Introduction to Steady State Error (SSE)
• SSE = Error as time → ∞
• Depends on system type and input
• Measures long-term accuracy
Importance of SSE
• Indicates accuracy
• Lower SSE = Better tracking
• Related to system gain and type
Static Error Constants
• • Kp, Kv, Ka for step, ramp, parabolic inputs
• • SSE = 1/(1+Kp), etc.
• • Table mapping Type to SSE
System Type Relation
• • Type 0: Finite error (step)
• • Type 1: Zero error (step), finite (ramp)
• • Type 2: Zero error (ramp)
Dynamic Error Constants
• • Time-varying behavior
• • More precise than static
• • Used in dynamic systems
Standard Test Signals
• • Step: u(t), Ramp: t·u(t), Parabolic: t²/2 · u(t),
Impulse: δ(t)
• • Used for testing system behavior
First Order Systems
• • T.F. = 1/(τs + 1)
• • Time constant τ determines speed
Step Response
• • Response: 1 - e^(-t/τ)
• • Exponential rise
Poles and S-Plane
• • Pole = -1/τ
• • Stability if pole on left of S-plane
Standard 2nd Order System
• • T.F. = ωn² / (s² + 2ζωn·s + ωn²)
Types of Damping
• • Undamped (ζ = 0)
• • Critically damped (ζ = 1)
• • Underdamped (0 < ζ < 1)
Time Domain Specs
• • Rise time, Peak time, Settling time,
Overshoot
• • Formulas involve ζ and ωn
Pole Locations
• • Poles determine damping and oscillation
• • Example: -2 ± j3 → underdamped
Servomotors
• • Used for precise position/speed control
• • Types: AC and DC
Comparison
• • AC: low torque, noisy
• • DC: high torque, smooth
• • DC preferred for robotics
DC Motor Block Diagram
• • Field-controlled or Armature-controlled
• • Converts electrical → mechanical
Torque-Slip
• • AC: nonlinear
• • DC: linear in control region
Controller Types
• • P: faster response, small SSE
• • PI: removes SSE, slower
• • PID: fast + zero SSE
Transfer Functions
• • PI: Kp + Ki/s
• • PID: Kp + Ki/s + Kd·s
Block Diagrams
• • Controller + Plant + Feedback loop
• • Improves system dynamics
Stability Definitions
• • Stable: Output bounded
• • Asymptotic: Output → 0
• • Unstable: Output → ∞
BIBO Stability
• • Based on pole locations
• • All poles must be left-half S-plane
Root Locations
• • Left-half: stable
• • Right-half: unstable
• • Imaginary: marginal
Routh-Hurwitz Criterion
• • Use Routh array
• • All +ve signs in first column → stable
Special Cases
• • Zero row: use auxiliary polynomial
• • ε substitution if zero in first element
Purpose of Root Locus
• • Shows pole movement as gain changes
• • Visual stability analysis
Construction Steps
• 1. Open-loop poles/zeros
• 2. Real-axis segments
• 3. Break points
• 4. Asymptotes
Formulas
• • Centroid = (Σpoles - Σzeros)/(n - m)
• • Asymptote angle = (2k+1)180°/(n-m)

Control_Systems_Unit13_Presentation.pptx