholesale Electricity Markets) based on the US or the Australian electrical
power system models are likely to be established.


                 Table 4: Current Electricity Laws and their status in MPCs
                                     Separate                                                    Third-     Private /
                                     accounts        Regulatory          Market       Distinct
  Country              Date                                                                       party    Municipal
                                                       body             opening        TSO
                                       (G/T/D)                                                   access   distribution

Algeria               2002               Yes            CREG            30% in 3        Yes       Yes         No
                                                                         years
Egypt                Under               No           EEUCPRA              No           No        No          No
                  development
Israel                                   No               PUA              No           No        Yes         No
Jordan                1999               Yes              ERC              No           No        No          Yes
Lebanon               2002               Yes             NERA              No           Yes       No          Yes
Morocco              Under               Yes               No              No           No        No          Yes
                  development
Palestinian       Letter of Sector       Yes             PERC              No           No        No          Yes
Territories        Policy (1997)
Syria                 None               No                No              No           No        No          No
Tunisia               None               No                No              No           No        No          No
Source: OME

Note: TSO = transmission system operator.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                                 25
2.2.2      Interconnections
Developing cross-border interconnections is considered as a key condition by the countries
of the two shores of Mediterranean to reinforce the reliability of their electrical systems and to
optimize the installed capacity by creating an integrated Mediterranean energy market.


                     Figure 1: The Euro-Mediterranean Power Systems




        United Kingdom Power System
        UCTE
        Nordic Countries Power System
        Interconnected/Unified Power System
        of the commenwealth of Independent
        States and Baltic States
        Turkey
        South-Western Mediterranean Block
        South-Eastern Mediterranean Block
        Ireland
        Israel, Cyprus and Malta




Source: MEDELEC



The main sub-regional groups around the Mediterranean Sea are more or less in the
advanced stages of linkage or integration:
!       In Europe, exchanges take place within the UCTE power system (Union for the
        Coordination for the Transmission Electricity), which is comprised of 23 European
        countries, 35 transmission system operators (TSO) and which supplies around 450
        million people for a total electricity consumption of around 2,600TWh in 2007 via
        230,000 km of high voltage lines.
!       On the eastern flank, the Turkish block does not yet operate synchronously with other
        systems despite the existence of many interconnections such as those to Azerbaijan,
        Armenia, Bulgaria, Georgia, Iran, Iraq and Syria. The interconnections between Turkey
        and Bulgaria and between southern Turkey and the northern part of Syria, however,
        are not currently used (these relate to “pocket” operations and do not ensure electrical
        continuity). Turkey is planned to start a synchronisation trial with the UCTE again in
        mid-2009. If successful synchronisation is achieved, the connection with UCTE will
        immediately become available (the transfer capacity will be limited to 500 MW),
Nevertheless, Turkey will still need to be connected in an asynchronous mode to other
       neighbouring countries (Iran, Armenia, Georgia, etc.) except Syria.
!      In the Maghreb area, Morocco, Algeria, and Tunisia are interconnected. The electrical
       liaison between the Maghreb and Europe has existed since 1997 by means of two
       Spain-Morocco lines via the Strait of Gibraltar. Currently two 700 MVA, 400kV AC
       undersea lines are in operation. Discussions are ongoing between Morocco and Spain
       to increase the transfer capacity.
!      The South-Eastern Mediterranean system (Libya, Egypt, Jordan, Syria and Lebanon).
       Egypt, Jordan, Syria and Lebanon are already interconnected. Lines between Egypt
       and Libya have existed since 1998 but are not operational.
!      The electrical systems of Israel, Cyprus and Malta are mostly isolated; however Israel
       is connected with the Palestinian Territories.
Inter-Mediterranean electrical exchanges are quite limited, especially between the Maghreb
countries, despite the strong interconnections and a history of cooperation. The only link that
fully functions, essentially in the North-South direction,12 is the Spain-Morocco
interconnection.


Expected developments
Several new interconnection projects are under way to reinforce existing connection between
Morocco and Algeria (third connection), Algeria to Tunisia (fifth connection), and to connect
Egypt with Libya, and the other Maghreb countries. On November 2005, a first attempt was
undertaken to connect Tunisia and Libya. This attempt was suspended to prevent any
damage on the South-Western system. Actions are currently underway to cope with the
identified difficulties. As for the next connection attempts, Libya alone will first be connected
to Tunisia, and then the other countries will follow. This connection test could be expected in
the near term. If the new tests are not successful, a DC interconnection between Libya and
Egypt would then be considered (and would require 2 years for commissioning).
In addition with linking MPC systems, several submarine interconnection projects are under
consideration:
!      The feasibility study for Algeria-Spain was completed in 2003. The project is still under
       consideration and the decision on a possible implementation is now in the hands of
       AEC, Sonelgaz and Red Electrica de España. In terms of connection, the study
       suggests a 1,000 MW and 500 kV direct HVDC connection between Terga (Algeria)
       and the Litoral de Almeria (Spain), together with a 200 MW AC connection crossing
       Morocco. However some technical difficulties are still to be overcome (the significant
       sea depth (1900 m) would require substantial engineering work).




12
  South-North flows have occurred during the initial years of operation of the interconnection (operational since
1997).




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                          27
!      The Algeria-Italy feasibility study was completed in June 2004. Two solutions for a 500
       to 1,000 MW 400 kV interconnection were studied: a “direct” line between Algeria and
       Italy and an “optimised” line between Algeria and South Sardinia. The “direct” line
       would face major technical difficulties due to the sea depth in the region (2,000 m). The
       “optimised” solution would have to cope with similar technical problems but with lower
       investment levels and power losses (cost estimated to € 750-900 million for the direct
       line; € 205-578 million for the optimised line) and would benefit from the existing lines
       between Italy and Sardinia. The construction of this line, however, is also still under
       consideration as its financial feasibility is uncertain.
!      A feasibility study for a 1,000 MW Tunisia-Italy interconnection was carried out in 2006.
       The project is underway and is linked to the construction of a 1,200 MW conventional
       fossil-fuel power plant in Tunisia. The project would be a merchant line owned by the
       generation company.
!      A project for an interconnection between Libya and Italy is also under study. Two DC
       cables of 500MW could potentially connect Italy and Libya through Malta. This would in
       particular end Malta’s isolation. However several points are still under discussion such
       as the route of the line: the easiest connection would end in Sicily but could entail
       congestion difficulties (especially if the connection Tunisia-Italy is realized).
!      Greece is considering a link to Crete, which could be extended to Egypt.


                       Figure 2: Existing and potential future connections




Source: OME



Besides the construction of submarine interconnections, which are extremely costly, the
reinforcement of existing links could provide short term additional capacity for the export of
electricity, mostly through the reinforcement of the interconnection between Spain and
Morocco (an additional 700 MW AC cable) and adding new 400 kV overhead circuits
between Turkey and Greece and/or Bulgaria.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010          28
When the current and planned projects are completed, the MPCs will be linked together via
the MEDRING (Mediterranean Electrical Ring), an electric ring that encircles the
Mediterranean region and is linked to the European network. The MEDRING project, which
would interconnect all Mediterranean systems, is expected to enhance system stability,
optimize generation capacity, and develop commercial energy exchanges between countries
linked by the electrical ring.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010   29
Table 5: Electricity Sector Overview in Selected Countries

                                                  Morocco           Algeria           Tunisia    Egypt   Jordan   Palestine     Israel     Lebanon   Syria

        Legislation introducing                      Under            2002              No       Draft   2002       Draft        2003       2002      No
        electricity liberalisation                preparation

        Independent regulators                        No              Yes               No       Yes      Yes        No          Yes         Yes      No

        Tariffs enabling the sector
                                                      No               No               Yes       No      Yes        No          Yes         No       No
        to cover costs
        Electrification rate %                        84               96               96        95       99        93           98         85       95

        Utilities Corporatisation                     No              Yes               Yes      Yes      Yes       Yes          Yes         No       No

        Unbundling of transmission                    No              Yes               No       Yes      Yes       Yes           No         No       No

        IPP in generation %                           60               15               25        12       2        Gaza      forecaste       5       No
                                                                                                                                  d

        Status                                       SB*              SB*               SB*      SB*      SB*                  !TPA**

        Unbundled distribution rate                   50              100               No        No       40       100           No         10       No
        %
        Limits to self-generation                  50 MW               No             50 MW       No     50 MW       No           No         Yes     Yes

        Existing Feed-in tariffs                      No              Yes             Forecast    No      No         No          Yes         No       No

        Electrical Interconnections                     Spa / Mor / Alg / Tun / Lib                                Egy / Jor / Pal / Syr

                    * SB: Single Buyer **: Third party access




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                                                                          30
2.3        Energy efficiency and renewable energy
2.3.1       Energy efficiency
Several MPC countries stand out as having longstanding and sustained commitments to
energy efficiency. These include Algeria, Israel and Tunisia—all of which introduced
legislation and created agencies focused on energy efficiency in the mid-1980s. Beside
these countries, a second set of countries introduced institutional arrangements that are not
as comprehensive but may well be optimal given respective sector conditions. For example,
Israel has a legal framework in place (the Energy Resources Law of 1987), rules and
regulations governing some forms of consumption (household appliances), and an agency
specializing in energy efficiency (Infrastructure Resources Management Division of the
Ministry of National Infrastructure), but, it lacks a financing facility.
Most of the countries have created agencies to implement energy efficiency initiatives. Some
of these agencies are dedicated solely to energy efficiency, and several have been in place
for a long time, including Algeria’s National Agency for the Promotion and Rational Use of
Energy (established in 1985), the Infrastructure Resources Management Division of Israel’s
Ministry of National Infrastructure (1987), and the Rational Use of Energy Division of
Jordan’s National Energy Research Center (1998).
These countries have promulgated rules and regulations for energy efficiency in production
and consumption. Several are developing some form of regulation concerning energy
efficiency (usually appliance standards or building codes). Among the active regulatory
regimes in the region are the following:
!       In Algeria, thermal building codes apply to houses and commercial buildings. Energy
        audits for large consumers are mandatory.
!       In Egypt, standards and labelling programs cover refrigerators, air-conditioners, and
        washing machines.
!       In Israel, energy efficiency standards apply to refrigerators and air-conditioners. ESCOs
        must be licensed.
!       In Morocco, the Law on Energy Efficiency is being adopted by the Parliament. The
        Renewable Energy Development Centre, created in 1982, focuses also on energy
        efficiency. Financing is available, mainly for solar water heaters, and an energy
        efficiency code for new construction is under development.
!       In Tunisia, efficiency requirements are applied to buildings and appliances.
!       In Syria, energy efficiency labels are required on refrigerators, air-conditioners, and
        washing machines. New houses and buildings must conform to a thermal insulation
        code
Most governments in the region consider energy efficiency as a priority issue, although for
different reasons. The key issue for many is the relative size of energy subsidies in
government budgets; for others, the key drivers also include the necessity to mitigate the
volatility of hydrocarbon prices and generating enough financing for energy investments to
satisfying the energy demand of their fast-growing economies. These factors have prompted
governments to renew their efforts to improve energy efficiency. The governments have
experimented with programmes since the 1980s to promote the rational use of energy
(compulsory audits and incentives to facilitate investment for large industries, higher tariffs
for large residential electricity consumptions, building standards, appliance labelling, etc)
mainly in energy intensive industries and large buildings, with support from multilateral and
bilateral organizations. These programmes have contributed to raising general awareness
among industries, involved in-depth energy audits and led to some investments. In the MPC
region, some programmes focusing on industry are being conducted in Morocco and in



Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010           31
Tunisia (the latter which has set up a dedicated national energy management fund in order to
finance energy conservation and renewable energy investments).
In the construction sector, energy building codes have been elaborated and partly
implemented in the main Israeli and Turkish cities. Projects are underway with multilateral
and bilateral support in Algeria, Lebanon, Morocco, the Palestinian Territories and Tunisia.
Algeria and Tunisia have also launched several demonstration eco building projects. These
projects face the global issues of the construction quality, including for anti-seismic
standards. The EU-funded programme MED-ENEC contributes to developing and
harmonising standards for energy-efficient buildings and the use of thermal solar
technologies in all MEDA countries.
Some countries, particularly Tunisia, are beginning to address energy efficiency in existing
buildings. Tunisia’s STEG, the electric power company, has promoted rational use of energy
and solar water heaters (ProSol program supported by MEDREP) in the residential sector.
As stated in a recent World Bank assessment on energy efficiency in the MENA region13,
Tunisia has “what might be deemed comprehensive institutional arrangements for energy
efficiency”. Tunisia “most closely approaches the ideal both in its enabling framework (laws
and decrees, national energy plans, regulation and rules, and an apex agency) and
implementation arrangements (specialized agency plus programmatic, financing, and other
supportive arrangements)”.


                                                           BOX 1
     Tunisia: A success story in implementing an energy management policy in a developing
                                            country
Among developing countries, especially those in the Mediterranean region, Tunisia has undoubtedly
been a pioneer in the initiation of EE & RE policy.
Tunisia, since 1985, has put in place a policy of Rational Use of Energy, thus anticipating the
widespread development of the energy deficit that was forecast for the mid-90s. From the outset, it
has articulated its EE policy around three pillars on which any new policy must be based: (i)
Establishing an appropriate institutional framework, with the Agency for Energy Management (AME)
initially as a leader, which later became the National Agency of Renewable Energies (ANER) in 1998,
and later the National Agency for Energy Management (ANME) from August 2004; (ii) setting up a
regulatory framework, based on a comprehensive battery of measures to promote practices and more
efficient energy; (iii) Creating financial incentives, focused on energy audits grants and investments,
on the one hand, and fiscal measures or tax exemptions, on the other.
The rising pressure in global oil markets, that has significantly increased since 2004, has strengthened
the energy management policy with the launch of a series of concrete measures that are reflected
mainly by the promulgation in 2004 of a specific law on EE & RE, the creation in 2005 of the National




13
   Tapping a Hidden Resource: Energy Efficiency in the Middle East and North Africa February 2009 Sustainable
Development Network, Middle East and North Africa Region, Energy Sector Management Assistance Program (ESMAP) THE
WORLD BANK GROUP.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                          32
Fund for EE & RE (FNME), the establishment of specific financing mechanisms and the creation of
specialized task forces to ensure close monitoring of different priority actions.
The impacts of this policy are significant, especially after the results of the 2005-2007 three-year
program of EE & RE. The actions taken have yielded significant results in terms of attenuating energy
demand growth (apart from improving the efficiency of power generation, the three-year program led
to a cumulative energy saving of 770 Ktoe of which 710 Ktoe is attributable to energy efficiency
actions, 61 ktoe of fossil fuels savings, resulting from renewable energy development actions),
decoupling of economic growth and energy consumption (the period 1990-2007 was also marked by
an increase in energy demand of 3.3% per year compared to 4.8% per year increase for economic
growth. The contrasting GDP and primary energy demand trends, especially significant during the
period 2005-2007, reflect the improved energy performance of the Tunisian economy over this period)
and the improving energy intensity (The decoupling of economic growth and consumption of energy
generated, from the 1990’s, down average annual energy intensity by 1.2% per annum, which greatly
accelerated since 2005 to 2.9% per year over the period 2005-2007).
In view of the continued increases of energy prices on the international market in 2007, the Tunisian
government accelerated its EE & RE policy by augmenting the original objectives in the 11th
development plan (2007-2011). The 2008-2011 four-year Energy Management program intends to
accelerate its EE & RE policy aiming at: (i) reducing energy intensity by 3% per year; (ii) maintaining a
moderate energy demand growth of f 2.8% per year with a reduction of primary energy consumption of
about 2 Mtoe by 2011 and (iii) Increasing the renewable energy (excluding biomass) share for primary
consumption to 4% in 2011.
According to Law No. 2009-7 of 9, February 2009 which amends and supplements the Law of 2,
August 2004 on EE & RE, the main measures which will support the completion of the four-year
program, are: (i) the requirement to obtain prior permission, from the authorities, for the establishment
(or extension) of projects for large energy consuming enterprises; (ii) lowering of threshold for energy
audits in the industry sector from 1000 to 800 toe; (iii) the authorization for industrial plants or plant
groups, which intend to self-generate electricity from renewable energy sources and cogeneration to
have access to the national electricity grid, to transport the electricity produced, and to sell surpluses
exclusively to the Tunisian Electricity and Gas Company and, (iv) to sell its surplus electricity
exclusively to STEG within in the framework of a standardised contract approved by the energy sector
authority which grants permission to electricity producers from renewables sources for their own
consumption, and whose facilities are connected to the national network at low voltage,; (v) the
requirement of the application of minimum technical specifications of energy efficiency in the
construction of new buildings and extension projects for existing buildings.
The analysis of the funding amounts required to accomplish the objectives of EE & RE over the four-
year program, revealed real investment constraints, which prompted the Government to introduce new
financial mechanisms to complement and expand the capacity of existing intervention means, in
particular through: (i) consolidation of program funding by the establishment of credit lines dedicated to
energy conservation financed by bilateral and multilateral financing institutions; (ii) the strengthening of
the existing National EE &RE Fund (FNME) by establishing a new fee for the import or local
production on lamps and tubes that are not energy efficient; (iii) extending the eligibility of FNME to
other interventions or to certain sectors in particular, intangible investments, cogeneration and use of
renewable energy such as biogas and electricity production in Solar Buildings and in the agricultural
sector.
Over the 2008-2011 period, the planned investments in energy efficiency in Tunisia are forecasted to
reach about 1 billion dinars or the equivalent of 100 M US$ (outside STEG investments in wind
energy). This amount reflects a real acceleration of the policy in the EE & RE field. However, this
intensification of investment could not have been possible without the preparation, begun more than
twenty years ago and resulting in the establishment of integrated institutional, regulatory, tax tools and
the creation of a financial environment conducive to energy conservation in Tunisia. This lengthy
process has also helped to prepare the conditions for change of scale: the general development and
capacity building, awareness of all private and public stakeholders (government, households,
industrial, financial sector, etc.) the development of public-private partnerships, and the strengthening
of international cooperation, etc.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                      33
Table 6: Energy Efficiency Institutional Arrangements in MPCs
                                Algeria      Egypt              Israel                Jordan    Lebanon       Morocco       Palestine         Syria          Tunisia
               Institution                   Small
              responsible       APRUE        unit at             MNI                  NERC        LCEC          CDER           PEC           NERC             ANME
                 for EE                      EEHC
               Institution
              responsible        CDER        NREA                MNI                  NERC        LCEC          CDER           PEC           NERC             ANME
                 for RE
                                                                                                                                                              2004
               Legislation                               Energy Resources                           In          To be
                                  1999        None                                    None                                    None        Being drafted      Updated
                 for EE                                      law 1987                           preparation    adopted
                                                                                                                                                            Feb 2009
                                                               20x20 EE
                                                                                                                             EE & RE
                                                              framework
                                                                                                                            master plan                      EE & RE
                National
                                   No         Yes          (20% reduction              Yes          No         PNAP*        adopted in     Master plan
                                                                                                                                                           objectives in
              energy plans                               from the "business                                   2008-2012       2007        in preparation
                                                                                                                                                           the XI° Plan
                                                         as usual" scenario
                                                              by 2020)
                                                                                      In                          In
              EE & RE fund        Yes          No                 No                                No                          No             No              Yes
                                                                                  preparation                 preparation
              EE & RE R&D                                80 M€ 5 years plan
                                   No          No                                      No           No            No            No             No              No
               financing                                     from 2008

          * Main measures registered in the National Priority Action Plan 2008-2012:
         1.     Development of a wind capacity of 1 000 MW before 2012 within the framework of the program Energipro
         2.     Massive generalization of LBC use of with the distribution of 22,7 million LBC on the horizon 2012 (Disappearance in the peak load of 800 MW).
         3.     Setting up of a social tariff and incentive pricing for type -20 / -20 for all the residential and local authorities (Disappearance in the peak load of 300 MW).
         4.     Setting up of the super optional peak load pricing for industrial customers VHT-HT (87MW.
         5.     Setting up of the optional bi-hourly pricing for the driving strength LT (16 MW):
         6.     Development of energy efficiency appliances for street lighting such as stabilizers, savers and low consumption lamps (87 MW).
         7.     Energy efficiency in the building sector: elaboration of an energy code concerning the construction; Installation of 450 000 m ² of solar panels for solar waters
                heaters in the residential and tertiary sectors
         8.     Transformation of the CDER into ADEREE (EE & RE Agency): updating of the wind atlas and the solar atlas; evaluation of the national potential in biomass;




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                                                                                          34
2.3.2        Renewable energy
The Mediterranean region benefits from abundant renewable energy resources. In particular,
the region has some of the best locations in the world for solar technologies14. Sun hours
range from 2,650 to 3,400 hours per year, and the average annual radiation ranges between
1,300 kWh/m2 per year in coastal areas to 3,200 kWh/m2 per year in the South and coastal
areas. Wind potential is also significant mainly in Morocco and Egypt, with wind speed
ranging between 6 and 11 m/s in some areas. The region also has potential in biomass and
geothermal (low temperature; heating and cooling with geothermal heat pump) and hydraulic
resources.
In the MPC region, the total renewable primary energy supply reached approximately 19
Mtoe in 2005, representing 7% of the TPES in the region. Although renewables have
doubled over the last three decades, their share is much lower than in the 1970’s, when
renewables accounted for 18% of the TPES. This finding is attributable to the increase in the
total primary energy supply, from 50 Mtoe in 1970 to 280 Mtoe in 2005.
In mid-200715, total RE-based power installed capacity reached 17,718 MW, more than 93 %
of which is large hydro with the greatest share located in Turkey, Egypt, and to a much lesser
degree, in Morocco. The remaining 800 MW of capacity was dominated by small hydro and
wind:
!        Concerning small hydro (321 MW), the majority of the sites are located in Turkey (176
         MW), Algeria (85 MW), Morocco (30 MW), Tunisia (30 MW) while in Egypt most of the
         hydro power plants are larger than 10 MW.
!        Wind is still a new but marginal energy source in the region. Total installed capacity
         (410 MW) included sites in Zafarana (Egypt, total 225 MW), Tetouan (Morocco, 53.2
         MW), Cap Bon (Tunisia, 19.3 MW), and Algeria (0.5 MW).
!        Photovoltaic systems reached 13.3 MWp capacity in 2007. PV kits supplied a total of
         76,367 households with electricity (59,800 in Morocco alone, 11,000 in Tunisia, 4,657
         in Egypt and 1,000 in Algeria), representing 8.5 MWp. The remaining 5 MWp capacity
         concerned other applications, including telecoms, schools, mosques, pumping water for
         agriculture, street lighting, etc.
!        Geothermal energy represented 20.4 MW (Exclusively in Turkey).


Concentrated solar (CSP) energy is in the development phase in the following countries16:




14                                                         2
  The solar energy received on a horizontal surface of 1 m is of the order of 2 500 kWh a year in the sunny regions and of 800
kWh a year in the Northern Europe
15
     OME : Renewable Energy in the Southern and Eastern Mediterranean countries; Current situation June 2007
16
  In addition, in 2008, the Abu Dhabi Future Energy Company (Masdar16) issued an invitation to build, own and operate a 100
MW CSP plant in Madinat Zayad, Abu Dhabi. The plant will use parabolic trough technology and is expected to be operational
by the end of 2010.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                                       35
!      Algeria: Integrated Solar Combined Cycle of 150 MW is under construction;
!      Egypt: 140 MW Integrated Solar Combined Cycle with 20 MW CSP plant under
       construction;
!      Israel launched last year a tender process for two 100-125MW CSP plants (IPPs) in the
       Negev (ASHALIM).
!      Morocco: 470 MW Integrated Solar Combined Cycle station at Aïn Beni Mathar with 20
       MW CSP.
!      In addition, in 2008, the Abu Dhabi Future Energy Company (Masdar17) issued an
       invitation to build, own and operate a 100 MW CSP plant in Madinat Zayad, Abu Dhabi.
       The plant will use parabolic trough technology and is expected to be operational by the
       end of 2010.


The total RE-based power generation in 2005 was 357 TWh, representing 15.5 % of total
power generation for the same year. Large hydro sources dominate renewable energy use in
power generation (97%), with Turkey, Egypt and Morocco accounting for most of the large
hydro based generation. Excluding large hydro, the level of RE-based generation falls to only
about 1.6 TWh (0.45 % of total power generation). Egypt ranks first, followed by Turkey,
Morocco, Tunisia and Algeria. Noteworthy is the dominance of wind for RES (excl. Large
Hydro)-based power generation in Turkey, Egypt and Morocco.


                         Table 7: Share of Renewables in Electricity (%)*
                                                                                      1980      1990     2000     2007
     Algeria
               Share of renewables in electricity generating capacity %               13.2      6.1      4.4      2.8
               Share of electricity in gross electricity consumption %                3.6       0.8      0.2      0.6
     Egypt
               Share of renewables in electricity generating capacity %               50.2      23.4     18.6     13.3
               Share of renewables in gross electricity consumption %                 51.8      23.5     17.7     11.1
     Israel
               Share of renewables in electricity generating capacity %               0         0.1      0.1      0.1
               Share of renewables in gross electricity consumption %                 0         0.1      0.1      0.1
     Jordan




17
   MASDAR city has been chosen lte June 2009 to house the International Renewable Energy Agency (IRENA) headquarters.
As part of its commitment to Irena, the UAE offered to support the agency with a grant of $136m over a six years period, while
also covering all operational costs in perpetuity. Moreover, the Abu Dhabi Fund for Development created a special endowment
of up to $50m annually to be used for loans in support of renewable energy projects in the developing world.




Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010                                       36
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010
Solar Plan Report 2010

More Related Content

What's hot

Worcester Art Museum: Green Technology Evaluation
Worcester Art Museum: Green Technology EvaluationWorcester Art Museum: Green Technology Evaluation
Worcester Art Museum: Green Technology EvaluationFlanna489y
 
Open access financial modelling feasibility
Open access financial modelling feasibilityOpen access financial modelling feasibility
Open access financial modelling feasibilityJay Ranvir
 
50341146 global-swot-analysis
50341146 global-swot-analysis50341146 global-swot-analysis
50341146 global-swot-analysisMohamad Ahmad
 
Nepal - energy sector synopsis report 2010- wecs
Nepal - energy sector synopsis report 2010- wecsNepal - energy sector synopsis report 2010- wecs
Nepal - energy sector synopsis report 2010- wecsBhim Upadhyaya
 
Renewable Energy Global Status Report 2015-REN21
Renewable Energy Global Status Report 2015-REN21Renewable Energy Global Status Report 2015-REN21
Renewable Energy Global Status Report 2015-REN21Ashish Verma
 
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019Power System Operation
 

What's hot (7)

Worcester Art Museum: Green Technology Evaluation
Worcester Art Museum: Green Technology EvaluationWorcester Art Museum: Green Technology Evaluation
Worcester Art Museum: Green Technology Evaluation
 
Open access financial modelling feasibility
Open access financial modelling feasibilityOpen access financial modelling feasibility
Open access financial modelling feasibility
 
50341146 global-swot-analysis
50341146 global-swot-analysis50341146 global-swot-analysis
50341146 global-swot-analysis
 
Nepal - energy sector synopsis report 2010- wecs
Nepal - energy sector synopsis report 2010- wecsNepal - energy sector synopsis report 2010- wecs
Nepal - energy sector synopsis report 2010- wecs
 
Pakistan's energy sector and reform priorities
Pakistan's energy sector and reform priorities Pakistan's energy sector and reform priorities
Pakistan's energy sector and reform priorities
 
Renewable Energy Global Status Report 2015-REN21
Renewable Energy Global Status Report 2015-REN21Renewable Energy Global Status Report 2015-REN21
Renewable Energy Global Status Report 2015-REN21
 
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019
RENEWABLE ENERGY MARKET ANALYSIS: GCC 2019
 

Similar to Solar Plan Report 2010

undp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisundp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisGiovanna Christo
 
Renewables 2012 global status report
Renewables 2012 global status reportRenewables 2012 global status report
Renewables 2012 global status reportESTHHUB
 
European research on concentrated solar thermal energi
European research on concentrated solar thermal energiEuropean research on concentrated solar thermal energi
European research on concentrated solar thermal energiSaif Azhar
 
Irena 2017 power_costs_2018
Irena 2017 power_costs_2018Irena 2017 power_costs_2018
Irena 2017 power_costs_2018Irina Breniuc
 
K -EIA-Jiyeh-v7-final Chapter 1-4
K -EIA-Jiyeh-v7-final Chapter 1-4K -EIA-Jiyeh-v7-final Chapter 1-4
K -EIA-Jiyeh-v7-final Chapter 1-4Raia Dayekh
 
IRENA Renewable Power Generation Costs Report 2022
IRENA Renewable Power Generation Costs Report 2022IRENA Renewable Power Generation Costs Report 2022
IRENA Renewable Power Generation Costs Report 2022Energy for One World
 
DTT study on energy-efficiency-in-europe 2016
DTT study on energy-efficiency-in-europe 2016DTT study on energy-efficiency-in-europe 2016
DTT study on energy-efficiency-in-europe 2016Anton Berwald
 
Global-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdfGlobal-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdfSimonBAmadisT
 
Environmental_Issues_No_19.pdf
Environmental_Issues_No_19.pdfEnvironmental_Issues_No_19.pdf
Environmental_Issues_No_19.pdfJohnSmith344124
 
Greater gabbard optimization project
Greater gabbard optimization projectGreater gabbard optimization project
Greater gabbard optimization projectJavier Criado Risco
 
The European Renewable Electricity Sector 2009/20
The European Renewable Electricity Sector 2009/20The European Renewable Electricity Sector 2009/20
The European Renewable Electricity Sector 2009/20ReportLinker.com
 
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)Nigeria Alternative Energy Expo
 
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015Donna Gartland
 
Battery energy-storage-system
Battery energy-storage-systemBattery energy-storage-system
Battery energy-storage-systemH Janardan Prabhu
 
Arc flash publication
Arc flash publicationArc flash publication
Arc flash publicationWilson Pavão
 

Similar to Solar Plan Report 2010 (20)

undp2014-sustainable-energy-cis
undp2014-sustainable-energy-cisundp2014-sustainable-energy-cis
undp2014-sustainable-energy-cis
 
Report WP1
Report WP1Report WP1
Report WP1
 
Mémoire M1
Mémoire M1Mémoire M1
Mémoire M1
 
Renewables 2012 global status report
Renewables 2012 global status reportRenewables 2012 global status report
Renewables 2012 global status report
 
European research on concentrated solar thermal energi
European research on concentrated solar thermal energiEuropean research on concentrated solar thermal energi
European research on concentrated solar thermal energi
 
Irena 2017 power_costs_2018
Irena 2017 power_costs_2018Irena 2017 power_costs_2018
Irena 2017 power_costs_2018
 
K -EIA-Jiyeh-v7-final Chapter 1-4
K -EIA-Jiyeh-v7-final Chapter 1-4K -EIA-Jiyeh-v7-final Chapter 1-4
K -EIA-Jiyeh-v7-final Chapter 1-4
 
Textbook retscreen pv
Textbook retscreen pvTextbook retscreen pv
Textbook retscreen pv
 
IRENA Renewable Power Generation Costs Report 2022
IRENA Renewable Power Generation Costs Report 2022IRENA Renewable Power Generation Costs Report 2022
IRENA Renewable Power Generation Costs Report 2022
 
DTT study on energy-efficiency-in-europe 2016
DTT study on energy-efficiency-in-europe 2016DTT study on energy-efficiency-in-europe 2016
DTT study on energy-efficiency-in-europe 2016
 
Global-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdfGlobal-Photovoltaic-Power-Potential-by-Country.pdf
Global-Photovoltaic-Power-Potential-by-Country.pdf
 
Masters project
Masters projectMasters project
Masters project
 
Spanish energy forecast
Spanish energy forecastSpanish energy forecast
Spanish energy forecast
 
Environmental_Issues_No_19.pdf
Environmental_Issues_No_19.pdfEnvironmental_Issues_No_19.pdf
Environmental_Issues_No_19.pdf
 
Greater gabbard optimization project
Greater gabbard optimization projectGreater gabbard optimization project
Greater gabbard optimization project
 
The European Renewable Electricity Sector 2009/20
The European Renewable Electricity Sector 2009/20The European Renewable Electricity Sector 2009/20
The European Renewable Electricity Sector 2009/20
 
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)
NATIONAL RENEWABLE ENERGY AND ENERGY EFFICIENCY POLICY (NREEEP)
 
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015
Dublin_City_Spatial_Energy_Demand_Analysis_-_June_2015
 
Battery energy-storage-system
Battery energy-storage-systemBattery energy-storage-system
Battery energy-storage-system
 
Arc flash publication
Arc flash publicationArc flash publication
Arc flash publication
 

More from PARIS

Tableau de bord de l’attractivité de la France 2012
Tableau de bord  de l’attractivité de la France 2012Tableau de bord  de l’attractivité de la France 2012
Tableau de bord de l’attractivité de la France 2012PARIS
 
La Smart Grid en Californie: Acteurs et Enjeux
La Smart Grid en Californie: Acteurs et EnjeuxLa Smart Grid en Californie: Acteurs et Enjeux
La Smart Grid en Californie: Acteurs et EnjeuxPARIS
 
LES PME allemandesune compétitivité à dimension sociale et humaine
LES PME allemandesune compétitivité à dimension  sociale et humaineLES PME allemandesune compétitivité à dimension  sociale et humaine
LES PME allemandesune compétitivité à dimension sociale et humainePARIS
 
Projet FREEME de micro-finance Maroc Egypte
Projet FREEME de micro-finance Maroc EgypteProjet FREEME de micro-finance Maroc Egypte
Projet FREEME de micro-finance Maroc EgyptePARIS
 
EU Energy Strategy in the South Mediterranean
EU Energy Strategy in the South MediterraneanEU Energy Strategy in the South Mediterranean
EU Energy Strategy in the South MediterraneanPARIS
 
Unep Global Trends 2011
Unep Global Trends 2011Unep Global Trends 2011
Unep Global Trends 2011PARIS
 
Rapport Transgreen 1
Rapport Transgreen 1Rapport Transgreen 1
Rapport Transgreen 1PARIS
 
W I N D U S T R Y Rapport Eolien Def Couv
W I N D U S T R Y  Rapport Eolien Def CouvW I N D U S T R Y  Rapport Eolien Def Couv
W I N D U S T R Y Rapport Eolien Def CouvPARIS
 
Meda-MoS Presentation, Mediterranean Mororways of the Sea
Meda-MoS Presentation, Mediterranean Mororways of the SeaMeda-MoS Presentation, Mediterranean Mororways of the Sea
Meda-MoS Presentation, Mediterranean Mororways of the SeaPARIS
 
Renewable Energies In Mena Region
Renewable Energies In Mena RegionRenewable Energies In Mena Region
Renewable Energies In Mena RegionPARIS
 
Photovoltaic Market Overview & Business Opportunities In English
Photovoltaic Market Overview & Business Opportunities   In EnglishPhotovoltaic Market Overview & Business Opportunities   In English
Photovoltaic Market Overview & Business Opportunities In EnglishPARIS
 
Convention de la Marsa 1883, Protectorat Tunisie
Convention de la Marsa 1883, Protectorat TunisieConvention de la Marsa 1883, Protectorat Tunisie
Convention de la Marsa 1883, Protectorat TunisiePARIS
 
Spillovers Into Morocco and Tunisia
Spillovers Into Morocco  and TunisiaSpillovers Into Morocco  and Tunisia
Spillovers Into Morocco and TunisiaPARIS
 
Rapport Milhaud
Rapport MilhaudRapport Milhaud
Rapport MilhaudPARIS
 
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTURE
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTUREUNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTURE
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTUREPARIS
 
Hotel Yearbook2009
Hotel Yearbook2009Hotel Yearbook2009
Hotel Yearbook2009PARIS
 
Why the European Union Needs a Broader Middle East Policy
Why the European Union Needs a Broader Middle East PolicyWhy the European Union Needs a Broader Middle East Policy
Why the European Union Needs a Broader Middle East PolicyPARIS
 
Mediterranean Solar Plan Strategy Paper, Feb 2010
Mediterranean Solar Plan Strategy Paper, Feb 2010Mediterranean Solar Plan Strategy Paper, Feb 2010
Mediterranean Solar Plan Strategy Paper, Feb 2010PARIS
 
PV development in France Market, Policy & Forecasts
PV development in France Market, Policy & ForecastsPV development in France Market, Policy & Forecasts
PV development in France Market, Policy & ForecastsPARIS
 
Heliosthana", un pays Méditerranéen à énergie durable
Heliosthana", un pays Méditerranéen à énergie durableHeliosthana", un pays Méditerranéen à énergie durable
Heliosthana", un pays Méditerranéen à énergie durablePARIS
 

More from PARIS (20)

Tableau de bord de l’attractivité de la France 2012
Tableau de bord  de l’attractivité de la France 2012Tableau de bord  de l’attractivité de la France 2012
Tableau de bord de l’attractivité de la France 2012
 
La Smart Grid en Californie: Acteurs et Enjeux
La Smart Grid en Californie: Acteurs et EnjeuxLa Smart Grid en Californie: Acteurs et Enjeux
La Smart Grid en Californie: Acteurs et Enjeux
 
LES PME allemandesune compétitivité à dimension sociale et humaine
LES PME allemandesune compétitivité à dimension  sociale et humaineLES PME allemandesune compétitivité à dimension  sociale et humaine
LES PME allemandesune compétitivité à dimension sociale et humaine
 
Projet FREEME de micro-finance Maroc Egypte
Projet FREEME de micro-finance Maroc EgypteProjet FREEME de micro-finance Maroc Egypte
Projet FREEME de micro-finance Maroc Egypte
 
EU Energy Strategy in the South Mediterranean
EU Energy Strategy in the South MediterraneanEU Energy Strategy in the South Mediterranean
EU Energy Strategy in the South Mediterranean
 
Unep Global Trends 2011
Unep Global Trends 2011Unep Global Trends 2011
Unep Global Trends 2011
 
Rapport Transgreen 1
Rapport Transgreen 1Rapport Transgreen 1
Rapport Transgreen 1
 
W I N D U S T R Y Rapport Eolien Def Couv
W I N D U S T R Y  Rapport Eolien Def CouvW I N D U S T R Y  Rapport Eolien Def Couv
W I N D U S T R Y Rapport Eolien Def Couv
 
Meda-MoS Presentation, Mediterranean Mororways of the Sea
Meda-MoS Presentation, Mediterranean Mororways of the SeaMeda-MoS Presentation, Mediterranean Mororways of the Sea
Meda-MoS Presentation, Mediterranean Mororways of the Sea
 
Renewable Energies In Mena Region
Renewable Energies In Mena RegionRenewable Energies In Mena Region
Renewable Energies In Mena Region
 
Photovoltaic Market Overview & Business Opportunities In English
Photovoltaic Market Overview & Business Opportunities   In EnglishPhotovoltaic Market Overview & Business Opportunities   In English
Photovoltaic Market Overview & Business Opportunities In English
 
Convention de la Marsa 1883, Protectorat Tunisie
Convention de la Marsa 1883, Protectorat TunisieConvention de la Marsa 1883, Protectorat Tunisie
Convention de la Marsa 1883, Protectorat Tunisie
 
Spillovers Into Morocco and Tunisia
Spillovers Into Morocco  and TunisiaSpillovers Into Morocco  and Tunisia
Spillovers Into Morocco and Tunisia
 
Rapport Milhaud
Rapport MilhaudRapport Milhaud
Rapport Milhaud
 
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTURE
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTUREUNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTURE
UNION FOR THE MEDITERRANEAN: PROJECTS FOR THE FUTURE
 
Hotel Yearbook2009
Hotel Yearbook2009Hotel Yearbook2009
Hotel Yearbook2009
 
Why the European Union Needs a Broader Middle East Policy
Why the European Union Needs a Broader Middle East PolicyWhy the European Union Needs a Broader Middle East Policy
Why the European Union Needs a Broader Middle East Policy
 
Mediterranean Solar Plan Strategy Paper, Feb 2010
Mediterranean Solar Plan Strategy Paper, Feb 2010Mediterranean Solar Plan Strategy Paper, Feb 2010
Mediterranean Solar Plan Strategy Paper, Feb 2010
 
PV development in France Market, Policy & Forecasts
PV development in France Market, Policy & ForecastsPV development in France Market, Policy & Forecasts
PV development in France Market, Policy & Forecasts
 
Heliosthana", un pays Méditerranéen à énergie durable
Heliosthana", un pays Méditerranéen à énergie durableHeliosthana", un pays Méditerranéen à énergie durable
Heliosthana", un pays Méditerranéen à énergie durable
 

Solar Plan Report 2010

  • 1. ENPI - Neighbourhood – Mediterranean & Eastern Europe FWC Beneficiaries Lot 4 - N° 2008/168828 “Identification Mission for the Mediterranean Solar Plan” Final Report January 2010 The project is funded by The project is implemented by the European Union Resources and Logistics The content of this publication is the sole responsibility of RAL and can in no way be taken to reflect the views of the European Union
  • 2. Table of contents Page EXECUTIVE SUMMARY ................................................................................................................8! 1.! INTRODUCTION .............................................................................................................16! 2.! MAIN FINDINGS: ENERGY SITUATION AND PERSPECTIVES ...............................................18! 2.1! Key issues .................................................................................................................18! 2.2! Electricity sector ........................................................................................................23! 2.3! Energy efficiency and renewable energy...................................................................31! 3.! RECOMMENDATIONS ....................................................................................................60! 3.1! Developing policy tools for a progressive development of an EE & RE sector in MPCs ...................................................................................................................................60! 3.2! Developing appropriate financing instruments ..........................................................73! 3.3! Supporting technology transfer..................................................................................83! 4.! CONCLUSIONS .............................................................................................................89! 2
  • 3. List of figures Figure 1: The Euro-Mediterranean Power Systems ...............................................................26! Figure 2: Existing and potential future connections................................................................28! Figure 3: Electricity Tariffs for Residential Use ......................................................................53! Figure 4: Egyptian Sustainable Loan Mechanism approach ..................................................56! Figure 5: Supporting schemes for RE development in the EU...............................................56 3
  • 4. List of Boxes BOX 1.....................................................................................................................................32! BOX 2.....................................................................................................................................39! BOX 3.....................................................................................................................................57! BOX 4.....................................................................................................................................62! BOX 5.....................................................................................................................................65! BOX 6.....................................................................................................................................67! BOX 7.....................................................................................................................................84! BOX 8.....................................................................................................................................87! 4
  • 5. List of tables Table 1: MPCs’ main economic & energy figures ..................................................................19 Table 2: Energy Efficiency indicators .....................................................................................21 Table 3: Generation Capacity and Annual Electricity Production and Consumption in the Mediterranean Basin ......................................................................................................23 Table 4: Current Electricity Laws and their status in MPCs ...................................................25 Table 5: Electricity Sector Overview in Selected Countries ...................................................30 Table 6: Energy Efficiency Institutional Arrangements in MPCs ............................................34 Table 7: Share of Renewables in Electricity (%)*...................................................................36 Table 8: RE technologies - Cost Estimates............................................................................38 Table 9: Main characteristics of RE policies in MPCs Countries............................................42 Table 10: Stakeholder Analysis Matrix ...................................................................................47 Table 11: PV Generation Costs (source: EPIA, 2008) ...........................................................52 Table 12: Generation Costs for Wind, Solar PV and CSP in MPCs .......................................52 Table 13: Existing Support Mechanisms for RE / EE projects ...............................................54 Table 14: Cost and performance parameters of high voltage AC and DC transmission systems ..........................................................................................................................81 Table 15: Investment costs of a sample of projects ...............................................................81 5
  • 6. Acronyms and Abbreviations AC Alternating Current AFD Agence Française de Développement ANME Agence Nationale de Maîtrise de l’Energie (Tunisia) APRUE Agence pour l’Utilisation Rationnelle de l’Energie (Algeria) AUPTDE Arab Union of Producers, Transporters and Distributors of Energy BO Build–Operate BOT Build–Operate–Transfer CCT Clean Coal Technology CDER Centre de Développement des Energies Renouvelables (Algeria and Morocco) CDM Clean Development Mechanism CEER Council for European Energy Regulators CER Certified Emission Reduction COP Conference of Parties CSP Concentrated Solar Power DC Direct Current EC European Commission EE Energy Efficiency EU European Union EEA Egyptian Electricity Authority EEHC Egyptian Electricity Holding Company EIT EIB: European Investment Bank EnR Club European National Energy Management Agencies Network EREC European Renewable Energy Council ESCO Energy Service Company ETAP Eco-Technologies Action Plan FEMIP Facility for Euro-Mediterranean Investment and Partnership FNME Fonds National de Maîtrise de l’Energie (Tunisia) FODEP Fonds de Dépollution Industrielle (Morocco & Tunisia) GDP Gross Domestic Product GTZ Deutsche Gesellschaft für Technische Zusammenarbeit HVAC High Voltage Direct Current HVDC High Voltage Alternative Current KfW Kreditanstalt für Wiederaufbau IEA International Energy Agency IFI International Financial Institution IGF Inspection Générale des Finances (France) IPP Independent Power Producer KIC Knowledge and Innovation Communities LCECP Lebanese Centre for Energy. Conservation Project (UNDP/GEF) MEDELEC Mediterranean Committee for Electricity MEDENER Mediterranean Energy Agencies Network MEDREG Mediterranean Regulators for Electricity and Gas MEDREP Development Program of the Renewable Energy in the Mediterranean Region MedRing Mediterranean energy ring study financed by the EU MED-EMIP Euro-Mediterranean Energy Market Integration Project financed par the EU Energy Efficiency in the Construction Sector in the Mediterranean Project MED-ENEC financed par the EU MENA Middle East & North Africa MEP Mediterranean Energy Perspectives MPCs Mediterranean Partner Countries MIRA Mediterranean Innovation and Research Coordination Action MNI Ministry of National Infrastructures (Israel) MSP Mediterranean solar Plan MSSD Mediterranean Strategy for Sustainable Development 6
  • 7. NERC National Energy Research Center (Jordan and Syria) NIF EU's Neighbourhood Investment Facility NRA Jordanian Natural Resources Authority NREA New & Renewable Energy Authority (Egypt) O&M Operation and Maintenance OME Observatoire Méditerranéen de l’Energie PEC Palestinian Energy & Environment Research Center PERC Palestinian Electricity Regulatory Council PPA Power Purchase Agreement PPP Public Private Partnership PPP Power Purchase Parity PV PhotoVoltaic R&D Research & Development RE Renewable Energy RCREEE Regional Centre for Renewable Energies and Energy Efficiency RES Renewable Energy Sources SB Single Buyer SPB Special Purpose Vehicle STEG Société Tunisienne de l'Electricité and du Gaz SWH Solar Water Heater TFEC Total Final Energy Consumption TPA Third Party Access TPES Total Primary Energy Supply UNDP United Nations Development Program UfM Union for the Mediterranean UNEP United Nations Environment Program UTCE Union for the Coordination of Electricity Transmission VAT Value Added Tax WEO World Energy Outlook (IEA) 7
  • 8. Executive summary Context This study was carried out at the request of the European Commission between January and June 2009. Its main objective was to identify the most effective strategy for developing and implementing the "Mediterranean Solar Plan” and to suggest how this plan might be developed and implemented effectively in the region. This includes analysing the role and coordination needs of the various actors involved. Launched on July 13, 2008 at the Paris Summit, the Mediterranean Solar Plan (MSP) is one of the six initiatives of the Union for the Mediterranean (UfM), which builds upon the "acquis" of the Barcelona process. Based on concrete projects, the UfM focuses on resource management in the Mediterranean (water, energy), addresses environmental challenges and more broadly fosters economic development and trade in the Mediterranean basin. The UfM specifically identified the need to support the deployment of alternative energy sources in order to cope with rising demand and to address security of supply concerns. Market deployment as well as the research and development of alternative sources of energy are considered as major priorities in the effort towards ensuring sustainable development. The Mediterranean Solar Plan (MSP) is expected to cover numerous projects based on various technologies involving the countries of the Southern and Eastern regions of the Mediterranean. The general objective of the MSP is the creation of a total of 20 GW of new generation capacity from solar and other renewable energy sources around the Mediterranean Sea by 2020. These individual power plants are expected to respond to the demand of local markets and to export part of the electricity generated from renewable sources to the European Union (EU). This will be possible if sufficient interconnections are developed and if article 9 of the EU Directive on the Promotion of the Use of Energy from Renewable Sources1 is effectively applied. Although the quantified target set by the MSP relates to renewable energy (RE) generation, the MSP will also include efforts to control energy demand (the Mediterranean Energy Agencies Network -MEDENER- suggested an objective of 20% of energy savings or 60 Mtoe by 2020) which will curb the strong increase in domestic requirements in the countries to the south of the Mediterranean. Main findings Based on in-depth interviews and meetings with key stakeholders in the Mediterranean Partner Countries (MPCs) and in the EU, a summary of the study’s main findings is presented below. 1 Directive 2009/28/EC of 23/04/2009 of the European Parliament and the Council 8
  • 9. Demographic, legal and economic context Mediterranean countries will face, by 2020, a very significant change in their energy mix: Energy demand, in the Southern countries, is expected to double, while the increase in the countries of the Northern Mediterranean shore will represent only 30% over the same period; The share of RE in the total energy consumption will reach 5,3% in the North versus 3,3% in the South. Increasing the share of RE in total energy consumption is the main challenge of the MSP, because of its often uncompetitive generating costs. For the moment, most MPCs have not yet implemented regulations fostering a strong involvement of private operators in the RE sector (third-party access or specific feed-in-tariff schemes for electricity produced from renewable sources), despite the existence of a number of Independent Power Producers (IPPs). The MSP will cover projects promoted by both public and private operators, such as IPPs, and will rely to a large extent on project financing. These approaches require specific contractual structures and regulatory frameworks adapted to Public Private Partnership (PPP) schemes. MPCs currently have limited human capital to develop and implement ambitious policies concerning RE and EE, and in particular to define an action plan with specific guidelines for actions that must achieve the policy objectives of rational use of energy and of RE development. The reinforcement of the electrical interconnection between MPCs as well as between the Southern and Northern shores of the Mediterranean is a key issue that needs to be addressed for both technical as well as political reasons. For the moment, only the Maghreb interconnected grid is connected to the European one through Morocco and Spain. The Turkish block will be connected to the European grid between 2010 and 2012 depending on the selected technical option. Increasing the capacities of existing connections (Morocco- Spain, Syria-Turkey, Turkey-Bulgaria, etc.) will favour the development of new projects in the EU. A number of cooperation initiatives that address EE & RE issues already exist around the Mediterranean. The MSP should support these initiatives in order to increase coordination and to avoid unnecessary competition. Development of Renewable Energies The relative generating prices for renewable energy technologies remain uncompetitive when compared to conventional technologies. Current market prices do not take into account environmental externalities (environment and health impacts) and therefore favour traditional energy sources. However technology and market drivers (such as energy prices) could strongly improve the competitiveness of certain RE technologies in the short term. Other barriers to RE deployment include: ! Poor knowledge of renewable energy sources and their potential, by the private sector, the general public and policy makers in the MPCs. ! The relative small number of domestic electricity supply companies which would be sufficiently robust or able to support the development of industrial clusters. ! Lack of differentiation in existing regulations and incentives between energy production sources or between the different segments. The control of energy consumption and the increased use of energy from renewable sources, together with energy savings and increased energy efficiency are essential pillars for developing the MSP. The analysis of international best practices leads to a number of lessons useful in formulating the development strategy for the MSP. 9
  • 10. International Best Practice for Implementing RE and EE Strategies The first lesson from an international review of policies, measures and programs for EE & RE is that there is no unique instrument but rather a successful use of a mix of properly articulated instruments. All successful programs, taken from a variety of different countries, illustrate the importance of a solid architecture, a coherent mix of instruments using complementary incentives, and the promotion of already tested and innovative applications. The second lesson is that the wide range of means used by EU countries for the implementation of energy management in EE and in RE is aimed at meeting the commitments of the Kyoto Protocol. The importance of regulation was found to be an important tool in each country. The importance of institutions dedicated to energy conservation at the national, regional and local levels is also significant but also the legal status and responsibilities of these agencies which vary from one country to another. The general trend towards giving greater responsibility to the energy and financial operators in implementing EE & RE projects is widespread.. As a result, the regulatory role of the State becomes very important in order to set market rules that allow for the development of the rational use of energy and for RE development. The third lesson is the remarkable diversification of public incentives, particularly finance, which has accelerated in recent years with the emergence of public private partnerships and the use of specific funds for the support of different forms of investments. In addition to traditional funding, financial mechanisms exist which provide a greater share of assistance to private operators. Indeed, in this era of the liberalization of European energy markets, member states are seeking to increase the role of the private sector in financing EE & RE. These instruments may include "leasing" or "third party funding" which involve energy service companies (ESCOs), through the development of investment funds or guarantee funds, or by granting loans at subsidized rates and on favourable terms with banks or private investors. As a result, the most successful programs are those with the following characteristics: consistency (well-defined target group and a clear articulation of the measures), the cost spread between stakeholders and the State, flexibility, simplicity, information quality and awareness, the participation and motivation of different actors (which implies the acceptability of these programs by actors), continuity (introducing a policy of structural efficiency, programmed and durable) and substantial environmental benefits. Based on the study’s findings, recommendations to successfully implement the MSP have been produced and are organized into three, inter-related areas: ! Institutional Environment ! Financing ! Technology Transfer A general and brief presentation of each thematic area is provided below. A summary table regroups the detailed recommendations, along with the proposed timing for implementation. Important details and more precise explanations are to be found in the last chapter of this report. 10
  • 11. 1. Institutional Environment: Developing policy tools for the progressive development of an EE & RE sector in MPCs 1.1 A comprehensive framework for an incentive EE & RE policy A number of accompanying measures are needed which include: the reorganization of the industries, financial support mechanisms, regulatory reform, industrial policy, and public communication. Some measures are horizontal, such as sections of industrial policy, communication and advocacy. Others are more specific to each sector including regulatory aspects, financial and organizational: these measures concern the four main RE sectors: solar thermal (solar water heating), wind, solar photovoltaic and thermodynamic solar energy. 1.2 Relying on National energy agencies and their Mediterranean network to develop and implement EE & RE policies Most of the EE & RE projects implemented in the region are necessarily limited in terms of geography and/or time scope. Moreover, the proliferation of initiatives makes it difficult to understand the conditions and results of implemented projects. Despite this apparent fragmentation, the energy agencies in the Mediterranean region are in agreement with the long term need for the development and implementation of national public policies. Their network within MEDENER offers a regional perspective. MEDENER should be reinforced and play a key role in terms of monitoring and coordination of actions related to energy efficiency and renewables in the Mediterranean region. 1.3 Supporting the emergence of a structured network of RE & EE industry players Since market transformation is very difficult to achieve and consists of several stages, it requires combinations of policy tools as well as the involvement of several actors such as manufacturers and other private service providers, end-users and government agencies. Concerning professionals, information sharing on objectives, facts, and other country experiences is a powerful tool to identify options and adapt them to the local context. 2. Developing appropriate financing instruments The development of innovative financing mechanisms will be critical for the successful implementation of the MSP. As the estimated financing needs of the MSP will be greater than the potential contribution of International Financial Institutions (IFIs), the key challenge will be to identify conditions which are necessary to attract private investments to participate in financing MSP projects. In order to achieve this, support from IFIs will be needed to encourage the establishment of a favourable RE/EE investment framework and to demonstrate the economic viability of certain technologies in MPCs; develop innovative business models and test new mechanisms such as exporting electricity to the EU 3. Technology Transfer: Supporting technology transfer Technology transfer is identified as one of the four priority areas of the MSP, based on the principle that development of RE/EE projects in MPCs should lead to the emergence of local industrial activity, job creation, as well as research and innovation capacities. For these reasons, technology transfer and development of local jobs is a key issue for Governments in MPCs. Developing an industrial capacity in the RE/EE will require significant efforts from MPCs in order to acquire operational know-how in terms of producing equipment, operating and maintaining RE/EE installations. In addition to developing local businesses in the clean energy sector, manufacturing a significant share of components locally may also reduce the investment costs of RE/EE projects, thereby contributing to address the issues related to the competitiveness of RE/EE technologies. Technology transfer appears as a critical issue for the implementation of the MSP, as it plays a key role in: ! Gaining acceptance of projects by policy makers in MPCs due to its industrial development and job creation potential, 11
  • 12. ! Reducing project costs by manufacturing part of the components required on-site, ! Ensuring the development of proper operation and maintenance (O&M) capacities locally which will be called upon during the lifetime of the project, ! Reinforcing cooperation between clusters and research centres from the EU and from MPCs. 12
  • 13. Priorities Suggested measures Completion date INS 1. Developing a 1.1 Developing an overall energy policy that ! 2010 Comprehensive Framework emphasizes energy efficiency and renewable " 2012 for an EE and RE Incentive energy # 2020 Policy 1.2 Establishing a database of national EE & RE # 2010 policies and projects in the MPCs ! 2012 # 2020 1.3 Establishing a directory of projects developed # 2010 within the framework of international cooperation ! 2012 ! 2020 INS 2. Relying on National 2.1 Targeted Capacity Building of Institutional ! 2010 Energy Agencies and their Agencies " 2012 Mediterranean Network to # 2020 Develop and Implement EE & RE policies 2.2 Developing Capacities to Promote the Role ! 2010 of MPCs in RE Development # 2012 # 2020 2.3 Developing National Renewable Energy ! 2010 Action Plans # 2012 # 2020 2.4 Developing a Monitoring Tool concerning the ! 2010 MSP project pipeline # 2012 # 2020 INS 3. Supporting the 3.1 Creation in each country of a dedicated MSP # 2010 Emergence and Structuring “one stop shop” for potential developers ! 2012 of an EE & RE Network # 2020 3.2 Setting up a MSP facility dedicated to public ! 2010 and private partners in order to support pre # 2012 feasibility studies on RE projects # 2020 3.3 Organization of Mediterranean Sustainable ! 2010 Energy Week # 2012 # 2020 13
  • 14. Priorities Suggested measures Completion date FIN 1. Supporting the 1.1 Improving knowledge-sharing on RE/EE ! 2010 implementation of support financing needs in MPCs and on the experience # 2012 mechanisms for RE/EE from existing support schemes in the EU # 2020 development 1.2 Implementing support schemes appropriate # 2010 for each MPC (tax credits, feed-in-tariffs, ! 2012 renewable energy obligations, etc.) ! 2020 FIN 2. Defining adequate 2.1 Improving knowledge on challenges facing ! 2010 financing instruments the financing of RE/EE in the region, including # 2012 analysing options for developing innovative # 2020 financial mechanisms at regional level, ensuring the dissemination of knowledge resources in order to facilitate capacity-building, updating the analysis of market conditions. 2.2 Developing a regional guarantee facility or ! 2010 credit enhancement mechanisms ! 2012 # 2020 2.3 Establishment of equity-type mechanism, ! 2010 including a specific window aimed at ESCOS ! 2012 and dedicated a Special purpose vehicle (SPVs), # 2020 as well as a technical assistance facility FIN 3. Developing 3.1Setting up a dedicated carbon finance ! 2010 complementary revenue programme for the MSP # 2012 streams from RE/EE # 2020 projects 3.2 Defining the technical, legal and # 2010 administrative framework for the export of ! 2012 electricity from MPCs to the EU network # 2020 FIN 4. Analyzing possible 4.1 Analyzing financing requirements and ! 2010 approaches to finance options for interconnections # 2012 Interconnections # 2020 14
  • 15. TECH 1. Setting up 1.1 Developing a long-term regional strategy for ! 2010 specialized clusters technology-transfer in the clean energy field, # 2012 building upon other initiatives developed by the # 2020 Union for the Mediterranean (Mediterranean research network, Mediterranean university network, etc.). 1.2 Identify potential clusters in the energy field ! 2010 (review of existing initiatives, call for projects, # 2012 etc.) # 2020 1.3 Supporting the emergence of specialized # 2010 clusters, in particular through a dedicated ! 2012 funding programme providing both technical # 2020 assistance (studies, training, public communication) and co-financing for research initiatives, essentially by channelling existing resources for innovation support 1.4 Supporting the networking of regional # 2010 clusters and stakeholders as a priority by ! 2012 facilitating the exchange of experience and joint ! 2020 initiatives (communication, research, etc.) through the establishment of a regional focal point. TECH 2. Improving quality 2.1 Reinforcing and coordinating efforts to # 2010 standards and training support to the improvement of RE/EE quality ! 2012 capabilities standards for both equipment and services. This # 2020 will include: training and capacity-building for the implementation of quality labels, as well as co- financing of testing facilities and equipments 2.2 Developing of bi- or multicultural training ! 2010 programmes, based on current initiatives from # 2012 MPCs or from EU MS # 2020 15
  • 16. 1. Introduction Primary energy demand within the Mediterranean Partner Countries (MPC2s) is forecasted to increase by 70% over the next 20 years. Despite the substantial potential for renewable energy (RE) production in the region, meeting this demand increase would rely on up to 87% on fossil fuels in a 'business-as-usual' scenario, which would lead to reduced energy security and to increased negative environmental impacts. The DESERTEC report3 identified the development of the region's RE potential mainly based on the very favourable solar resource conditions as well as its suitability for accommodating large-scale solar facilities. A combination of solar, as well as other appropriate RE technologies such as wind, could provide a long-lasting solution to the aforementioned challenges if deployed on a large scale within the MENA region. From a European industry perspective, Southern and Eastern Mediterranean Countries (MPCs) present great potential in terms of solar radiation and land availability, but they lack the regulatory framework, market, technology, and finance capacity to ensure large-scale RE developments. Mass deployment of RE technologies would trigger further economic development and job creation in Mediterranean countries. In this framework, the Mediterranean Solar Plan (MSP) was established as one of the main initiatives of the Union for the Mediterranean (UfM) at the Summit in Paris on 13- 14 July, 2008. The MSP is expected to both: ! Develop RE in the region on a scale capable to contribute significantly to satisfying the increasing energy demand in the Mediterranean Partner Countries (MPCs); ! Contribute to developing an integrated "Euro-Mediterranean green electricity market", to satisfy the MPCs' own electricity needs with renewable energy sources (mainly solar), and to export part of the electricity produced with renewable energy to consumers in other countries, and particularly to the EU. The objectives of the MSP are in line with the goals of the EuroMed Partnership initiated in 1995 with the Barcelona Declaration. The Euro-Mediterranean Partnership (Regional Strategy Paper 2007-2013) aims at promoting regional trade integration, infrastructure networks and improved environmental protection. In addition, the EuroMed Energy Priority Action Plan established at the Limassol Conference for the period 2008-2013 features the promotion of renewable and sustainable energy, as well as improvements to the institutional, legislative and political framework that governs the development and dissemination of RE technologies. In this context, the MSP has been declared by Ministers and Heads of State and Governments as one of the key 2 Morocco, Algeria, Tunisia, Egypt, Israel, Palestinian Territories, Lebanon, Syria and Turkey 3 Trans-Mediterranean Renewable Energy Cooperation (November 2007). Clean Power from Deserts: The DESERTEC Concept for Energy, Water and Climate Security. White Paper.
  • 17. projects of the UfM, in order to promote both partnership with MPCs and to improve energy security for all partners involved in the UfM. The MSP is not restricted to any particular technology. Even though it has a specific focus on solar CSP (Concentrated Solar Power), solar PV (Photovoltaic) and wind- based power generation, it integrates an important component that considers energy efficiency and will also consider smaller-scale decentralised systems based on other RES technologies. The priority areas which have been defined for the plan are the following: ! Support the convergence of national energy policies with a particular stress on implementation of legislative, regulatory and institutional framework enabling RE development in order to meet the growing demand in MPC markets, with the possibility to export part of the electricity produced to EU markets; ! Energy demand management, energy efficiency and energy savings; ! Technology transfer; and, ! Infrastructure development including the strengthening of electricity interconnections ! The implementation of the MSP by 2020 will require adequate framework conditions in MPCs. The fundamental conditions involve mainly regulation and policy frameworks, adequate financing mechanisms, technology transfer and development of local industrial capacities, as well as infrastructures. This last point relates to the adoption by the European Parliament and the Council of Directive 2009/28/EC of 23/04/2009 on the promotion of the use of energy from renewable sources, which provides an opportunity for the further development of “green” electricity imports from the third countries to the EU. In particular, Article 9 of the RES Directive enables implementation of joint projects between Member States and third countries concerning the generation of electricity from renewable sources. Major growth in electricity imports from MPCs will however require a significant increase in the capacity of transmission networks. This report is the final report of the study carried out at the request of the European Commission by Denis Levy and Alexis Gazzo between January and June 2009. Work carried out includes mostly literature review and field work in 4 EU Member States (France, Germany, Italy, Spain) and in 9 MPCs (Algeria, Egypt, Israel, Jordan, Lebanon, Morocco, Palestinian Territories, Syria, Tunisia), during which more than 100 stakeholders were interviewed. The purpose of this report is to provide an overview of the main framework conditions for the implementation of the MSP, and to suggest priority areas for donor support. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 17
  • 18. 2. Main findings: energy situation and perspectives 2.1 Key issues Despite being located around a common Mediterranean sea, the countries from the Southern and Eastern shores have contrasting energy situations with respect to their Northern neighbours and also between themselves. This situation can be explained by two main differences: demographic trends and economic growth. Northern countries account for over 70% of the total Mediterranean energy demand; while the remainder is equally divided between the Mediterranean Maghreb and Mashrek countries. The South and East Mediterranean Countries referred to in this report as Mediterranean Partner Countries (MPCs) face rapid demographic growth combined with relatively low incomes, rapid urbanization, and significant socioeconomic development needs. These characteristics translate into a growing demand for energy services and related infrastructure. Northern Mediterranean countries are characterized by economies in transition from industry toward services which implies less energy intensity. In addition, the Mediterranean countries can be divided between energy importers and exporters. Countries from the North are exclusively net importers of fossil fuels, whereas the Southern countries are divided between exporters (Algeria, Egypt, Libya, and Syria) and importers (Morocco, Tunisia, Israel, Jordan, the Palestinian Territories and Turkey) of energy. In the Southern and Eastern Mediterranean, energy import dependence is also high in most importing countries, with Morocco, Lebanon, Israel, and Turkey ranking at the top. Tunisia recently became a net importer and is expected to reach a much higher dependency level in the coming years. Primary energy consumption in the MPCs has been growing very rapidly over the last decades from 74.6 Mtoe in 1980 to 218.2 Mtoe in 2005 (around a 4.5 % average annual increase over the period). This sustained increase is mainly due to demographic growth, the improvement in the standard of living and the expansion of the industrial, commercial and residential sectors. This growth is also driven by the increase in electricity demand. Energy consumption per capita increased from 458 kWh to 1,577 kWh (more than 5% average annual increase over the same period). It is important to remember that the average energy consumption per capita level in the MPCs is much lower than in the Northern Mediterranean countries (over 5 times lower compared to France in 2005). Total Primary Energy Supply (TPES) is increasing faster than GDP in the region, indicating that the economic development is becoming increasingly energy intensive. The energy intensity increased by more than 20% over the period 1980 – 2005 (1.2% annual growth rate over the period), as described in table 2 (see below). This average situation hides large disparities between countries. The average energy intensity in the region should decrease as countries in the region implement energy efficiency and conservation programs. It is clear that there is a great potential for energy efficiency and conservation in the region and that energy intensity may be reduced, along with the energy-related greenhouse gas emissions. The energy intensity of the region’s economies cannot be explained simply by differences in their energy resources. MENA energy-abundant countries are among the most energy-intensive. But some energy-importing countries (for example, Lebanon and Jordan) also have quite energy-intensive economies, as well as some other countries that are facing the gradual depletion of their fossil fuel reserves (for example Syria). At the same time, an energy-abundant country like Algeria has a fairly low level Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 18
  • 19. of energy intensity. Tunisia and Morocco fall below the world average (and even below the OECD average), while others are significantly above even the MENA regional average. There is no universal correlation between the natural resource endowment of the region’s countries and their energy productivity. Table 1: MPCs’ main economic & energy figures Primary Final energy Primary Final energy* energy Population GDP per energy consumption consumption Country (2006) capita (PPP) Consumption consumption per capita per capita million $ 2005 2006 M toe 2006 M toe 2006 toe 2006 toe Algeria 33.36 7 308 36,44 21,17 1,09 0,63 Egypt 75.48 4 775 62,32 42,18 0,83 0,56 Israel 7.04 27 699 21,7 13,69 3,08 1,94 Jordan 5.73 5 947 7,05** 4,7** 1,23** 0,82** Lebanon 3.61 5 690 4,68 3,57 1,3 0,99 Morocco 31.07 4 841 12,89 10,04 0,41 0,32 Palestinian 3.7 n/a 1,14*** 1,02*** 0,31*** 0,28*** territories Syria 19.53 3 932 19,73** 12,85** 1,01** 0,66** Tunisia 10.1 9 226 8,99 6,69 0,89 0,66 Turkey 73,92 7 154 90,11 67,76 1,22 0,92 * Non energetic usages included** Year 2005 *** Year 2000 Source: Enerdata The energy intensity of an economy is based on its structure, whether or not energy intensive sectors are large contributors to the GDP, and the efficiency of energy use in each of the consuming sectors. Energy intensity is therefore a useful measure to compare economies and trends; it is not a value judgment on the choice of a specific economic structure. It does, however, allow decision makers to look at alternative patterns of energy consumption for a certain rate of economic growth and to maintain the competitiveness of their economies. The use of purchasing power parities in measuring energy intensities greatly improves the comparability between regions with different levels of economic development, as it narrows the gap between regions, compared to what would be shown with exchange rates. To achieve this, GDP and value-added data are converted at purchasing power parities to reflect differences in general price levels. Using purchasing power parities rates instead of exchange rates increases the value of GDP in regions with a low cost of living and therefore decreases their energy intensities. On average, for non-OECD countries the GDP at purchasing power parties is 2-7 times higher than if it is expressed at exchange rates. Energy intensity is widely used to evaluate how efficiently energy is used, and it can provide signals to decision-makers about energy efficiency trends. However, energy intensity is influenced by many factors, among which energy efficiency is only one component. Changes in the structure of a country’s national economy (the “economic Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 19
  • 20. structure”) or in its energy mix can have a strong impact on the energy intensity indicators. The ODYSSEE4 project uses an alternative indicator, calculated from an evaluation by end-use (bottom-up approach); this new indicator replaces the overall energy intensity to monitor energy efficiency trends in the EU. Most MPCs governments are aware of the benefits (in terms of economic and environmental impacts) of promoting renewable, clean and efficient technologies in their countries along with demand side management measures, as it leads to: ! reduced environmental impact by eliminating mining and drilling pollution, ! “healthier” overall economy with the new jobs provided by the new industries necessary to produce and support renewable energy technology, ! a healthier population with the reduction in pollutants caused by burning fossil fuels, ! a stronger national security with a reduction in dependence on foreign oil, ! a reduction in potential conflicts as the focus shifts away from the control of oil, ! an improvement in impoverished developing countries as new opportunities arise in the untapped renewable energy industry, ! a more efficient overall economy as people are able to save significant amounts of money in their heating and cooling bills by using solar and wind power. But despite the availability of the large potential resources, renewable energies are still marginal in their contribution to electricity generation in the region. Given the present context and in order to meet their growing electricity demand, the MPC countries are facing three major challenges related to the development of their respective electricity sectors: ! Difficulties in mobilizing financial resources for new power generation capacity and transmission/distribution networks; ! Electricity interconnections and the creation of regional power markets (both South-South and South-North); ! Sustainable development (that is, the rational use of energy and renewable energy sources). These three challenges can be seen, in the framework of the Euro-Mediterranean Partnership, as an opportunity for investment and for the promotion of a Mediterranean regional interconnected market. This situation also highlights the importance of regional initiatives such as the Mediterranean Solar Plan in addressing these issues. 4 Source : www.odyssee-indicators.org Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 20
  • 21. Table 2: Energy Efficiency indicators Koe/$2005 at Purchasing Power Parities (PPP) 1980 1990 2000 2007 European Union (27) ! Primary energy intensity 0.201 0.173 0.146 0.129 ! Primary energy intensity adjusted to EU structure 0.197 0.168 0.140 0.122 ! Final energy intensity 0.138 0.112 0.095 0.086 ! Final energy intensity at 2005 GDP structure 0.088 0.075 0.066 0.062 ! Final energy intensity adjusted to EU economic 0.088 0.075 0.066 0.062 structure Algeria ! Primary energy intensity 0.104 0.154 0.161 0.158 ! Primary energy intensity adjusted to EU structure 0.064 0.103 0.120 0.137 ! Final energy intensity 0.051 0.074 0.075 0.082 ! Final energy intensity adjusted to EU economic 0.048 0.073 0.086 0.098 structure Egypt ! Primary energy intensity 0.150 0.183 0.172 0.180 ! Primary energy intensity adjusted to EU structure 0.126 0.159 0.136 0.129 ! Final energy intensity 0.119 0.121 0.112 0.112 ! Final energy intensity adjusted to EU economic 0.095 0.113 0.097 0.092 structure Israel ! Primary energy intensity 0.129 0.127 0.118 0.111 ! Primary energy intensity adjusted to EU structure 0.050 0.060 0.058 0.051 ! Final energy intensity at 2005 GDP structure 0.069 0.071 0.068 0.062 ! Final energy intensity adjusted to EU economic 0.038 0.043 0.041 0.036 structure Jordan ! Primary energy intensity 0.154 0.257 0.231 0.219 ! Primary energy intensity adjusted to EU structure 0.149 0.223 0.207 n/a ! Final energy intensity 0.114 0.181 0.165 0.146 ! Final energy intensity adjusted to EU economic 0.112 0.159 0.148 0.121 structure Lebanon ! Primary energy intensity 0.316 0.278 0.302 0.208 ! Primary energy intensity adjusted to EU structure 0.208 0.209 0.303 0.216 ! Final energy intensity 0.203 0.179 0.218 0.132 ! Final energy intensity adjusted to EU economic 0.156 0.148 0.216 0.129 structure Morocco ! Primary energy intensity 0.084 0.081 0.094 0.095 ! Primary energy intensity adjusted to EU structure 0.038 0.039 0.052 0.053 ! Final energy intensity 0.066 0.057 0.071 0.069 ! Final energy intensity adjusted to EU economic 0.028 0.027 0.037 0.038 structure Palestinian Territories n/a n/a n/a n/a Syria ! Primary energy intensity 0.186 0.326 0.297 0.248 ! Primary energy intensity adjusted to EU structure 0.265 0.233 0.191 0.168 ! Final energy intensity 0.148 0.231 0.174 0.139 ! Final energy intensity adjusted to EU economic 0.198 0.166 0.137 0.120 structure Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 21
  • 22. Koe/$2005 at Purchasing Power Parities (PPP) 1980 1990 2000 2007 Tunisia ! Primary energy intensity 0.115 0.121 0.113 0.097 ! Primary energy intensity adjusted to EU structure 0.099 0.114 0.106 0.086 ! Final energy intensity 0.083 0.091 0.084 0.067 ! Final energy intensity adjusted to EU economic 0.074 0.081 0.076 0.061 structure Source: Enerdata / Energy Efficiency Policies around the World: Review and Evaluation World Energy Council 2007 Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 22
  • 23. 2.2 Electricity sector 2.2.1 Overview Energy consumption per capita is currently three and a half times lower in the Southern than the Northern countries of the Mediterranean; however, the growth factors in the South are significantly stronger, particularly due to demography, population growth, increasing living standards and business needs. Thus, according to the OME5, energy demand will grow by 4.8% per year until 2020 in the South and East6, compared to 1.3% in the North7 As a result of these demand forecasts, the region must develop additional production capacity of 191 GW (106 in the South and East and 85 in the North) compared to the current installed capacity of 424 GW today (103 in the South and 321 North)8. Table 3: Generation Capacity and Annual Electricity Production and Consumption in the Mediterranean Basin Generation Capacity Annual Production Consumption GW TWh (per capita) kWh Northern shore 2005 321 1 380 6 471 Northern shore 2020 406 1 780 8 815 Southern and Eastern 103 500 1 862 shores 2005 Southern and Eastern 209 1 000 3 077 shores 2020 Source: Energy perspective in the Mediterranean 2008, OME December 2008 Some countries in the Southern & Eastern Mediterranean region face strong demand for electricity, due to their economic development trends and population growth. The electrical power sectors in these countries are mostly structured around vertically integrated state- owned monopolies. Tariffs are set by governments and include a social bracket in the tariff structure in order to ensure that all people have access to electricity, including the poor. 5 Energy perspective in the Mediterranean 2008, OME December 2008 6 South and East Mediterranean Countries: Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, Israel, Palestinian Territories, Lebanon, Syria, Turkey 7 North Mediterranean Countries: Portugal, Spain, France, Italy, Albania, Bosnia – Herzegovina, Croatia, Macedonia, Serbia, Slovenia, Greece, Malta, Cyprus 8 Source: Energy perspective in the Mediterranean 2008, OME December 2008
  • 24. Over the last 30 years, the MPCs have developed their electrical systems and have recently begun power sector restructuring, which has contributed to their economic growth and expanded access to electricity. Some countries have delegated the distribution function to the private sector, and others have elaborated new electricity laws that create regulatory bodies and unbundled natural monopoly functions (transmission) from potentially competitive functions (generation and supply). Most of the countries (Morocco9, Algeria, Tunisia, Egypt, Palestinian Territories10 and Turkey) have introduced independent power producers (IPPs) on the basis of long-term power purchase agreements (PPAs). As a result, about 16% of the current installed capacity of Morocco, Turkey, Tunisia, and Egypt is in the hands of private producers. Concerning distribution, Jordan, Lebanon and the Palestinian Territories have concessions dating back from the first half of twentieth century, while in the late 1990’s, Morocco awarded distribution concession contracts (Casablanca, Rabat, Tangiers and Tetouan) to private companies. In Egypt, six private companies are licensed to distribute electricity in different areas. Nevertheless, state controlled utilities remain predominant in the MPCs region. The share of private generation should slightly increase over the coming years with the completion of several projects (Algeria, Morocco, Tunisia…). The introduction of the new electricity laws in some of the countries, in theory, may also further increase the share of the private sector in power generation. Irrespective of the form of liberalization which is likely to emerge, most of the MPC governments and energy utilities are favourable to introducing competition and regional trade, as well as the following reforms: ! Legal separation of activities within the gas and electricity sectors; ! Corporatization11 of public enterprises; ! Introduction of the private sector for new power generation or energy production; ! Fragmentation of the sector for distribution; ! Tariff levels which meet revenue requirements, phasing out of cross subsidies and adjustment to market and international prices, and the creation of funds or stabilization mechanisms to handle lifeline tariffs for the poor or to extend uniform tariffs throughout the country; ! The need to gradually go beyond single buyer arrangements towards third party access. ! 9 Where more than 60% of electricity is generated by private companies (mainly with foreign shareholders) including RE generation from wind 10 in Gaza a 140 MW gas turbine plant started commercial operations in 2004 11 Corporatization refers to the transformation of state assets into state-owned corporations in order to introduce corporate management techniques to their administration. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 24
  • 25. In several MPCs, electricity production is open to IPPs and energy is purchased by a "quasi single buyer"; conditions are fixed by the "quasi single buyer" and not by the regulator. The "single buyer" also imports / exports electricity as is the case in Morocco. The governments and representatives from the electric power sectors of a majority of MPCs envisage the gradual introduction of a wholesale market (or even a retail market) open to large industrial consumers (mainly those connected to the 225-400 kV main grid, i.e. a small number of industries). Regulated Third Party Access (TPA) will therefore be introduced for participants in the free market. The market arrangements will involve bilateral contracts between generators and distribution companies or eligible consumers, a spot market and / or balancing mechanisms, as well as settlement mechanisms and solutions for the system operator to acquire ancillary services. Independent system operators and a market operator (for regulating the Wholesale Electricity Markets) based on the US or the Australian electrical power system models are likely to be established. Table 4: Current Electricity Laws and their status in MPCs Separate Third- Private / accounts Regulatory Market Distinct Country Date party Municipal body opening TSO (G/T/D) access distribution Algeria 2002 Yes CREG 30% in 3 Yes Yes No years Egypt Under No EEUCPRA No No No No development Israel No PUA No No Yes No Jordan 1999 Yes ERC No No No Yes Lebanon 2002 Yes NERA No Yes No Yes Morocco Under Yes No No No No Yes development Palestinian Letter of Sector Yes PERC No No No Yes Territories Policy (1997) Syria None No No No No No No Tunisia None No No No No No No Source: OME Note: TSO = transmission system operator. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 25
  • 26. 2.2.2 Interconnections Developing cross-border interconnections is considered as a key condition by the countries of the two shores of Mediterranean to reinforce the reliability of their electrical systems and to optimize the installed capacity by creating an integrated Mediterranean energy market. Figure 1: The Euro-Mediterranean Power Systems United Kingdom Power System UCTE Nordic Countries Power System Interconnected/Unified Power System of the commenwealth of Independent States and Baltic States Turkey South-Western Mediterranean Block South-Eastern Mediterranean Block Ireland Israel, Cyprus and Malta Source: MEDELEC The main sub-regional groups around the Mediterranean Sea are more or less in the advanced stages of linkage or integration: ! In Europe, exchanges take place within the UCTE power system (Union for the Coordination for the Transmission Electricity), which is comprised of 23 European countries, 35 transmission system operators (TSO) and which supplies around 450 million people for a total electricity consumption of around 2,600TWh in 2007 via 230,000 km of high voltage lines. ! On the eastern flank, the Turkish block does not yet operate synchronously with other systems despite the existence of many interconnections such as those to Azerbaijan, Armenia, Bulgaria, Georgia, Iran, Iraq and Syria. The interconnections between Turkey and Bulgaria and between southern Turkey and the northern part of Syria, however, are not currently used (these relate to “pocket” operations and do not ensure electrical continuity). Turkey is planned to start a synchronisation trial with the UCTE again in mid-2009. If successful synchronisation is achieved, the connection with UCTE will immediately become available (the transfer capacity will be limited to 500 MW),
  • 27. Nevertheless, Turkey will still need to be connected in an asynchronous mode to other neighbouring countries (Iran, Armenia, Georgia, etc.) except Syria. ! In the Maghreb area, Morocco, Algeria, and Tunisia are interconnected. The electrical liaison between the Maghreb and Europe has existed since 1997 by means of two Spain-Morocco lines via the Strait of Gibraltar. Currently two 700 MVA, 400kV AC undersea lines are in operation. Discussions are ongoing between Morocco and Spain to increase the transfer capacity. ! The South-Eastern Mediterranean system (Libya, Egypt, Jordan, Syria and Lebanon). Egypt, Jordan, Syria and Lebanon are already interconnected. Lines between Egypt and Libya have existed since 1998 but are not operational. ! The electrical systems of Israel, Cyprus and Malta are mostly isolated; however Israel is connected with the Palestinian Territories. Inter-Mediterranean electrical exchanges are quite limited, especially between the Maghreb countries, despite the strong interconnections and a history of cooperation. The only link that fully functions, essentially in the North-South direction,12 is the Spain-Morocco interconnection. Expected developments Several new interconnection projects are under way to reinforce existing connection between Morocco and Algeria (third connection), Algeria to Tunisia (fifth connection), and to connect Egypt with Libya, and the other Maghreb countries. On November 2005, a first attempt was undertaken to connect Tunisia and Libya. This attempt was suspended to prevent any damage on the South-Western system. Actions are currently underway to cope with the identified difficulties. As for the next connection attempts, Libya alone will first be connected to Tunisia, and then the other countries will follow. This connection test could be expected in the near term. If the new tests are not successful, a DC interconnection between Libya and Egypt would then be considered (and would require 2 years for commissioning). In addition with linking MPC systems, several submarine interconnection projects are under consideration: ! The feasibility study for Algeria-Spain was completed in 2003. The project is still under consideration and the decision on a possible implementation is now in the hands of AEC, Sonelgaz and Red Electrica de España. In terms of connection, the study suggests a 1,000 MW and 500 kV direct HVDC connection between Terga (Algeria) and the Litoral de Almeria (Spain), together with a 200 MW AC connection crossing Morocco. However some technical difficulties are still to be overcome (the significant sea depth (1900 m) would require substantial engineering work). 12 South-North flows have occurred during the initial years of operation of the interconnection (operational since 1997). Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 27
  • 28. ! The Algeria-Italy feasibility study was completed in June 2004. Two solutions for a 500 to 1,000 MW 400 kV interconnection were studied: a “direct” line between Algeria and Italy and an “optimised” line between Algeria and South Sardinia. The “direct” line would face major technical difficulties due to the sea depth in the region (2,000 m). The “optimised” solution would have to cope with similar technical problems but with lower investment levels and power losses (cost estimated to € 750-900 million for the direct line; € 205-578 million for the optimised line) and would benefit from the existing lines between Italy and Sardinia. The construction of this line, however, is also still under consideration as its financial feasibility is uncertain. ! A feasibility study for a 1,000 MW Tunisia-Italy interconnection was carried out in 2006. The project is underway and is linked to the construction of a 1,200 MW conventional fossil-fuel power plant in Tunisia. The project would be a merchant line owned by the generation company. ! A project for an interconnection between Libya and Italy is also under study. Two DC cables of 500MW could potentially connect Italy and Libya through Malta. This would in particular end Malta’s isolation. However several points are still under discussion such as the route of the line: the easiest connection would end in Sicily but could entail congestion difficulties (especially if the connection Tunisia-Italy is realized). ! Greece is considering a link to Crete, which could be extended to Egypt. Figure 2: Existing and potential future connections Source: OME Besides the construction of submarine interconnections, which are extremely costly, the reinforcement of existing links could provide short term additional capacity for the export of electricity, mostly through the reinforcement of the interconnection between Spain and Morocco (an additional 700 MW AC cable) and adding new 400 kV overhead circuits between Turkey and Greece and/or Bulgaria. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 28
  • 29. When the current and planned projects are completed, the MPCs will be linked together via the MEDRING (Mediterranean Electrical Ring), an electric ring that encircles the Mediterranean region and is linked to the European network. The MEDRING project, which would interconnect all Mediterranean systems, is expected to enhance system stability, optimize generation capacity, and develop commercial energy exchanges between countries linked by the electrical ring. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 29
  • 30. Table 5: Electricity Sector Overview in Selected Countries Morocco Algeria Tunisia Egypt Jordan Palestine Israel Lebanon Syria Legislation introducing Under 2002 No Draft 2002 Draft 2003 2002 No electricity liberalisation preparation Independent regulators No Yes No Yes Yes No Yes Yes No Tariffs enabling the sector No No Yes No Yes No Yes No No to cover costs Electrification rate % 84 96 96 95 99 93 98 85 95 Utilities Corporatisation No Yes Yes Yes Yes Yes Yes No No Unbundling of transmission No Yes No Yes Yes Yes No No No IPP in generation % 60 15 25 12 2 Gaza forecaste 5 No d Status SB* SB* SB* SB* SB* !TPA** Unbundled distribution rate 50 100 No No 40 100 No 10 No % Limits to self-generation 50 MW No 50 MW No 50 MW No No Yes Yes Existing Feed-in tariffs No Yes Forecast No No No Yes No No Electrical Interconnections Spa / Mor / Alg / Tun / Lib Egy / Jor / Pal / Syr * SB: Single Buyer **: Third party access Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 30
  • 31. 2.3 Energy efficiency and renewable energy 2.3.1 Energy efficiency Several MPC countries stand out as having longstanding and sustained commitments to energy efficiency. These include Algeria, Israel and Tunisia—all of which introduced legislation and created agencies focused on energy efficiency in the mid-1980s. Beside these countries, a second set of countries introduced institutional arrangements that are not as comprehensive but may well be optimal given respective sector conditions. For example, Israel has a legal framework in place (the Energy Resources Law of 1987), rules and regulations governing some forms of consumption (household appliances), and an agency specializing in energy efficiency (Infrastructure Resources Management Division of the Ministry of National Infrastructure), but, it lacks a financing facility. Most of the countries have created agencies to implement energy efficiency initiatives. Some of these agencies are dedicated solely to energy efficiency, and several have been in place for a long time, including Algeria’s National Agency for the Promotion and Rational Use of Energy (established in 1985), the Infrastructure Resources Management Division of Israel’s Ministry of National Infrastructure (1987), and the Rational Use of Energy Division of Jordan’s National Energy Research Center (1998). These countries have promulgated rules and regulations for energy efficiency in production and consumption. Several are developing some form of regulation concerning energy efficiency (usually appliance standards or building codes). Among the active regulatory regimes in the region are the following: ! In Algeria, thermal building codes apply to houses and commercial buildings. Energy audits for large consumers are mandatory. ! In Egypt, standards and labelling programs cover refrigerators, air-conditioners, and washing machines. ! In Israel, energy efficiency standards apply to refrigerators and air-conditioners. ESCOs must be licensed. ! In Morocco, the Law on Energy Efficiency is being adopted by the Parliament. The Renewable Energy Development Centre, created in 1982, focuses also on energy efficiency. Financing is available, mainly for solar water heaters, and an energy efficiency code for new construction is under development. ! In Tunisia, efficiency requirements are applied to buildings and appliances. ! In Syria, energy efficiency labels are required on refrigerators, air-conditioners, and washing machines. New houses and buildings must conform to a thermal insulation code Most governments in the region consider energy efficiency as a priority issue, although for different reasons. The key issue for many is the relative size of energy subsidies in government budgets; for others, the key drivers also include the necessity to mitigate the volatility of hydrocarbon prices and generating enough financing for energy investments to satisfying the energy demand of their fast-growing economies. These factors have prompted governments to renew their efforts to improve energy efficiency. The governments have experimented with programmes since the 1980s to promote the rational use of energy (compulsory audits and incentives to facilitate investment for large industries, higher tariffs for large residential electricity consumptions, building standards, appliance labelling, etc) mainly in energy intensive industries and large buildings, with support from multilateral and bilateral organizations. These programmes have contributed to raising general awareness among industries, involved in-depth energy audits and led to some investments. In the MPC region, some programmes focusing on industry are being conducted in Morocco and in Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 31
  • 32. Tunisia (the latter which has set up a dedicated national energy management fund in order to finance energy conservation and renewable energy investments). In the construction sector, energy building codes have been elaborated and partly implemented in the main Israeli and Turkish cities. Projects are underway with multilateral and bilateral support in Algeria, Lebanon, Morocco, the Palestinian Territories and Tunisia. Algeria and Tunisia have also launched several demonstration eco building projects. These projects face the global issues of the construction quality, including for anti-seismic standards. The EU-funded programme MED-ENEC contributes to developing and harmonising standards for energy-efficient buildings and the use of thermal solar technologies in all MEDA countries. Some countries, particularly Tunisia, are beginning to address energy efficiency in existing buildings. Tunisia’s STEG, the electric power company, has promoted rational use of energy and solar water heaters (ProSol program supported by MEDREP) in the residential sector. As stated in a recent World Bank assessment on energy efficiency in the MENA region13, Tunisia has “what might be deemed comprehensive institutional arrangements for energy efficiency”. Tunisia “most closely approaches the ideal both in its enabling framework (laws and decrees, national energy plans, regulation and rules, and an apex agency) and implementation arrangements (specialized agency plus programmatic, financing, and other supportive arrangements)”. BOX 1 Tunisia: A success story in implementing an energy management policy in a developing country Among developing countries, especially those in the Mediterranean region, Tunisia has undoubtedly been a pioneer in the initiation of EE & RE policy. Tunisia, since 1985, has put in place a policy of Rational Use of Energy, thus anticipating the widespread development of the energy deficit that was forecast for the mid-90s. From the outset, it has articulated its EE policy around three pillars on which any new policy must be based: (i) Establishing an appropriate institutional framework, with the Agency for Energy Management (AME) initially as a leader, which later became the National Agency of Renewable Energies (ANER) in 1998, and later the National Agency for Energy Management (ANME) from August 2004; (ii) setting up a regulatory framework, based on a comprehensive battery of measures to promote practices and more efficient energy; (iii) Creating financial incentives, focused on energy audits grants and investments, on the one hand, and fiscal measures or tax exemptions, on the other. The rising pressure in global oil markets, that has significantly increased since 2004, has strengthened the energy management policy with the launch of a series of concrete measures that are reflected mainly by the promulgation in 2004 of a specific law on EE & RE, the creation in 2005 of the National 13 Tapping a Hidden Resource: Energy Efficiency in the Middle East and North Africa February 2009 Sustainable Development Network, Middle East and North Africa Region, Energy Sector Management Assistance Program (ESMAP) THE WORLD BANK GROUP. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 32
  • 33. Fund for EE & RE (FNME), the establishment of specific financing mechanisms and the creation of specialized task forces to ensure close monitoring of different priority actions. The impacts of this policy are significant, especially after the results of the 2005-2007 three-year program of EE & RE. The actions taken have yielded significant results in terms of attenuating energy demand growth (apart from improving the efficiency of power generation, the three-year program led to a cumulative energy saving of 770 Ktoe of which 710 Ktoe is attributable to energy efficiency actions, 61 ktoe of fossil fuels savings, resulting from renewable energy development actions), decoupling of economic growth and energy consumption (the period 1990-2007 was also marked by an increase in energy demand of 3.3% per year compared to 4.8% per year increase for economic growth. The contrasting GDP and primary energy demand trends, especially significant during the period 2005-2007, reflect the improved energy performance of the Tunisian economy over this period) and the improving energy intensity (The decoupling of economic growth and consumption of energy generated, from the 1990’s, down average annual energy intensity by 1.2% per annum, which greatly accelerated since 2005 to 2.9% per year over the period 2005-2007). In view of the continued increases of energy prices on the international market in 2007, the Tunisian government accelerated its EE & RE policy by augmenting the original objectives in the 11th development plan (2007-2011). The 2008-2011 four-year Energy Management program intends to accelerate its EE & RE policy aiming at: (i) reducing energy intensity by 3% per year; (ii) maintaining a moderate energy demand growth of f 2.8% per year with a reduction of primary energy consumption of about 2 Mtoe by 2011 and (iii) Increasing the renewable energy (excluding biomass) share for primary consumption to 4% in 2011. According to Law No. 2009-7 of 9, February 2009 which amends and supplements the Law of 2, August 2004 on EE & RE, the main measures which will support the completion of the four-year program, are: (i) the requirement to obtain prior permission, from the authorities, for the establishment (or extension) of projects for large energy consuming enterprises; (ii) lowering of threshold for energy audits in the industry sector from 1000 to 800 toe; (iii) the authorization for industrial plants or plant groups, which intend to self-generate electricity from renewable energy sources and cogeneration to have access to the national electricity grid, to transport the electricity produced, and to sell surpluses exclusively to the Tunisian Electricity and Gas Company and, (iv) to sell its surplus electricity exclusively to STEG within in the framework of a standardised contract approved by the energy sector authority which grants permission to electricity producers from renewables sources for their own consumption, and whose facilities are connected to the national network at low voltage,; (v) the requirement of the application of minimum technical specifications of energy efficiency in the construction of new buildings and extension projects for existing buildings. The analysis of the funding amounts required to accomplish the objectives of EE & RE over the four- year program, revealed real investment constraints, which prompted the Government to introduce new financial mechanisms to complement and expand the capacity of existing intervention means, in particular through: (i) consolidation of program funding by the establishment of credit lines dedicated to energy conservation financed by bilateral and multilateral financing institutions; (ii) the strengthening of the existing National EE &RE Fund (FNME) by establishing a new fee for the import or local production on lamps and tubes that are not energy efficient; (iii) extending the eligibility of FNME to other interventions or to certain sectors in particular, intangible investments, cogeneration and use of renewable energy such as biogas and electricity production in Solar Buildings and in the agricultural sector. Over the 2008-2011 period, the planned investments in energy efficiency in Tunisia are forecasted to reach about 1 billion dinars or the equivalent of 100 M US$ (outside STEG investments in wind energy). This amount reflects a real acceleration of the policy in the EE & RE field. However, this intensification of investment could not have been possible without the preparation, begun more than twenty years ago and resulting in the establishment of integrated institutional, regulatory, tax tools and the creation of a financial environment conducive to energy conservation in Tunisia. This lengthy process has also helped to prepare the conditions for change of scale: the general development and capacity building, awareness of all private and public stakeholders (government, households, industrial, financial sector, etc.) the development of public-private partnerships, and the strengthening of international cooperation, etc. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 33
  • 34. Table 6: Energy Efficiency Institutional Arrangements in MPCs Algeria Egypt Israel Jordan Lebanon Morocco Palestine Syria Tunisia Institution Small responsible APRUE unit at MNI NERC LCEC CDER PEC NERC ANME for EE EEHC Institution responsible CDER NREA MNI NERC LCEC CDER PEC NERC ANME for RE 2004 Legislation Energy Resources In To be 1999 None None None Being drafted Updated for EE law 1987 preparation adopted Feb 2009 20x20 EE EE & RE framework master plan EE & RE National No Yes (20% reduction Yes No PNAP* adopted in Master plan objectives in energy plans from the "business 2008-2012 2007 in preparation the XI° Plan as usual" scenario by 2020) In In EE & RE fund Yes No No No No No Yes preparation preparation EE & RE R&D 80 M€ 5 years plan No No No No No No No No financing from 2008 * Main measures registered in the National Priority Action Plan 2008-2012: 1. Development of a wind capacity of 1 000 MW before 2012 within the framework of the program Energipro 2. Massive generalization of LBC use of with the distribution of 22,7 million LBC on the horizon 2012 (Disappearance in the peak load of 800 MW). 3. Setting up of a social tariff and incentive pricing for type -20 / -20 for all the residential and local authorities (Disappearance in the peak load of 300 MW). 4. Setting up of the super optional peak load pricing for industrial customers VHT-HT (87MW. 5. Setting up of the optional bi-hourly pricing for the driving strength LT (16 MW): 6. Development of energy efficiency appliances for street lighting such as stabilizers, savers and low consumption lamps (87 MW). 7. Energy efficiency in the building sector: elaboration of an energy code concerning the construction; Installation of 450 000 m ² of solar panels for solar waters heaters in the residential and tertiary sectors 8. Transformation of the CDER into ADEREE (EE & RE Agency): updating of the wind atlas and the solar atlas; evaluation of the national potential in biomass; Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 34
  • 35. 2.3.2 Renewable energy The Mediterranean region benefits from abundant renewable energy resources. In particular, the region has some of the best locations in the world for solar technologies14. Sun hours range from 2,650 to 3,400 hours per year, and the average annual radiation ranges between 1,300 kWh/m2 per year in coastal areas to 3,200 kWh/m2 per year in the South and coastal areas. Wind potential is also significant mainly in Morocco and Egypt, with wind speed ranging between 6 and 11 m/s in some areas. The region also has potential in biomass and geothermal (low temperature; heating and cooling with geothermal heat pump) and hydraulic resources. In the MPC region, the total renewable primary energy supply reached approximately 19 Mtoe in 2005, representing 7% of the TPES in the region. Although renewables have doubled over the last three decades, their share is much lower than in the 1970’s, when renewables accounted for 18% of the TPES. This finding is attributable to the increase in the total primary energy supply, from 50 Mtoe in 1970 to 280 Mtoe in 2005. In mid-200715, total RE-based power installed capacity reached 17,718 MW, more than 93 % of which is large hydro with the greatest share located in Turkey, Egypt, and to a much lesser degree, in Morocco. The remaining 800 MW of capacity was dominated by small hydro and wind: ! Concerning small hydro (321 MW), the majority of the sites are located in Turkey (176 MW), Algeria (85 MW), Morocco (30 MW), Tunisia (30 MW) while in Egypt most of the hydro power plants are larger than 10 MW. ! Wind is still a new but marginal energy source in the region. Total installed capacity (410 MW) included sites in Zafarana (Egypt, total 225 MW), Tetouan (Morocco, 53.2 MW), Cap Bon (Tunisia, 19.3 MW), and Algeria (0.5 MW). ! Photovoltaic systems reached 13.3 MWp capacity in 2007. PV kits supplied a total of 76,367 households with electricity (59,800 in Morocco alone, 11,000 in Tunisia, 4,657 in Egypt and 1,000 in Algeria), representing 8.5 MWp. The remaining 5 MWp capacity concerned other applications, including telecoms, schools, mosques, pumping water for agriculture, street lighting, etc. ! Geothermal energy represented 20.4 MW (Exclusively in Turkey). Concentrated solar (CSP) energy is in the development phase in the following countries16: 14 2 The solar energy received on a horizontal surface of 1 m is of the order of 2 500 kWh a year in the sunny regions and of 800 kWh a year in the Northern Europe 15 OME : Renewable Energy in the Southern and Eastern Mediterranean countries; Current situation June 2007 16 In addition, in 2008, the Abu Dhabi Future Energy Company (Masdar16) issued an invitation to build, own and operate a 100 MW CSP plant in Madinat Zayad, Abu Dhabi. The plant will use parabolic trough technology and is expected to be operational by the end of 2010. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 35
  • 36. ! Algeria: Integrated Solar Combined Cycle of 150 MW is under construction; ! Egypt: 140 MW Integrated Solar Combined Cycle with 20 MW CSP plant under construction; ! Israel launched last year a tender process for two 100-125MW CSP plants (IPPs) in the Negev (ASHALIM). ! Morocco: 470 MW Integrated Solar Combined Cycle station at Aïn Beni Mathar with 20 MW CSP. ! In addition, in 2008, the Abu Dhabi Future Energy Company (Masdar17) issued an invitation to build, own and operate a 100 MW CSP plant in Madinat Zayad, Abu Dhabi. The plant will use parabolic trough technology and is expected to be operational by the end of 2010. The total RE-based power generation in 2005 was 357 TWh, representing 15.5 % of total power generation for the same year. Large hydro sources dominate renewable energy use in power generation (97%), with Turkey, Egypt and Morocco accounting for most of the large hydro based generation. Excluding large hydro, the level of RE-based generation falls to only about 1.6 TWh (0.45 % of total power generation). Egypt ranks first, followed by Turkey, Morocco, Tunisia and Algeria. Noteworthy is the dominance of wind for RES (excl. Large Hydro)-based power generation in Turkey, Egypt and Morocco. Table 7: Share of Renewables in Electricity (%)* 1980 1990 2000 2007 Algeria Share of renewables in electricity generating capacity % 13.2 6.1 4.4 2.8 Share of electricity in gross electricity consumption % 3.6 0.8 0.2 0.6 Egypt Share of renewables in electricity generating capacity % 50.2 23.4 18.6 13.3 Share of renewables in gross electricity consumption % 51.8 23.5 17.7 11.1 Israel Share of renewables in electricity generating capacity % 0 0.1 0.1 0.1 Share of renewables in gross electricity consumption % 0 0.1 0.1 0.1 Jordan 17 MASDAR city has been chosen lte June 2009 to house the International Renewable Energy Agency (IRENA) headquarters. As part of its commitment to Irena, the UAE offered to support the agency with a grant of $136m over a six years period, while also covering all operational costs in perpetuity. Moreover, the Abu Dhabi Fund for Development created a special endowment of up to $50m annually to be used for loans in support of renewable energy projects in the developing world. Identification Mission for the Mediterranean Solar Plan, Final Report, January 2010 36