1
Electric Circuits
Circuit Elements
Qi Xuan
Ghangzhi Building(广知楼) C323
I will be in the office on Monday, Wednesday, and Friday
Zhejiang University of Technology
September 2015
Structure
• Voltage	
  and	
  Current	
  Sources	
  
• Electrical	
  Resistance	
  (Ohm’s	
  Law)	
  
• Construc<on	
  of	
  a	
  Circuit	
  Model	
  
• Kirchhoff’s	
  Laws	
  
• Analysis	
  of	
  a	
  Circuit	
  Containing	
  Dependent	
  
Source	
  
2
Electric Circuits
Circuit	
  Elements
• When	
  we	
  speak	
  of	
  Circuit	
  Elements,	
  It	
  is	
  important	
  to	
  
differen<ate	
  between	
  the	
  physical	
  device	
  itself	
  and	
  
the	
   mathema<cal	
   model	
   which	
   we	
   will	
   use	
   to	
  
analyze	
  its	
  behavior	
  in	
  a	
  circuit.	
  	
  
• We	
  will	
  use	
  the	
  expression	
  circuit	
  element	
  to	
  refer	
  to	
  
the	
  mathema&cal	
  model.	
  
• All	
  the	
  simple	
  circuit	
  elements	
  that	
  we	
  will	
  consider	
  
can	
   be	
   classified	
   according	
   to	
   the	
   rela<onship	
   of	
  
current	
   through	
   the	
   element	
   to	
   the	
   voltage	
   across	
  
the	
  element.
Electric Circuits 3
Five	
  ideal	
  basic	
  circuit	
  elements
Electric Circuits 4
Voltage source Current source
Resistor
Capacitor
Inductor
Active elements
Passive elements
Electrical	
  safety
Electric Circuits 5
The	
  electrical	
  energy	
  that	
  can	
  actually	
  cause	
  injury	
  is	
  due	
  to	
  electrical
	
  current	
  and	
  how	
  it	
  flows	
  through	
  the	
  body.	
  Why,	
  then,	
  does	
  the	
  sign
	
  warn	
  of	
  high	
  voltage?	
  	
  
I
Because It is easier to determine voltages than currents.
Voltage	
  and	
  Current	
  Sources
• Ideal	
   voltage	
   source:	
   a	
   circuit	
   element	
   that	
  
maintains	
   a	
   prescribed	
   voltage	
   across	
   its	
  
terminals	
  regardless	
  of	
  the	
  current	
  flowing	
  in	
  
those	
  terminals.	
  	
  
• Ideal	
   current	
   source:	
   a	
   circuit	
   element	
   that	
  
maintains	
   a	
   prescribed	
   current	
   through	
   its	
  
terminals	
   regardless	
   of	
   the	
   voltage	
   across	
  
those	
  terminals.	
  	
  
Electric Circuits 6
Independent	
  Sources
• An	
   independent	
   source	
   establishes	
   a	
   voltage	
   or	
  
current	
   in	
   a	
   circuit	
   without	
   relying	
   on	
   voltages	
   or	
  
currents	
   elsewhere	
   in	
   the	
   circuit.	
   The	
   value	
   of	
   the	
  
voltage	
  or	
  current	
  supplied	
  is	
  specified	
  by	
  the	
  value	
  
of	
  the	
  independent	
  source	
  alone.	
  	
  
Electric Circuits 7
Example	
  #1
Electric Circuits 8
✔
✗
✗
✔
✔
Which are valid?
Dependent	
  Sources
• A	
  dependent	
  source	
  establishes	
  a	
  voltage	
  or	
  current	
  
whose	
   value	
   depends	
   on	
   the	
   value	
   of	
   a	
   voltage	
   or	
  
current	
  elsewhere	
  in	
  the	
  circuit.	
  You	
  cannot	
  specify	
  
the	
  value	
  of	
  a	
  dependent	
  source	
  unless	
  you	
  know	
  the	
  
value	
  of	
  the	
  voltage	
  or	
  current	
  on	
  which	
  it	
  depends.	
  	
  
• Four	
  kind	
  of	
  controlled	
  sources,	
  
– current-­‐controlled	
  current	
  source,	
  CCCS;	
  
– voltage-­‐controlled	
  current	
  source,	
  VCCS;	
  
– voltage-­‐controlled	
  voltage	
  source,	
  VCVS;	
  
– current-­‐controlled	
  voltage	
  source,	
  CCVS	
  .	
  
Electric Circuits 9
Electric Circuits 10
The circuit symbols for
(a)An ideal dependent voltage-controlled
voltage source;
(b)An ideal dependent current-controlled
voltage source;
(c) An ideal dependent voltage-controlled
current source;
(d)An ideal dependent current-controlled
current source.
Example	
  #2
Electric Circuits 11
Which are valid?
✔
✗
✗
✔
Example	
  #3
• For	
  the	
  circuit	
  shown,	
  	
  
– a)	
   	
  What	
  value	
  of	
  vg is	
  required	
  in	
  order	
  for	
  the	
  
interconnec<on	
  to	
  be	
  valid?	
  	
  
– b)	
  	
  For	
  this	
  value	
  of	
  vg,	
  find	
  the	
  power	
  associated	
  
with	
  the	
  8	
  A	
  source.	
  	
  
Electric Circuits 12
SoluGon	
  for	
  Example	
  #3
• For	
  a),	
  we	
  have	
  
	
  
• For	
  b),	
  we	
  have
Electric Circuits 13
vg = ib/4 = −8/4 = −2(V)
p = 8vg = 8 × (−2) = −16(W)
Electrical	
  Resistance	
  (Ohm’s	
  Law)
• Resistance	
  is	
  the	
  capacity	
  of	
  materials	
  to	
  impede	
  the	
  
flow	
   of	
   current	
   or,	
   more	
   specifically,	
   the	
   flow	
   of	
  
electric	
   charge.	
   The	
   circuit	
   element	
   used	
   to	
   model	
  
this	
  behavior	
  is	
  the	
  resistor.	
  	
  
• The	
  linear	
  resistor	
  is	
  the	
  simplest	
  passive	
  element.	
  Its	
  
symbol	
  and	
  characteris<c	
  are	
  as	
  following:
Electric Circuits 14
Ohm’s	
  Law
Electric Circuits 15
Left: in the direction of the voltage drop across the resistor
Right: in the direction of the voltage rise across the resistor
Other	
  Forms	
  of	
  Ohm’s	
  Law
• Current	
  is	
  in	
  the	
  direc<on	
  of	
  the	
  voltage	
  drop	
  across	
  
the	
  resistor	
  
• Current	
  is	
  in	
  the	
  direc<on	
  of	
  the	
  voltage	
  rise	
  across	
  
the	
  resistor
• Conductance:	
  the	
  reciprocal	
  of	
  the	
  resistance,	
  which	
  
is	
   symbolized	
   by	
   the	
   leYer	
   G,	
   and	
   is	
   measured	
   in	
  
Siemens	
  (S)	
  
Electric Circuits 16
Power	
  in	
  Different	
  Forms
Electric Circuits 17
Left:
P = vi = (iR)i = i2R
P = vi = v(v/R) = v2/R
Right:
P = −vi = −(−iR)i = i2R
P = −vi = −v(−v/R) = v2/R
The	
   equa<ons	
   for	
   LeZ	
   and	
   right	
   are	
   iden<cal	
   and	
   demonstrate	
   clearly	
   that,
	
  regardless	
  of	
  voltage	
  polarity	
  and	
  current	
  direcGon,	
  the	
  power	
  at	
  the	
  terminals
	
  of	
  a	
  resistor	
  is	
  posi<ve.	
  Therefore,	
  a	
  resistor	
  absorbs	
  power	
  from	
  the	
  circuit.
What’s the expression of power if we use conductance, rather than resistance?
See example 2.3 (P.55)
Example	
  #4
Electric Circuits 18
SoluGon	
  for	
  Example	
  #4
• For	
  a),	
  we	
  have	
  
R = vg/ig = 1 kV / 0.005 A = 200 kΩ
p = vgig = 1000 V × 0.005 A = 5 W	
  
• For	
  b),	
  we	
  have	
  
vg=p/ig = 3 W / 0.075 A = 40 V
R = vg/ig = 40 V / 0.075 A = 533.3 Ω	
  
pabsorbed=pdelivered = 3 W	
  
• For	
  c),	
  we	
  have	
  
ig = (p/R)0.5= (0.48 W / 300 Ω)0.5 = 0.04 A = 40mA	
  
vg = (pR)0.5= (0.48 W × 300 Ω)0.5 = 12 V	
  
Electric Circuits 19
Construc<on	
  of	
  a	
  Circuit	
  Model
Electric Circuits 20
Flashlight
An ideal switch offers no resistance to the current when
it is in the ON state, but it offers infinite resistance to
current when it is in the OFF state.
Electric Circuits 21
The	
  arrangement	
  of
	
  flashlight	
  components
• In	
  developing	
  a	
  circuit	
  model,	
  the	
  electrical
	
  behavior	
  of	
  each	
  physical	
  component	
  is	
  of
	
  primary	
  interest:	
  a	
  lamp,	
  a	
  coiled	
  wire,	
  and
	
  a	
  metal	
  case.	
  
• Circuit	
   models	
   may	
   need	
   to	
   account	
   for
	
   undesired	
   as	
   well	
   as	
   desired	
   electrical
	
  effects:	
  	
  light	
  and	
  heat.	
  
• Modeling	
  requires	
  approxima<on.	
  	
  
Example	
  #5
• The	
   voltage	
   and	
   current	
   are	
   measured	
   at	
   the	
  
terminals	
   of	
   the	
   device	
   illustrated	
   in	
   (a),	
   and	
   the	
  
values	
   of	
   vt	
   and	
   it	
   are	
   tabulated	
   in	
   (b).	
   Construct	
   a	
  
circuit	
  model	
  of	
  the	
  device	
  inside	
  the	
  box.	
  	
  
Electric Circuits 22
SoluGon	
  for	
  Example	
  #5
Electric Circuits 23
Plong	
   the	
   voltage	
   as	
   a	
   func<on	
   of	
   the
	
   current	
   yields	
   the	
   graph	
   shown	
   in	
   (a).	
   The
	
  equa<on	
  of	
  the	
  line	
  in	
  this	
  figure	
  illustrates
	
   that	
   the	
   terminal	
   voltage	
   is	
   directly
	
  proporGonal	
  to	
  the	
  terminal	
  current,	
  vt=4it.	
  
In	
   terms	
   of	
   Ohm's	
   law,	
   the
	
  device	
  inside	
  the	
  box	
  behaves
	
  like	
  a	
  4	
  Ω	
  resistor.
Kirchhoff’s	
  Law
Electric Circuits 24
A	
  node	
  is	
  a	
  point	
  where
	
   two	
   or	
   more	
   circuit
	
  elements	
  meet.	
  
Ohm's	
  law	
  may	
  not	
  be	
  enough	
  to
	
  provide	
  a	
  complete	
  soluGon!
Based	
  on	
  Ohm’s	
  law:
Circuit	
  model	
  for	
  the	
  flashlight
• Kirchhoff's	
   current	
   law	
   (KCL):	
   The	
   algebraic	
   sum	
   of	
   all	
   the	
  
currents	
  at	
  any	
  node	
  in	
  a	
  circuit	
  equals	
  zero.	
  	
  
• Kirchhoffs	
   voltage	
   law	
   (KVL):	
   The	
   algebraic	
   sum	
   of	
   all	
   the	
  
voltages	
  around	
  any	
  closed	
  path	
  in	
  a	
  circuit	
  equals	
  zero.	
  	
  
Electric Circuits 25
Reference	
  direc&on	
  is	
  important!
KCL:	
  Assign	
  a	
  posi<ve	
  sign	
  to	
  a	
  current	
  leaving	
  a	
  node	
  requires
	
  assigning	
  a	
  nega<ve	
  sign	
  to	
  a	
  current	
  entering	
  a	
  node,	
  or	
  vice
	
  versa.	
  
KVL:	
  As	
  we	
  trace	
  a	
  closed	
  path,	
  assign	
  a	
  posi<ve	
  sign	
  to	
  a	
  voltage
	
  rise	
  requires	
  assigning	
  a	
  nega<ve	
  sign	
  to	
  a	
  voltage	
  drop,	
  or	
  vice
	
  versa.	
  
Electric Circuits 26
KCL
KVL
Circuit	
  model	
  for	
  the	
  flashlight
Example	
  #6
Electric Circuits 27
Use	
  Kirchhoff's	
  current	
  law	
  (KCL)
SoluGon	
  for	
  Example	
  #6
Electric Circuits 28
Example	
  #7
Electric Circuits 29
SoluGon	
  for	
  Example	
  #7
Electric Circuits 30
Example	
  #8
• Use	
  Ohm's	
  law	
  and	
  Kirchhoff’s	
  laws	
  to	
  find	
  the	
  value	
  
of	
  R	
  in	
  the	
  circuit.	
  	
  
Electric Circuits 31
vR
iR
i1 i2
vR + 120 – 200 = 0
iR – i1 – i2 = 0
v2
120 – v2 = 0
R = vR / iR
8 i2 = v2
24 i1 = 120
Kirchhoff’s laws: Ohm's law:
R = 4 Ω
Analysis	
  of	
  a	
  Circuit	
  Containing	
  
Dependent	
  Sources
Electric Circuits 32
KCL
KVL
Example	
  #9
a)	
  Use	
  Kirchhoffs	
  laws	
  and	
  Ohm's	
  law	
  to	
  find	
  the	
  voltage	
  vo as	
  
shown	
  in	
  the	
  Figure.	
  	
  
b)	
  Show	
  that	
  your	
  solu<on	
  is	
  consistent	
  with	
  the	
  constraint	
  that	
  
the	
  total	
  power	
  developed	
  in	
  the	
  circuit	
  equals	
  the	
  total	
  power	
  
dissipated.	
  	
  
Electric Circuits 33
SoluGon	
  for	
  Example	
  #9
Electric Circuits 34
By	
  using	
  Kirchhoff’s	
  voltage	
  law	
  (KVL),	
  we	
  have
Then,	
  by	
  using	
  Ohm’s	
  law,	
  we	
  have
Please	
  check	
  the	
  power	
  balancing!
Electrical	
  Safety
Electric Circuits 35
Summary
• Ideal	
  voltage/current	
  sources	
  
• Independent/dependent	
  sources	
  
• Resistor	
  
• Ohm’s	
  law	
  
• In	
  series,	
  closed	
  path	
  
• Kirchhoff’s	
  voltage/current	
  law	
  
Electric Circuits 36

circuits elements covering ac response.pdf

  • 1.
    1 Electric Circuits Circuit Elements QiXuan Ghangzhi Building(广知楼) C323 I will be in the office on Monday, Wednesday, and Friday Zhejiang University of Technology September 2015
  • 2.
    Structure • Voltage  and  Current  Sources   • Electrical  Resistance  (Ohm’s  Law)   • Construc<on  of  a  Circuit  Model   • Kirchhoff’s  Laws   • Analysis  of  a  Circuit  Containing  Dependent   Source   2 Electric Circuits
  • 3.
    Circuit  Elements • When  we  speak  of  Circuit  Elements,  It  is  important  to   differen<ate  between  the  physical  device  itself  and   the   mathema<cal   model   which   we   will   use   to   analyze  its  behavior  in  a  circuit.     • We  will  use  the  expression  circuit  element  to  refer  to   the  mathema&cal  model.   • All  the  simple  circuit  elements  that  we  will  consider   can   be   classified   according   to   the   rela<onship   of   current   through   the   element   to   the   voltage   across   the  element. Electric Circuits 3
  • 4.
    Five  ideal  basic  circuit  elements Electric Circuits 4 Voltage source Current source Resistor Capacitor Inductor Active elements Passive elements
  • 5.
    Electrical  safety Electric Circuits5 The  electrical  energy  that  can  actually  cause  injury  is  due  to  electrical  current  and  how  it  flows  through  the  body.  Why,  then,  does  the  sign  warn  of  high  voltage?     I Because It is easier to determine voltages than currents.
  • 6.
    Voltage  and  Current  Sources • Ideal   voltage   source:   a   circuit   element   that   maintains   a   prescribed   voltage   across   its   terminals  regardless  of  the  current  flowing  in   those  terminals.     • Ideal   current   source:   a   circuit   element   that   maintains   a   prescribed   current   through   its   terminals   regardless   of   the   voltage   across   those  terminals.     Electric Circuits 6
  • 7.
    Independent  Sources • An   independent   source   establishes   a   voltage   or   current   in   a   circuit   without   relying   on   voltages   or   currents   elsewhere   in   the   circuit.   The   value   of   the   voltage  or  current  supplied  is  specified  by  the  value   of  the  independent  source  alone.     Electric Circuits 7
  • 8.
    Example  #1 Electric Circuits8 ✔ ✗ ✗ ✔ ✔ Which are valid?
  • 9.
    Dependent  Sources • A  dependent  source  establishes  a  voltage  or  current   whose   value   depends   on   the   value   of   a   voltage   or   current  elsewhere  in  the  circuit.  You  cannot  specify   the  value  of  a  dependent  source  unless  you  know  the   value  of  the  voltage  or  current  on  which  it  depends.     • Four  kind  of  controlled  sources,   – current-­‐controlled  current  source,  CCCS;   – voltage-­‐controlled  current  source,  VCCS;   – voltage-­‐controlled  voltage  source,  VCVS;   – current-­‐controlled  voltage  source,  CCVS  .   Electric Circuits 9
  • 10.
    Electric Circuits 10 Thecircuit symbols for (a)An ideal dependent voltage-controlled voltage source; (b)An ideal dependent current-controlled voltage source; (c) An ideal dependent voltage-controlled current source; (d)An ideal dependent current-controlled current source.
  • 11.
    Example  #2 Electric Circuits11 Which are valid? ✔ ✗ ✗ ✔
  • 12.
    Example  #3 • For  the  circuit  shown,     – a)    What  value  of  vg is  required  in  order  for  the   interconnec<on  to  be  valid?     – b)    For  this  value  of  vg,  find  the  power  associated   with  the  8  A  source.     Electric Circuits 12
  • 13.
    SoluGon  for  Example  #3 • For  a),  we  have     • For  b),  we  have Electric Circuits 13 vg = ib/4 = −8/4 = −2(V) p = 8vg = 8 × (−2) = −16(W)
  • 14.
    Electrical  Resistance  (Ohm’s  Law) • Resistance  is  the  capacity  of  materials  to  impede  the   flow   of   current   or,   more   specifically,   the   flow   of   electric   charge.   The   circuit   element   used   to   model   this  behavior  is  the  resistor.     • The  linear  resistor  is  the  simplest  passive  element.  Its   symbol  and  characteris<c  are  as  following: Electric Circuits 14
  • 15.
    Ohm’s  Law Electric Circuits15 Left: in the direction of the voltage drop across the resistor Right: in the direction of the voltage rise across the resistor
  • 16.
    Other  Forms  of  Ohm’s  Law • Current  is  in  the  direc<on  of  the  voltage  drop  across   the  resistor   • Current  is  in  the  direc<on  of  the  voltage  rise  across   the  resistor • Conductance:  the  reciprocal  of  the  resistance,  which   is   symbolized   by   the   leYer   G,   and   is   measured   in   Siemens  (S)   Electric Circuits 16
  • 17.
    Power  in  Different  Forms Electric Circuits 17 Left: P = vi = (iR)i = i2R P = vi = v(v/R) = v2/R Right: P = −vi = −(−iR)i = i2R P = −vi = −v(−v/R) = v2/R The   equa<ons   for   LeZ   and   right   are   iden<cal   and   demonstrate   clearly   that,  regardless  of  voltage  polarity  and  current  direcGon,  the  power  at  the  terminals  of  a  resistor  is  posi<ve.  Therefore,  a  resistor  absorbs  power  from  the  circuit. What’s the expression of power if we use conductance, rather than resistance? See example 2.3 (P.55)
  • 18.
  • 19.
    SoluGon  for  Example  #4 • For  a),  we  have   R = vg/ig = 1 kV / 0.005 A = 200 kΩ p = vgig = 1000 V × 0.005 A = 5 W   • For  b),  we  have   vg=p/ig = 3 W / 0.075 A = 40 V R = vg/ig = 40 V / 0.075 A = 533.3 Ω   pabsorbed=pdelivered = 3 W   • For  c),  we  have   ig = (p/R)0.5= (0.48 W / 300 Ω)0.5 = 0.04 A = 40mA   vg = (pR)0.5= (0.48 W × 300 Ω)0.5 = 12 V   Electric Circuits 19
  • 20.
    Construc<on  of  a  Circuit  Model Electric Circuits 20 Flashlight An ideal switch offers no resistance to the current when it is in the ON state, but it offers infinite resistance to current when it is in the OFF state.
  • 21.
    Electric Circuits 21 The  arrangement  of  flashlight  components • In  developing  a  circuit  model,  the  electrical  behavior  of  each  physical  component  is  of  primary  interest:  a  lamp,  a  coiled  wire,  and  a  metal  case.   • Circuit   models   may   need   to   account   for   undesired   as   well   as   desired   electrical  effects:    light  and  heat.   • Modeling  requires  approxima<on.    
  • 22.
    Example  #5 • The   voltage   and   current   are   measured   at   the   terminals   of   the   device   illustrated   in   (a),   and   the   values   of   vt   and   it   are   tabulated   in   (b).   Construct   a   circuit  model  of  the  device  inside  the  box.     Electric Circuits 22
  • 23.
    SoluGon  for  Example  #5 Electric Circuits 23 Plong   the   voltage   as   a   func<on   of   the   current   yields   the   graph   shown   in   (a).   The  equa<on  of  the  line  in  this  figure  illustrates   that   the   terminal   voltage   is   directly  proporGonal  to  the  terminal  current,  vt=4it.   In   terms   of   Ohm's   law,   the  device  inside  the  box  behaves  like  a  4  Ω  resistor.
  • 24.
    Kirchhoff’s  Law Electric Circuits24 A  node  is  a  point  where   two   or   more   circuit  elements  meet.   Ohm's  law  may  not  be  enough  to  provide  a  complete  soluGon! Based  on  Ohm’s  law: Circuit  model  for  the  flashlight
  • 25.
    • Kirchhoff's  current   law   (KCL):   The   algebraic   sum   of   all   the   currents  at  any  node  in  a  circuit  equals  zero.     • Kirchhoffs   voltage   law   (KVL):   The   algebraic   sum   of   all   the   voltages  around  any  closed  path  in  a  circuit  equals  zero.     Electric Circuits 25 Reference  direc&on  is  important! KCL:  Assign  a  posi<ve  sign  to  a  current  leaving  a  node  requires  assigning  a  nega<ve  sign  to  a  current  entering  a  node,  or  vice  versa.   KVL:  As  we  trace  a  closed  path,  assign  a  posi<ve  sign  to  a  voltage  rise  requires  assigning  a  nega<ve  sign  to  a  voltage  drop,  or  vice  versa.  
  • 26.
    Electric Circuits 26 KCL KVL Circuit  model  for  the  flashlight
  • 27.
    Example  #6 Electric Circuits27 Use  Kirchhoff's  current  law  (KCL)
  • 28.
    SoluGon  for  Example  #6 Electric Circuits 28
  • 29.
  • 30.
    SoluGon  for  Example  #7 Electric Circuits 30
  • 31.
    Example  #8 • Use  Ohm's  law  and  Kirchhoff’s  laws  to  find  the  value   of  R  in  the  circuit.     Electric Circuits 31 vR iR i1 i2 vR + 120 – 200 = 0 iR – i1 – i2 = 0 v2 120 – v2 = 0 R = vR / iR 8 i2 = v2 24 i1 = 120 Kirchhoff’s laws: Ohm's law: R = 4 Ω
  • 32.
    Analysis  of  a  Circuit  Containing   Dependent  Sources Electric Circuits 32 KCL KVL
  • 33.
    Example  #9 a)  Use  Kirchhoffs  laws  and  Ohm's  law  to  find  the  voltage  vo as   shown  in  the  Figure.     b)  Show  that  your  solu<on  is  consistent  with  the  constraint  that   the  total  power  developed  in  the  circuit  equals  the  total  power   dissipated.     Electric Circuits 33
  • 34.
    SoluGon  for  Example  #9 Electric Circuits 34 By  using  Kirchhoff’s  voltage  law  (KVL),  we  have Then,  by  using  Ohm’s  law,  we  have Please  check  the  power  balancing!
  • 35.
  • 36.
    Summary • Ideal  voltage/current  sources   • Independent/dependent  sources   • Resistor   • Ohm’s  law   • In  series,  closed  path   • Kirchhoff’s  voltage/current  law   Electric Circuits 36