SlideShare a Scribd company logo
1 of 80
Chapter 2
NUTRIENT GENERAL CHEMISTRY AND PLANT
FUNCTION
What nutrients do plants need?
ā€¢ Plants require 17 nutrients; each is a chemical
element
ā€¢ Plants do not require organic matter, enzymes or
hormones as nutrients taken up from the soil.
ā€¢ Plant requirements for these substances is met by the
plantā€™s own manufacture of them.
ā€¢ Except for carbon (C), hydrogen (H), oxygen (O),
and boron (B) the nutrients are absorbed
primarily as chemical ions from the soil solution.
Nutrient Symbol Forms Absorbed Primary Source Soil Mobility
Hydrogen H H2O Rainfall / Soil Solution Mobile
Oxygen O H2O, O2 Rainfall / Soil Solution Mobile
Carbon C CO2 Atmoshpere -
Nitrogen N NO3
-
NH4
+
Soil Solution (SS)
SS and Exchange Sites
Mobile
Immobile
Potassium K K+ SS and Exchange Sites Immobile
Calcium Ca Ca2+ SS and Exchange Sites Immobile
Magnesium Mg Mg2+ SS and Exchange Sites Immobile
Phosphorus P H2PO4
- ; HPO4
2- SS and Exchange Sites Immobile
Sulfur S SO4
2-
SO2
Soil Solution
Atmosphere
Mobile
-
Iron Fe Fe2+ Fe3+ SS and Exchange Sites Immobile
Chlorine Cl Cl- Soil Solution Mobile
Boron B H3BO3 Soil Solution Mobile
Manganese Mn Mn2+ SS and Exchange Sites Immobile
Zinc Zn Zn2+ SS and Exchange Sites Immobile
Copper Cu Cu2+ SS and Exchange Sites Immobile
Molybdenum Mo MoO4
2- Soil Solution Mobile
Nickel Ni Ni2+ SS and Exchange Sites Immobile
CHOPKNS CaFe Mg B Mn ClCuZn Mo
and Ni
ā€¢ Nickle the 17th was recently added 2004.
ā€¢ A 18th and 19th Nutrients have been ā€œsuggestedā€.
ā€¢ Sodium Na
ā€¢ Sodium has a very specific function in the concentration of carbon
dioxide in a limited number of C4 plants and thus is essential to
these plants, but this in itself is insufficient to generalize that Na
is essential for higher plants.
ā€¢ Silica Si
ā€¢ Plants can grow in hydroponic solutions without any silicon added.
However some anaerobic plants (Rice) need it.
https://www.cropnutrition.com/nutrient-knowledge
What makes these nutrients
essential?
Must satisfy three specific criteria:
1. Plants cannot complete their life cycle without
the element.
2. Deficiency symptoms for the element can be
corrected only by supplying the element in
question.
3. The element is directly involved in the nutrition
of the plant, apart from its effect on chemical or
physical properties of the soil.
What affects the soil availability of
these nutrients?
ā€¢ Most of the nutrients are absorbed as ions from the soil solution or
the soil cation exchange complex.
ā€¢ Understanding the general chemistry of the nutrient ions, as it
relates to their concentration in the soil solution, is critical to
developing an understanding of how to manage their availability to
plants.
ā€¢ What affects nutrient ion solubility?
ā€¢ Solubility is strongly influenced by the charge of the ion.
ā€¢ The first step to understanding solubility of nutrient ions and
molecules is to know ionic and molecular charges. Help comes from
identifying common ions, from group I, II and VII of the periodic
table, that have only one standard valance in the soil environment.
ā€¢ To know these ā€œstandardā€ ions is as important to basic chemistry as
knowing ā€˜multiplication tablesā€™ is to basic mathematics.
www.webelements.com
ā€¢ A positively-charged ion, which has fewer electrons than
protons, is known as a cation
ā€¢ A negatively charged ion, which has more electrons in its
electron shells than it has protons in its nuclei, is known as an
anion
ā€¢ Elements that have only one valance state in the soil environment.
Cations Anions
H+
Cl-
Na+
O2-
K+
Mg2+
Ca2+
Al3+
WEB ELEMENTS
Oxidation number or oxidation state: charge of an atom that results when the
electrons in a covalent bond are assigned to the more elctronegative atom
Ionic Bond: electrostatic forces that exist between ions of opposite
charge (left side metals combined with right side NM)
Covalent Bond: sharing of electrons between two atoms (2 NM)
Metallic Bond: each metal atom is bonded to several neighboring
atoms (give rise to electrical conductivity and luster)
ā€¢ oxidation state - the degree of oxidation of an atom or ion or
molecule; for simple atoms or ions the oxidation number is
equal to the ionic charge; "the oxidation number of hydrogen
is +1 and of oxygen is -2"
ā€¢ The oxidation state or oxidation number is defined as the
sum of negative and positive charges in an atom , which
indirectly indicates the number of electrons it has accepted
or donated.
N is losing electrons to O because O is more electronegative
N gains electrons from H because H wants to give up electrons
Oxygen: oxidation number = -2
Hydrogen: oxidation number = +1
Nitrogen: oxidation number = 0
N Oxidation State
H or O
NH3 Charge = 0 3(+1) = 3 3-(0))= +3 -3 N gains 3
NO3 Charge = -1 3(-2) = -6 -6- (-1)) = -5 +5 N loses 5
NH4 Charge =+1 4(+1) = 4 4 ā€“ (+1)) = 3 -3 N gains 3
Oxidation Numbers.
ā€¢ It is often useful to follow chemical reactions by looking at changes in the oxidation numbers of
the atoms in each compound during the reaction. Oxidation numbers also play an important role
in the systematic nomenclature of chemical compounds. By definition, the oxidation number of an
atom is the charge that atom would have if the compound was composed of ions.
1. The oxidation number of an atom is zero in a neutral substance that contains atoms of only one
element. Thus, the atoms in O2, O3, P4, S8, and aluminum metal all have an oxidation number of 0.
2. The oxidation number of simple ions is equal to the charge on the ion. The oxidation number of
sodium in the Na+ ion is +1, for example, and the oxidation number of chlorine in the Cl- ion is -1.
3. The oxidation number of hydrogen is +1 when it is combined with a nonmetal as in CH4, NH3, H2O,
and HCl.
4. The oxidation number of hydrogen is -1 when it is combined with a metal as in. LiH, NaH, CaH2,
and LiAlH4.
5. The metals in Group IA form compounds (such as Li3N and Na2S) in which the metal atom has an
oxidation number of +1.
http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch2/oxnumb.html
Oxidation Numbers.
6. The elements in Group IIA form compounds (such as Mg3N2 and CaCO3) in which the metal atom
has a +2 oxidation number.
7. Oxygen usually has an oxidation number of -2. Exceptions include molecules and polyatomic ions
that contain O-O bonds, such as O2, O3, H2O2, and the O22- ion.
8. The elements in Group VIIA often form compounds (such as AlF3, HCl, and ZnBr2) in which the
nonmetal has a -1 oxidation number.
9. The sum of the oxidation numbers in a neutral compound is zero.
H2O: 2(+1) + (-2) = 0
10. The sum of the oxidation numbers in a polyatomic ion is equal to the charge on the ion. The
oxidation number of the sulfur atom in the SO4
2- ion must be +6, for example, because the sum of the
oxidation numbers of the atoms in this ion must equal -2.
ā€¢ SO4
2-: (+6) + 4(-2) = -2
11. Elements toward the bottom left corner of the periodic table are more likely to have positive
oxidation numbers than those toward the upper right corner of the table. Sulfur has a positive
oxidation number in SO2, for example, because it is below oxygen in the periodic table.
ā€¢ SO2: (+4) + 2(-2) = 0
http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch2/oxnumb.html
Ion/molecule Name Oxidation State
NH3 ammonia -3
NH4
+ ammonium -3
N2 diatomic N 0
N2O nitrous oxide +1
NO nitric oxide +2
NO2
- nitrite +3
NO3
- nitrate +5
H2S hydrogen sulfide -2
SO4
= sulfate +6
N: 5 electrons in the outer shell
loses 5 electrons (+5 oxidation state NO3)
gains 3 electrons (-3 oxidation state NH3)
O: 6 electrons in the outer shell
is always being reduced (gains 2 electrons to fill the outer shell)
H: 1 electron in the outer shell
N is losing electrons to O because O is more electronegative
N gains electrons from H because H wants to give up electrons
Reduction, Net Gain of Electrons
Oxidation, Net Loss of Electrons
8 is the Magical Number
The chemical formula, name, and charge of each
molecule should be carefully studied (memorized).
Significance of each to soil fertility is presented and
discussed in later chapters.
NH4
+
(ammonium) SO4
2-
(sulfate) CO3
2-
(carbonate)
NO3
-
(nitrate) PO4
3-
(phosphate) HCO3
-
(bicarbonate)
NO2
-
(nitrite) HPO4
2-
(phosphate) MoO4
2-
(molybdate)
NH3
0
(ammonia) H2PO4
-
(phosphate) H3BO3
o
(boric acid)
Using this information, we can determine the charge of molecules or
the oxidation state of elements in a charged molecule
Ex: CO3
-2, we should be able to determine, by difference, that the
oxidation state of C is 4+
(3*-2=-6) -2 showing = +4
CaCl2 is an uncharged calcium chloride molecule
General effect of ion charge on
solubility
ā€¢ Availability of nutrient ions to plants and the solubility of
compounds they come from, or may react to form, can be
discussed from the perspective of the general reaction:
An+ + Bm- ļƒŸ ļƒ  AmBn
ā€¢ Reactant ions An+ and Bm- combine to form a compound
(usually a solid) predicted by their electrical charges.
ā€¢ The higher the charge of either the cation or anion, the
greater is the tendency for the compound or solid to be
formed.
ā€¢ When the solid is easily formed, only small concentrations of
the reactants are necessary for the reaction to take place.
Because of this, the compound or solid that forms is also
relatively insoluble (it will not easily dissolve in water), or it
does not easily break apart (reaction to the left). Conversely,
if the cation and anion are both single-charged, then the
compound (solid) is not as easily formed, and if it does form,
it is relatively soluble.
An+ + Bm- ļƒŸ ļƒ  AmBn
ā€œReal lifeā€ examples of charge-
influenced solubility
ā€¢ A common compound that represents single charged ions is
sodium chloride (NaCl, table salt), whose solubility is given by
the equilibrium reaction,
An+ + Bm- ļƒŸ ļƒ  AmBn
Na+ + Cl- ļƒŸ ļƒ  NaCl
Examples
ā€¢ Common table salt is very soluble and easily dissolves in
water. Once dissolved, the solid NaCl does not reform until
the ions, Na+ + Cl-, are present in high concentration.
ā€¢ When water is lost from the solution by evaporation the solid
finally reforms as NaCl precipitate.
ā€¢ Iron oxide or rust, represents multiple charged ions forming a
relatively insoluble material. When iron reacts with oxygen
and water (a humid atmosphere), a very insoluble solid, rust
or iron oxide, is formed
2 Fe3+
+ 3 O2-
+ 3 H2O ļƒ§= ļƒØ Fe2O3
.
3H2O (rust)
2Fe(OH)3
How does all this relate to nutrient
availability?
ā€¢ With regard to solubility of inorganic compounds, we may expect that when both
the cation and anion are single charged, the resulting compound is usually very
soluble.
ā€¢ Examples are compounds formed from the cations H+, NH4
+, Na+, K+ and the anions
OH-, Cl-, NO3
-, H2PO4
-, and HCO3
- (bicarbonate). Note that NH4
+, K+, Cl-, NO3
-, and
H2PO4
- are nutrient ions.
ā€¢ Because monovalent ions are very soluble, when a monovalent cation reacts with
OH- to form a base, the base is very strong (e.g. NaOH, KOH).
ā€¢ Strong Acid Strong Electrolyte
Strong Base Weak Electrolyte
ā€¢ Similarly, when a monovalent anion reacts with H+ to form an acid, the acid is a
strong acid (e.g. HCl, HNO3). The monovalent molecules H2PO4
-, and HCO3
-, which
are products of multi-charged ions that have already reacted with H+, are exceptions.
ā€¢ Except for H+ and OH-, whenever either the cation or anion is single charged and
reacts with a multiple charged ion, the resulting compound is usually very soluble.
Another exception to this rule is for F-, which reacts with Al+++ to form insoluble
AlF3, a reaction important to soil test extractants of P in acid soils
Multiple charged ions
ā€¢ Divalent cations Mg 2+ , Ca2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+
ā€¢ Divalent anions SO4
2-, CO3
2- (carbonate), HPO4
2-, and MoO4
2-
ā€¢ Trivalent cations Fe 3+ and Al 3+
ā€¢ Trivalent anion PO4
3-
ā€¢ When monovalent anions Cl- or NO3
- react with any of the multi-charged cations
Mg 2+ , Ca2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ Fe 3+ and Al 3+ the solid compounds are all
quite soluble.
ā€¢ Similarly, when any of the monovalent cations NH4
+, Na+, or K+ reacts with any of
the multi-charged anions SO4
2-, CO3
2-, HPO4
2-, MoO4
2-, or PO4
3-, the solids are all
quite soluble.
ā€¢ If both the cation and anion are divalent, the resulting compound will be only
sparingly soluble. An example is gypsum (CaSO4*2H2O).
ā€¢ If one of the ions is divalent and the other is trivalent, the compound will be
moderately insoluble. An example is tricalcium phosphate, Ca3(PO4)2.
ā€¢ If both the anion and cation are trivalent, the compound is very insoluble. An
example is iron (ferric) phosphate, FePO4
AlPO4 ?
How can these general rules be
simplified?
ā€¢ Once charges of the ions in a compound are known, we can get some idea
of the compound solubility by simply adding the charges.
ā€¢ For example, if the sum of the anion and cation charges is 2, then the
compound is very soluble (e.g. NaCl).
ā€¢ As the sum of the charges increases, the solubility of the compound
decreases.
ā€¢ Whenever one of the ions is monovalent the compound is usually very
soluble (e.g. KCl, CaCl2, and FeCl3 are all soluble even though the sum of
charges is 2, 3, and 4, respectively).
ā€¢ Many examples where these simple rules are a good predictor of solubility.
The sum of charges in CaSO4 is 4, and it is less soluble than CaCl2.
ā€¢ The sum of charges in Ca(H2PO4)2 is 3 (Ca 2+ and H2PO4-) and it is more
soluble than CaHPO4 where the sum of charges is 4 (Ca 2+ and HPO4
2-).
Similarly, Ca3(PO4)2 has a charge sum of 5 (Ca 2+ and PO4
3-) and is less soluble
than CaHPO4.
Relative solubility of compounds formed
from the reaction of anions (An-) and
cations (Mn+) of different charges.
M3+
M2+
M+
A-
A2-
A3-
1. All compounds with a monovalent ion are soluble.
M3+
M2+
M+
A-
A2-
A3-
2. Compounds with both ions divalent are sparingly soluble.
M3+
M2+
M+
A-
A2-
A3-
3. Compounds with one divalent ion and one trivalent ion are moderately
insoluble.
M3+
M2+
M+
A-
A2-
A3-
4. Compounds with both ions trivalent are insoluble.
Why are some nutrients mobile
and some immobile in the soil?
ā€¢ With a general understanding of nutrient ion solubility, it
is now easier to examine the relative nutrient mobility in
soils.
ā€¢ Bray: Nutrient management is closely linked to how
mobile the nutrients are in the soil.
ā€¢ Relative mobility of nutrients in soils is governed
primarily by
ā€¢ inorganic solubility
ā€¢ ionic charge
ā€¢ ionic adsorption (e.g., cations on the soil cation exchange sites),
and
ā€¢ biological immobilization
Are all highly soluble nutrients
mobile in the soil?
ā€¢ Monovalent nutrient ions have a good chance of being mobile in
soils.
ā€¢ Monovalent anions, Cl- and NO3
-, are mobile in the soil because they
are not adsorbed on ion exchange sites.
ā€¢ They have the wrong charge (-) for adsorption on cation exchange
sites and they are too weakly charged, compared to SO4
-- for
example, to be adsorbed on anion exchange sites.
ā€¢ Furthermore, most soils have limited anion exchange capacity
(tropical soils are an exception).
ā€¢ Monovalent cation nutrients, K+ and NH4
+, are highly water soluble,
but relatively immobile in soils because they are adsorbed on cation
exchange sites. These nutrient ions become more mobile in sandy,
low organic matter soils that have extremely low cation exchange
capacity.
ā€¢ Plants absorb B as the uncharged, undissociated, boric acid
molecule (H3BO3). Since this form of B is highly water-soluble and
has no charge, it is mobile in soils.
Are all divalent and trivalent
nutrient ions immobile in the soil?
ā€¢ Divalent and trivalent nutrient ions are immobile in soils (exception SO4
2-)
ā€¢ In tropical soils, are enough anion exchange sites to provide significant adsorption of SO4
2-
and cause it to be somewhat immobile. Although sulfate compounds, such as CaSO4 and
MgSO4 are relatively insoluble, the equilibrium concentration of SO4
2- with these solid
compounds is far greater than that needed for plant growth. Phosphate is immobile in soils
because it tends to form insoluble compounds with Ca in neutral and calcareous soils and Al
and Fe in acidic soils (described in more detail in the chapter on P). Molybdate (MoO4
--)
reacts to from insoluble solids similar to the solid-forming reactions described for phosphate.
ā€¢ The divalent cation nutrients, Ca 2+ , Mg2+ , Cu2+ , Mn2+ , and Zn2+ are adsorbed on cation
exchange sites in soils, which prevents them from being mobile. In addition, when divalent
and trivalent anions are present, these cations will react to form sparingly soluble and
insoluble solids (e.g. Ca3(PO4)2).
ā€¢ Iron absorption by plants involves both Fe2+ and Fe+3 .
ā€¢ Both are immobile in soils.
ā€¢ Reduced form is usually not present in significant amounts, but could be absorbed on cation
exchange sites.
ā€¢ Trivalent iron forms insoluble solid oxides (rust) that prevent the ion from being mobile.
ā€¢ Reduced (Fe++) Oxidized (Fe+++)
gains electrons loss of electrons
ā€¢ Ferrous Ferric
Whatare the plantconcentrations,
functionsand deficiencysymptomsof the
essentialnutrients?
ā€¢ Plant concentration of nutrients is helpful in managing nutrients
that are mobile in the soil.
ā€¢ For these nutrients, the crop requirement can be estimated by
multiplying yield times plant concentration.
ā€¢ Nitrogen
ā€¢ Nitrogen component of all amino acids
ā€¢ part of all proteins and enzymes
ā€¢ Plants contain from 1 to 5 %N
ā€¢ Wheat (2.35%) Corn (1.18%N) Soybeans (5.2%N)
ā€¢ Young legumes contain about 4 % N (25 % crude protein) and
recently fertilized turf may contain 5 % N.
ā€¢ Nitrogen is a structural component of many plant compounds
including chlorophyll and DNA.
ā€¢ Deficiencies of N are the most common, worldwide, of any of the
nutrients.
Nutrients are grouped
according to crop removal.
ā€¢ Primary (N, P, K).
ā€¢ Removed in largest amount by crop.
ā€¢ Most commonly deficient.
ā€¢ Secondary.
ā€¢ Removed in moderate amount by crop.
ā€¢ Micro.
ā€¢ Removed in minute amount by crop.
What are the Primary Nutrients
needed by all crops
Nutrient
Nitrogen (N)
Potassium (K)
Phosphorus (P)
Soil (lb/a)*
400 ā€“ 8,000
800 - 60,000
400 ā€“ 10,000
Crop
(lb/a)**
80
40
12
*Range of total amount in soil. From Chemical Equilibria
in Soils. W.L.Lindsay, 1979. Wiley & Sons.
**Calculated for 2 ton crop yield (67 bushel wheat).
Secondary Nutrients Needed
by all Crops
Nutrient
Calcium
Magnesium
Sulfur
Soil (lb/a)*
14,000 ā€“ 1,000,000
1,200 - 12,000
60 ā€“ 20,000
Crop (lb/a)**
16
8
6
* Range of total in soil. From Chemical Equilibria in Soils.
W.L.Lindsay, 1979. Wiley & Sons.
**Calculated for 2 ton crop yield (67 bushel wheat).
Micronutrients Needed by all Crops
Nutrient
Iron
Manganese
Copper
Zinc
Boron
Chlorine
Molybdenum
Nickel
Soil (lb/a)*
14,000 ā€“ 1,100,000
40 ā€“ 6,000
4 - 200
20 - 600
4 - 200
40 ā€“ 1,800
0.4 - 10
6 - 2000
*Range of total in soils. From Chemical Equilibria in Soils.
W.L.Lindsay, 1979. Wiley & Sons.
Crop (lb/a)**
1
0.8
0.08
0.6
0.08
4
0.0008
.05
**Calculated for 2 ton crop yield (67 bushel wheat).
Nutrient take up is Crop spec.
Review: Nutrients Needed by
all Crops
Primary
Nitrogen (N)
Potassium (K)
Phosphorus (P)
Secondary
Calcium (Ca)
Magnesium (Mg)
Sulfur (S)
Micro
Iron (Fe)
Zinc (Zn)
Manganese (Mn)
Copper (Cu)
Chlorine (Cl)
Boron (B)
Molybdenum (Mo)
Nickel (Ni)
Nutrients not commonly found
deficient in Oklahoma crops.
ā€¢ Calcium.
ā€¢ Liming prevents Ca deficiency.
ā€¢ Manganese.
ā€¢ Copper.
ā€¢ Molybdenum.
ā€¢ Nickel
Nutrients seldom found
deficient in Oklahoma crops.
ā€¢ Magnesium.
ā€¢ Sulfur.
ā€¢ Iron.
ā€¢ Zinc.
ā€¢ Boron.
ā€¢ Chlorine.
Nutrients often Deficient in
Oklahoma crops.
ā€¢ Nitrogen (N).
ā€¢ Legumes like soybeans and alfalfa get their N from
microorganisms (rhizobium) that fix N from the atmosphere.
ā€¢ Phosphorus (P).
ā€¢ Potassium (K).
Nitrogen
ā€¢ Wherever non-legumes are grown in a high-yielding monoculture system,
and the crop is removed in harvest as a part of the farming enterprise, N
deficiencies occur within a few years. (Straw, Residues)
ā€¢ Deficient plants are stunted
ā€¢ Low protein content
ā€¢ develop chlorosis (yellowing) at the tip, progressing along the mid-rib toward
the base of the oldest leaf.
http://www.nue.okstate.edu/Spatial_N_Variability.htm
Nitrogen
If the deficiency persists, the oldest leaf becomes completely chlorotic,
eventually dying, while the pattern of chlorosis begins developing in the
next to oldest leaf. The pattern of chlorosis develops as N is translocated
to newly developing tissue (N is mobile in plants). Nitrogen deficiency
reduces yield and hastens maturity in many plants.
Nitrogen Deficiency.
ā€¢ Shows up as chlorosis (yellowing) at the tip of the
oldest leaf.
ā€¢ Progresses toward the base of the leaf along the midrib
(corn).
ā€¢ Chlorosis continues to the next oldest leaf, after the
oldest leaf becomes almost completely chlorotic, if
deficiency continues.
Nitrogen Deficiency in Corn.
chlorosis (yellowing) at the tip of the oldest
leaf.
Nitrogen Deficiency in Corn.
Chlorosis continues to the
next oldest leaf
Phosphorus
ā€¢ The P content of plants ranges from about 0.1 to
0.4 %, and is thus about 1/10th the
concentration of N in plants.
ā€¢ Storage and transfer of energy as ADP
(adenosine di-phosphate) and ATP (adenosine
tri-phosphate). High-energy phosphate bonds
(ester linkage of phosphate groups) are involved
ATP
ā€¢ Biochemical reaction illustrating the release of energy and
primary orthophosphate when ATP is converted to ADP (R
denotes adenosine).
O O O O O O
ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼
R-O-P-O-P-O-P-OH ļƒØ energy + R-O-P-O-P-OH + O-P-OH
ļ¼ ļ¼ ļ¼ ļ¼ ļ¼ ļ¼
OH OH OH OH OH OH
ATP ADP Primary ortho phosphate (H2PO4
-
)
Phosphorus
ā€¢ Plant symptoms of P deficiency include poor root and
seed development, and a purple discoloration of oldest
(lower) leaves. Purple discoloration at the base of plant
stalks (corn) and leaf petioles (cotton) is sometimes a
genetic trait that may be incorrectly diagnosed as P
deficiency.
Phosphorus Deficiency.
purple coloring and sometimes
yellow on lower (oldest) leaves.
CORN
Phosphorus Deficiency.
ā€¢ Deficiency in Oklahoma cultivated soils is related to
historical use of P-fertilizers.
ā€¢ P builds up in soils when high-P, low-N fertilizers are the
only input.
ā€¢ 10-20-10 and 18-46-0.
Rate of P Applied
ā€¢ So, we know that plants have 1/10 the amount of P as N
ā€¢ If both N and P were deficient, would we apply
a. 1/10 the amount of N
b. 1/5 the amount of N
c. 1/2 the amount of N
d. Doesnā€™t matter, Bray said so
Potassium.
ā€¢ The content of K in plants is almost as high as for N, ranging from about 1
to 5 %. Potassium functions as a co-factor (stimulator) for several enzyme
reactions and is involved in the regulation of water in plants by influencing
turgor pressure of stomatal guard cells.
ā€¢ Potassium is mobile in plants and the deficiency symptoms are similar to
those for N, except the chlorosis progresses from the tip, along the leaf
margins (instead of the midrib), toward the base of the oldest leaf.
ā€¢ Leaf margins usually die soon after chlorosis develops, resulting in a
condition referred to as ā€œfiringā€ or leaf burn. Deficiencies are related to
soil parent material, fertilizer use and cropping histories.
Potassium Deficiency.
ā€¢ Common in crops grown in weathered soils
developed under high rainfall.
ā€¢ Symptoms are chlorosis at the tip of the oldest leaf (like N),
that progresses toward the base along the leaf margins.
Potassium Deficiency.
ā€¢ Common in crops grown in weathered soils developed under high
rainfall.
K Usually
adequate
K Usually
deficient
Potassium Deficiency.
ā€¢ Chlorosis at the tip of the oldest leaf progressing toward
the base along the leaf margins (corn, alfalfa).
Calcium and Magnesium
ā€¢ Calcium deficiencies are rare, although the concentration of Ca
is relatively high (0.5 %) in plants. The primary function is in
the formation and differentiation of cells. Deficiency results in
development of a gelatinous mass in the region of the apical
meristem where new cells would normally form.
N
N Mg N
N
R
R
Chlorophyll, showing the importance of N (apex of four pyrrole rings)
and Mg (centrally coordinated atom in the porphyrin type structure). R
indicates carbon-chain groups.
Mg cont.
ā€¢ Magnesium is present at about 0.2%, or one-half the
concentration of Ca in plant tissue.
ā€¢ Soil Mg levels are considerably lower than for Ca, and Mg
deficiency does occasionally occur.
ā€¢ Magnesium functions as a co-factor for several enzyme
reactions and is the centrally coordinated metal atom in the
chlorophyll molecule
ā€¢ Intermediately mobile in plants, leading to deficiency
symptoms of interveinal chlorosis in lower leaves.
ā€¢ Deficiencies may be expected in deep, well-drained soils
developed under high rainfall that are managed to produce
and remove high forage yields (Example?)
Magnesium and Sulfur
additions.
ā€¢ Lime, especially dolomitic, adds Mg.
ā€¢ Rainfall adds 6 lb/acre/yr of S.
ā€¢ Like 120 lb of N (crop needs 1 lb S for every 20 lb N).
Magnesium Deficiency in
Alfalfa.
Magnesium and Sulfur
deficiencies.
ā€¢ Occur on deep, sandy, low organic matter soils in high rainfall
regions with high yielding forage production.
ā€¢ Storage capacity for Mg and S is low.
ā€¢ Large annual removal of nutrients.
Sulfur
Sulfur is present in plant tissue in concentrations ranging from 0.1 to 0.2
%, similar to that for Mg. The function of S in plants is similar to that for
N, component of three amino acids, cystine, cysteine, and methionine,
which are important in the structural changes and shapes of enzymes
Sulfur NCSU
Sulfur Deficiency in Corn.
Overall light green color, worse
on new leaves during rapid
growth.
Sulfur Deficiency in Wheat.
Overall light green color, worse
on new leaves during rapid
growth.
Zinc Deficiency
in Corn (Kansas).
Note short
internodes (stunted
plants).
Note ā€œbronzeā€
coloring of leaf.
Zinc Deficiency in Cotton
(Mississippi)
Zinc deficiencies.
ā€¢ Usually found in high pH, low organic matter soils, and
sensitive crops.
ā€¢ Pecans, corn, soybeans and cotton.
ā€¢ Crop symptoms are shortened internodes and bronze coloring.
Correcting Zinc Deficiency
in Crops.
ā€¢ Broadcast and incorporate 6 to 10 lb of Zn as zinc sulfate
preplant.
ā€¢ This rate should eliminate the deficiency for 3 to 4 years as
compared to 1 to 2 lb applied annually.
ā€¢ Foliar apply low rate to pecans annually.
Micronutrient cation elements
ā€¢ Immobile in plants and function as co-factors in enzyme
reactions (Mn and Zn) or oxidation-reduction reactions
ā€¢ Deficiency symptoms are found on the newest leaves.
ā€¢ For Fe deficiency, the symptoms are a dramatic interveinal
chlorosis (yellowing) of the newest leaves.
Iron deficiencies.
ā€¢ Limited to high pH soils and sensitive crops.
ā€¢ West-central and western Oklahoma.
ā€¢ Grain sorghum, sorghum sudan, and wheat (also pin
oak, blueberries and azaleas).
ā€¢ Crop symptoms are chlorosis between veins of newest
leaves
Iron Deficiency in Corn.
Note yellowing (chlorosis)
between veins.
Iron Deficiency in Peanuts
Note yellowing (chlorosis) between
veins of newest leaves.
Correcting and Minimizing
Iron Deficiency in Crops.
ā€¢ Select tolerant varieties and crops.
ā€¢ Incorporate several tons of rotted organic matter per acre of
affected soil.
ā€¢ Use a foliar spray of 1 % Fe as iron sulfate.
ā€¢ Usually will require repeat spraying and will not be economical.
Molybdenum
ā€¢ Plants require Mo at tissue concentrations of about 0.1
to 0.2 ppm. It functions in critical enzymes related to N
metabolism; nitrate reductase, which reduces nitrate to
amino-N, and nitrogenase, which is required for N2
fixation by legumes.
ā€¢ Deficiency symptoms are similar to that described for N
deficiency. Molybdenum appears to be mobile in plants
(translocated from old to new tissue). Deficiencies are
rare and are associated with very acid soils and soils that
have a high content of iron oxides.
Boron
ā€¢ Of the remaining micronutrients, B is the most commonly
deficient. However, even its deficiency is somewhat rare and
most common in regions of relatively high rainfall (> 40 inches
per year).
ā€¢ It is found at tissue concentrations of about 20 ppm and is
believed to function in sugar translocation, although it is
extremely immobile in plants. Deficiency symptoms include
poor root and internal seed development (ā€œhollow heartā€ in
peanuts)
Correcting Boron Deficiency
in Crops.
ā€¢ Apply Ā½ to 1 lb B according to soil test.
ā€¢ May be applied as addition to N-P-K blend or foliar spray in-
season.
ā€¢ Excessive rates may kill crop.
ā€¢ Applications may be needed each year.
BORAX
Boron Deficiencies.
ā€¢ Occasionally found in peanuts grown in sandy, low
organic matter soils.
ā€¢ Responsible for ā€œhollow heartā€.
Chlorine
ā€¢ Since its discovery as an essential plant nutrient in the mid 1950ā€™s, the
function of Cl in plants has been somewhat of a mystery.
ā€¢ Required in plant tissue at concentrations of only about 100 ppm (1 lb
Cl/10,000 lb plant material).
ā€¢ Yield response associated with application rates 20 to 50 times higher than
that required to supply plant concentration requirements.
ā€¢ Believed to function in internal water regulations and as a counter ion
associated with excess cation uptake.
ā€¢ Deficiencies have been reported in small grains (wheat and barley) grown in
the central Great Plains (far from Cl containing ocean sprays and hurricanes)
in soils that do not require annual K fertilization.
ā€¢ The most common K fertilizer is KCl. Some crops also show a positive
response to Cl fertilizer because of disease suppression (not a nutritional
response). Chloride deficiency symptoms appear as chlorotic, leaf-spot
lesions on older leaves (chloride is mobile in plants).
Chloride Research-Kansas State University
Chlorine Deficiency.
ā€¢ Occasionally found in wheat grown in sandy, low organic matter
soils.
Chlorine Deficiencies.
ā€¢ Symptoms are yellow ā€œblotchesā€™ on mature leaves.
Chlorine Deficiencies.
ā€¢ Limited to areas where potassium (K) fertilizer is not
used.
ā€¢ K fertilizer is usually potassium chloride.
ā€¢ Soil test Cl is < 20 lb/acre in top 2 feet.
Nickel
ā€¢ Crop Deficiencies
ā€¢ No Nickel deficiencies have been observed under crop-
growing conditions, but in crop research settings, ag scientists
have reproduced deficiency symptoms such as chlorosis of
young leaves and dead meristematic tissue.
ā€¢ Plant Nitrogen (N) Metabolism
ā€¢ Nickel is a component of the urease enzyme and is, therefore,
necessary for the conversion of urea to ammonia (NHā‚ƒ) in
plant tissue, making it important in plant nitrogen (N)
metabolism.

More Related Content

Similar to Chapter2_21 (2).ppt

A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...
A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...
A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...James H. Workman
Ā 
Coordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsCoordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsPharmacy Universe
Ā 
04 redox reactions__dissoln.__precip
04 redox reactions__dissoln.__precip04 redox reactions__dissoln.__precip
04 redox reactions__dissoln.__precipMUBOSScz
Ā 
05b chemical equations
05b chemical equations05b chemical equations
05b chemical equationsDr Ahmad Fahmi
Ā 
Chemistry zimsec chapter 6 electrochemistry
Chemistry zimsec chapter 6 electrochemistryChemistry zimsec chapter 6 electrochemistry
Chemistry zimsec chapter 6 electrochemistryalproelearning
Ā 
Chapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxChapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxSrikanth S
Ā 
Chapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxChapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxSrikanth S
Ā 
Chapter 3 Oxidation and Reduction
Chapter 3 Oxidation and ReductionChapter 3 Oxidation and Reduction
Chapter 3 Oxidation and ReductionBrandon Loo
Ā 
the prediotic table
the prediotic tablethe prediotic table
the prediotic tableKhowlaOvais
Ā 
Metals, Non Metals And Oxidation
Metals, Non Metals And OxidationMetals, Non Metals And Oxidation
Metals, Non Metals And Oxidationguest426cf3
Ā 
ICSE Class IX Chemistry The Language of Chemistry- TopperLearning
ICSE Class IX Chemistry The Language of Chemistry- TopperLearningICSE Class IX Chemistry The Language of Chemistry- TopperLearning
ICSE Class IX Chemistry The Language of Chemistry- TopperLearningAlok Singh
Ā 
oxidation numbers
oxidation numbersoxidation numbers
oxidation numbersvxiiayah
Ā 
radicals and chemical formulae
radicals and chemical formulaeradicals and chemical formulae
radicals and chemical formulaerohit garg
Ā 
C4 lesson part one
C4 lesson part oneC4 lesson part one
C4 lesson part onesamuelaylward
Ā 
CHEMISTRY FORM 4 KSSM CHAPTER 4
CHEMISTRY FORM 4 KSSM CHAPTER 4CHEMISTRY FORM 4 KSSM CHAPTER 4
CHEMISTRY FORM 4 KSSM CHAPTER 4MISS ESTHER
Ā 
Oxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsOxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsSheikhMahatabuddinPh
Ā 
Chemistry zimsec chapter 9 chemical periodicity
Chemistry zimsec chapter 9 chemical periodicityChemistry zimsec chapter 9 chemical periodicity
Chemistry zimsec chapter 9 chemical periodicityalproelearning
Ā 
revision on chapter periodic table, chemical bonding and electrolysis with an...
revision on chapter periodic table, chemical bonding and electrolysis with an...revision on chapter periodic table, chemical bonding and electrolysis with an...
revision on chapter periodic table, chemical bonding and electrolysis with an...MRSMPC
Ā 

Similar to Chapter2_21 (2).ppt (20)

A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...
A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...
A&P basic chemistry, atoms to ions, bonding, molecules v compounds, water and...
Ā 
Coordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition MetalsCoordination chemistry/Descriptive Chemistry /Transition Metals
Coordination chemistry/Descriptive Chemistry /Transition Metals
Ā 
04 redox reactions__dissoln.__precip
04 redox reactions__dissoln.__precip04 redox reactions__dissoln.__precip
04 redox reactions__dissoln.__precip
Ā 
05b chemical equations
05b chemical equations05b chemical equations
05b chemical equations
Ā 
Chemistry zimsec chapter 6 electrochemistry
Chemistry zimsec chapter 6 electrochemistryChemistry zimsec chapter 6 electrochemistry
Chemistry zimsec chapter 6 electrochemistry
Ā 
Chapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxChapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptx
Ā 
Chapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptxChapter2- akjkjkkaaCorrosion Basics.pptx
Chapter2- akjkjkkaaCorrosion Basics.pptx
Ā 
REDOX REACTION 01.ppt
REDOX REACTION 01.pptREDOX REACTION 01.ppt
REDOX REACTION 01.ppt
Ā 
Chapter 3 Oxidation and Reduction
Chapter 3 Oxidation and ReductionChapter 3 Oxidation and Reduction
Chapter 3 Oxidation and Reduction
Ā 
the prediotic table
the prediotic tablethe prediotic table
the prediotic table
Ā 
Metals, Non Metals And Oxidation
Metals, Non Metals And OxidationMetals, Non Metals And Oxidation
Metals, Non Metals And Oxidation
Ā 
ICSE Class IX Chemistry The Language of Chemistry- TopperLearning
ICSE Class IX Chemistry The Language of Chemistry- TopperLearningICSE Class IX Chemistry The Language of Chemistry- TopperLearning
ICSE Class IX Chemistry The Language of Chemistry- TopperLearning
Ā 
oxidation numbers
oxidation numbersoxidation numbers
oxidation numbers
Ā 
radicals and chemical formulae
radicals and chemical formulaeradicals and chemical formulae
radicals and chemical formulae
Ā 
C4 lesson part one
C4 lesson part oneC4 lesson part one
C4 lesson part one
Ā 
CHEMISTRY FORM 4 KSSM CHAPTER 4
CHEMISTRY FORM 4 KSSM CHAPTER 4CHEMISTRY FORM 4 KSSM CHAPTER 4
CHEMISTRY FORM 4 KSSM CHAPTER 4
Ā 
Oxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsOxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rections
Ā 
Module 11 periodic table
Module 11 periodic tableModule 11 periodic table
Module 11 periodic table
Ā 
Chemistry zimsec chapter 9 chemical periodicity
Chemistry zimsec chapter 9 chemical periodicityChemistry zimsec chapter 9 chemical periodicity
Chemistry zimsec chapter 9 chemical periodicity
Ā 
revision on chapter periodic table, chemical bonding and electrolysis with an...
revision on chapter periodic table, chemical bonding and electrolysis with an...revision on chapter periodic table, chemical bonding and electrolysis with an...
revision on chapter periodic table, chemical bonding and electrolysis with an...
Ā 

Recently uploaded

(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...ranjana rawat
Ā 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BHbill846304
Ā 
History, principles and use for biopesticide risk assessment: Boet Glandorf a...
History, principles and use for biopesticide risk assessment: Boet Glandorf a...History, principles and use for biopesticide risk assessment: Boet Glandorf a...
History, principles and use for biopesticide risk assessment: Boet Glandorf a...OECD Environment
Ā 
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Ā 
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...Suhani Kapoor
Ā 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012sapnasaifi408
Ā 
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Ā 
Mumbai Call Girls, šŸ’ž Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, šŸ’ž  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, šŸ’ž  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, šŸ’ž Prity 9892124323, Navi Mumbai Call girlsPooja Nehwal
Ā 
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service Bikaner
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service BikanerLow Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service Bikaner
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service BikanerSuhani Kapoor
Ā 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable PackagingDr. Salem Baidas
Ā 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurSuhani Kapoor
Ā 
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escortsranjana rawat
Ā 

Recently uploaded (20)

Model Call Girl in Rajiv Chowk Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Rajiv Chowk Delhi reach out to us at šŸ”9953056974šŸ”Model Call Girl in Rajiv Chowk Delhi reach out to us at šŸ”9953056974šŸ”
Model Call Girl in Rajiv Chowk Delhi reach out to us at šŸ”9953056974šŸ”
Ā 
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
(PARI) Viman Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune ...
Ā 
Freegle User Survey as visual display - BH
Freegle User Survey as visual display - BHFreegle User Survey as visual display - BH
Freegle User Survey as visual display - BH
Ā 
History, principles and use for biopesticide risk assessment: Boet Glandorf a...
History, principles and use for biopesticide risk assessment: Boet Glandorf a...History, principles and use for biopesticide risk assessment: Boet Glandorf a...
History, principles and use for biopesticide risk assessment: Boet Glandorf a...
Ā 
9953056974 ,Low Rate Call Girls In Adarsh Nagar Delhi 24hrs Available
9953056974 ,Low Rate Call Girls In Adarsh Nagar  Delhi 24hrs Available9953056974 ,Low Rate Call Girls In Adarsh Nagar  Delhi 24hrs Available
9953056974 ,Low Rate Call Girls In Adarsh Nagar Delhi 24hrs Available
Ā 
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Aditi Call 7001035870 Meet With Nagpur Escorts
Ā 
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...
VIP Call Girls Ramanthapur ( Hyderabad ) Phone 8250192130 | ā‚¹5k To 25k With R...
Ā 
Green Banking
Green Banking Green Banking
Green Banking
Ā 
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(RIYA) Kalyani Nagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012
Call Girls South Delhi Delhi reach out to us at ā˜Ž 9711199012
Ā 
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi NcrCall Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Call Girls In R.K. Puram 9953056974 Escorts ServiCe In Delhi Ncr
Ā 
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur EscortsCall Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Call Girl Nagpur Roshni Call 7001035870 Meet With Nagpur Escorts
Ā 
E Waste Management
E Waste ManagementE Waste Management
E Waste Management
Ā 
Mumbai Call Girls, šŸ’ž Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, šŸ’ž  Prity 9892124323, Navi Mumbai Call girlsMumbai Call Girls, šŸ’ž  Prity 9892124323, Navi Mumbai Call girls
Mumbai Call Girls, šŸ’ž Prity 9892124323, Navi Mumbai Call girls
Ā 
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service Bikaner
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service BikanerLow Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service Bikaner
Low Rate Call Girls Bikaner Anika 8250192130 Independent Escort Service Bikaner
Ā 
Sustainable Packaging
Sustainable PackagingSustainable Packaging
Sustainable Packaging
Ā 
young Whatsapp Call Girls in Delhi CanttšŸ” 9953056974 šŸ” escort service
young Whatsapp Call Girls in Delhi CanttšŸ” 9953056974 šŸ” escort serviceyoung Whatsapp Call Girls in Delhi CanttšŸ” 9953056974 šŸ” escort service
young Whatsapp Call Girls in Delhi CanttšŸ” 9953056974 šŸ” escort service
Ā 
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service GorakhpurVIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
VIP Call Girl Gorakhpur Aashi 8250192130 Independent Escort Service Gorakhpur
Ā 
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Bhavna Call 7001035870 Meet With Nagpur Escorts
Ā 
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Call Girls In { Delhi } South Extension Whatsup 9873940964 Enjoy Unlimited Pl...
Ā 

Chapter2_21 (2).ppt

  • 1. Chapter 2 NUTRIENT GENERAL CHEMISTRY AND PLANT FUNCTION
  • 2. What nutrients do plants need? ā€¢ Plants require 17 nutrients; each is a chemical element ā€¢ Plants do not require organic matter, enzymes or hormones as nutrients taken up from the soil. ā€¢ Plant requirements for these substances is met by the plantā€™s own manufacture of them. ā€¢ Except for carbon (C), hydrogen (H), oxygen (O), and boron (B) the nutrients are absorbed primarily as chemical ions from the soil solution.
  • 3. Nutrient Symbol Forms Absorbed Primary Source Soil Mobility Hydrogen H H2O Rainfall / Soil Solution Mobile Oxygen O H2O, O2 Rainfall / Soil Solution Mobile Carbon C CO2 Atmoshpere - Nitrogen N NO3 - NH4 + Soil Solution (SS) SS and Exchange Sites Mobile Immobile Potassium K K+ SS and Exchange Sites Immobile Calcium Ca Ca2+ SS and Exchange Sites Immobile Magnesium Mg Mg2+ SS and Exchange Sites Immobile Phosphorus P H2PO4 - ; HPO4 2- SS and Exchange Sites Immobile Sulfur S SO4 2- SO2 Soil Solution Atmosphere Mobile - Iron Fe Fe2+ Fe3+ SS and Exchange Sites Immobile Chlorine Cl Cl- Soil Solution Mobile Boron B H3BO3 Soil Solution Mobile Manganese Mn Mn2+ SS and Exchange Sites Immobile Zinc Zn Zn2+ SS and Exchange Sites Immobile Copper Cu Cu2+ SS and Exchange Sites Immobile Molybdenum Mo MoO4 2- Soil Solution Mobile Nickel Ni Ni2+ SS and Exchange Sites Immobile
  • 4. CHOPKNS CaFe Mg B Mn ClCuZn Mo and Ni ā€¢ Nickle the 17th was recently added 2004. ā€¢ A 18th and 19th Nutrients have been ā€œsuggestedā€. ā€¢ Sodium Na ā€¢ Sodium has a very specific function in the concentration of carbon dioxide in a limited number of C4 plants and thus is essential to these plants, but this in itself is insufficient to generalize that Na is essential for higher plants. ā€¢ Silica Si ā€¢ Plants can grow in hydroponic solutions without any silicon added. However some anaerobic plants (Rice) need it. https://www.cropnutrition.com/nutrient-knowledge
  • 5. What makes these nutrients essential? Must satisfy three specific criteria: 1. Plants cannot complete their life cycle without the element. 2. Deficiency symptoms for the element can be corrected only by supplying the element in question. 3. The element is directly involved in the nutrition of the plant, apart from its effect on chemical or physical properties of the soil.
  • 6. What affects the soil availability of these nutrients? ā€¢ Most of the nutrients are absorbed as ions from the soil solution or the soil cation exchange complex. ā€¢ Understanding the general chemistry of the nutrient ions, as it relates to their concentration in the soil solution, is critical to developing an understanding of how to manage their availability to plants. ā€¢ What affects nutrient ion solubility? ā€¢ Solubility is strongly influenced by the charge of the ion. ā€¢ The first step to understanding solubility of nutrient ions and molecules is to know ionic and molecular charges. Help comes from identifying common ions, from group I, II and VII of the periodic table, that have only one standard valance in the soil environment. ā€¢ To know these ā€œstandardā€ ions is as important to basic chemistry as knowing ā€˜multiplication tablesā€™ is to basic mathematics.
  • 8. ā€¢ A positively-charged ion, which has fewer electrons than protons, is known as a cation ā€¢ A negatively charged ion, which has more electrons in its electron shells than it has protons in its nuclei, is known as an anion
  • 9. ā€¢ Elements that have only one valance state in the soil environment. Cations Anions H+ Cl- Na+ O2- K+ Mg2+ Ca2+ Al3+ WEB ELEMENTS Oxidation number or oxidation state: charge of an atom that results when the electrons in a covalent bond are assigned to the more elctronegative atom Ionic Bond: electrostatic forces that exist between ions of opposite charge (left side metals combined with right side NM) Covalent Bond: sharing of electrons between two atoms (2 NM) Metallic Bond: each metal atom is bonded to several neighboring atoms (give rise to electrical conductivity and luster)
  • 10. ā€¢ oxidation state - the degree of oxidation of an atom or ion or molecule; for simple atoms or ions the oxidation number is equal to the ionic charge; "the oxidation number of hydrogen is +1 and of oxygen is -2" ā€¢ The oxidation state or oxidation number is defined as the sum of negative and positive charges in an atom , which indirectly indicates the number of electrons it has accepted or donated. N is losing electrons to O because O is more electronegative N gains electrons from H because H wants to give up electrons Oxygen: oxidation number = -2 Hydrogen: oxidation number = +1 Nitrogen: oxidation number = 0 N Oxidation State H or O NH3 Charge = 0 3(+1) = 3 3-(0))= +3 -3 N gains 3 NO3 Charge = -1 3(-2) = -6 -6- (-1)) = -5 +5 N loses 5 NH4 Charge =+1 4(+1) = 4 4 ā€“ (+1)) = 3 -3 N gains 3
  • 11. Oxidation Numbers. ā€¢ It is often useful to follow chemical reactions by looking at changes in the oxidation numbers of the atoms in each compound during the reaction. Oxidation numbers also play an important role in the systematic nomenclature of chemical compounds. By definition, the oxidation number of an atom is the charge that atom would have if the compound was composed of ions. 1. The oxidation number of an atom is zero in a neutral substance that contains atoms of only one element. Thus, the atoms in O2, O3, P4, S8, and aluminum metal all have an oxidation number of 0. 2. The oxidation number of simple ions is equal to the charge on the ion. The oxidation number of sodium in the Na+ ion is +1, for example, and the oxidation number of chlorine in the Cl- ion is -1. 3. The oxidation number of hydrogen is +1 when it is combined with a nonmetal as in CH4, NH3, H2O, and HCl. 4. The oxidation number of hydrogen is -1 when it is combined with a metal as in. LiH, NaH, CaH2, and LiAlH4. 5. The metals in Group IA form compounds (such as Li3N and Na2S) in which the metal atom has an oxidation number of +1. http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch2/oxnumb.html
  • 12. Oxidation Numbers. 6. The elements in Group IIA form compounds (such as Mg3N2 and CaCO3) in which the metal atom has a +2 oxidation number. 7. Oxygen usually has an oxidation number of -2. Exceptions include molecules and polyatomic ions that contain O-O bonds, such as O2, O3, H2O2, and the O22- ion. 8. The elements in Group VIIA often form compounds (such as AlF3, HCl, and ZnBr2) in which the nonmetal has a -1 oxidation number. 9. The sum of the oxidation numbers in a neutral compound is zero. H2O: 2(+1) + (-2) = 0 10. The sum of the oxidation numbers in a polyatomic ion is equal to the charge on the ion. The oxidation number of the sulfur atom in the SO4 2- ion must be +6, for example, because the sum of the oxidation numbers of the atoms in this ion must equal -2. ā€¢ SO4 2-: (+6) + 4(-2) = -2 11. Elements toward the bottom left corner of the periodic table are more likely to have positive oxidation numbers than those toward the upper right corner of the table. Sulfur has a positive oxidation number in SO2, for example, because it is below oxygen in the periodic table. ā€¢ SO2: (+4) + 2(-2) = 0 http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch2/oxnumb.html
  • 13. Ion/molecule Name Oxidation State NH3 ammonia -3 NH4 + ammonium -3 N2 diatomic N 0 N2O nitrous oxide +1 NO nitric oxide +2 NO2 - nitrite +3 NO3 - nitrate +5 H2S hydrogen sulfide -2 SO4 = sulfate +6 N: 5 electrons in the outer shell loses 5 electrons (+5 oxidation state NO3) gains 3 electrons (-3 oxidation state NH3) O: 6 electrons in the outer shell is always being reduced (gains 2 electrons to fill the outer shell) H: 1 electron in the outer shell N is losing electrons to O because O is more electronegative N gains electrons from H because H wants to give up electrons Reduction, Net Gain of Electrons Oxidation, Net Loss of Electrons 8 is the Magical Number
  • 14. The chemical formula, name, and charge of each molecule should be carefully studied (memorized). Significance of each to soil fertility is presented and discussed in later chapters. NH4 + (ammonium) SO4 2- (sulfate) CO3 2- (carbonate) NO3 - (nitrate) PO4 3- (phosphate) HCO3 - (bicarbonate) NO2 - (nitrite) HPO4 2- (phosphate) MoO4 2- (molybdate) NH3 0 (ammonia) H2PO4 - (phosphate) H3BO3 o (boric acid) Using this information, we can determine the charge of molecules or the oxidation state of elements in a charged molecule Ex: CO3 -2, we should be able to determine, by difference, that the oxidation state of C is 4+ (3*-2=-6) -2 showing = +4 CaCl2 is an uncharged calcium chloride molecule
  • 15. General effect of ion charge on solubility ā€¢ Availability of nutrient ions to plants and the solubility of compounds they come from, or may react to form, can be discussed from the perspective of the general reaction: An+ + Bm- ļƒŸ ļƒ  AmBn
  • 16. ā€¢ Reactant ions An+ and Bm- combine to form a compound (usually a solid) predicted by their electrical charges. ā€¢ The higher the charge of either the cation or anion, the greater is the tendency for the compound or solid to be formed. ā€¢ When the solid is easily formed, only small concentrations of the reactants are necessary for the reaction to take place. Because of this, the compound or solid that forms is also relatively insoluble (it will not easily dissolve in water), or it does not easily break apart (reaction to the left). Conversely, if the cation and anion are both single-charged, then the compound (solid) is not as easily formed, and if it does form, it is relatively soluble. An+ + Bm- ļƒŸ ļƒ  AmBn
  • 17. ā€œReal lifeā€ examples of charge- influenced solubility ā€¢ A common compound that represents single charged ions is sodium chloride (NaCl, table salt), whose solubility is given by the equilibrium reaction, An+ + Bm- ļƒŸ ļƒ  AmBn Na+ + Cl- ļƒŸ ļƒ  NaCl
  • 18. Examples ā€¢ Common table salt is very soluble and easily dissolves in water. Once dissolved, the solid NaCl does not reform until the ions, Na+ + Cl-, are present in high concentration. ā€¢ When water is lost from the solution by evaporation the solid finally reforms as NaCl precipitate. ā€¢ Iron oxide or rust, represents multiple charged ions forming a relatively insoluble material. When iron reacts with oxygen and water (a humid atmosphere), a very insoluble solid, rust or iron oxide, is formed 2 Fe3+ + 3 O2- + 3 H2O ļƒ§= ļƒØ Fe2O3 . 3H2O (rust) 2Fe(OH)3
  • 19. How does all this relate to nutrient availability? ā€¢ With regard to solubility of inorganic compounds, we may expect that when both the cation and anion are single charged, the resulting compound is usually very soluble. ā€¢ Examples are compounds formed from the cations H+, NH4 +, Na+, K+ and the anions OH-, Cl-, NO3 -, H2PO4 -, and HCO3 - (bicarbonate). Note that NH4 +, K+, Cl-, NO3 -, and H2PO4 - are nutrient ions. ā€¢ Because monovalent ions are very soluble, when a monovalent cation reacts with OH- to form a base, the base is very strong (e.g. NaOH, KOH). ā€¢ Strong Acid Strong Electrolyte Strong Base Weak Electrolyte ā€¢ Similarly, when a monovalent anion reacts with H+ to form an acid, the acid is a strong acid (e.g. HCl, HNO3). The monovalent molecules H2PO4 -, and HCO3 -, which are products of multi-charged ions that have already reacted with H+, are exceptions. ā€¢ Except for H+ and OH-, whenever either the cation or anion is single charged and reacts with a multiple charged ion, the resulting compound is usually very soluble. Another exception to this rule is for F-, which reacts with Al+++ to form insoluble AlF3, a reaction important to soil test extractants of P in acid soils
  • 20. Multiple charged ions ā€¢ Divalent cations Mg 2+ , Ca2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ ā€¢ Divalent anions SO4 2-, CO3 2- (carbonate), HPO4 2-, and MoO4 2- ā€¢ Trivalent cations Fe 3+ and Al 3+ ā€¢ Trivalent anion PO4 3- ā€¢ When monovalent anions Cl- or NO3 - react with any of the multi-charged cations Mg 2+ , Ca2+ , Mn2+ , Fe2+ , Cu2+ , Zn2+ Fe 3+ and Al 3+ the solid compounds are all quite soluble. ā€¢ Similarly, when any of the monovalent cations NH4 +, Na+, or K+ reacts with any of the multi-charged anions SO4 2-, CO3 2-, HPO4 2-, MoO4 2-, or PO4 3-, the solids are all quite soluble. ā€¢ If both the cation and anion are divalent, the resulting compound will be only sparingly soluble. An example is gypsum (CaSO4*2H2O). ā€¢ If one of the ions is divalent and the other is trivalent, the compound will be moderately insoluble. An example is tricalcium phosphate, Ca3(PO4)2. ā€¢ If both the anion and cation are trivalent, the compound is very insoluble. An example is iron (ferric) phosphate, FePO4 AlPO4 ?
  • 21. How can these general rules be simplified? ā€¢ Once charges of the ions in a compound are known, we can get some idea of the compound solubility by simply adding the charges. ā€¢ For example, if the sum of the anion and cation charges is 2, then the compound is very soluble (e.g. NaCl). ā€¢ As the sum of the charges increases, the solubility of the compound decreases. ā€¢ Whenever one of the ions is monovalent the compound is usually very soluble (e.g. KCl, CaCl2, and FeCl3 are all soluble even though the sum of charges is 2, 3, and 4, respectively). ā€¢ Many examples where these simple rules are a good predictor of solubility. The sum of charges in CaSO4 is 4, and it is less soluble than CaCl2. ā€¢ The sum of charges in Ca(H2PO4)2 is 3 (Ca 2+ and H2PO4-) and it is more soluble than CaHPO4 where the sum of charges is 4 (Ca 2+ and HPO4 2-). Similarly, Ca3(PO4)2 has a charge sum of 5 (Ca 2+ and PO4 3-) and is less soluble than CaHPO4.
  • 22. Relative solubility of compounds formed from the reaction of anions (An-) and cations (Mn+) of different charges. M3+ M2+ M+ A- A2- A3- 1. All compounds with a monovalent ion are soluble. M3+ M2+ M+ A- A2- A3- 2. Compounds with both ions divalent are sparingly soluble. M3+ M2+ M+ A- A2- A3- 3. Compounds with one divalent ion and one trivalent ion are moderately insoluble. M3+ M2+ M+ A- A2- A3- 4. Compounds with both ions trivalent are insoluble.
  • 23. Why are some nutrients mobile and some immobile in the soil? ā€¢ With a general understanding of nutrient ion solubility, it is now easier to examine the relative nutrient mobility in soils. ā€¢ Bray: Nutrient management is closely linked to how mobile the nutrients are in the soil. ā€¢ Relative mobility of nutrients in soils is governed primarily by ā€¢ inorganic solubility ā€¢ ionic charge ā€¢ ionic adsorption (e.g., cations on the soil cation exchange sites), and ā€¢ biological immobilization
  • 24. Are all highly soluble nutrients mobile in the soil? ā€¢ Monovalent nutrient ions have a good chance of being mobile in soils. ā€¢ Monovalent anions, Cl- and NO3 -, are mobile in the soil because they are not adsorbed on ion exchange sites. ā€¢ They have the wrong charge (-) for adsorption on cation exchange sites and they are too weakly charged, compared to SO4 -- for example, to be adsorbed on anion exchange sites. ā€¢ Furthermore, most soils have limited anion exchange capacity (tropical soils are an exception). ā€¢ Monovalent cation nutrients, K+ and NH4 +, are highly water soluble, but relatively immobile in soils because they are adsorbed on cation exchange sites. These nutrient ions become more mobile in sandy, low organic matter soils that have extremely low cation exchange capacity. ā€¢ Plants absorb B as the uncharged, undissociated, boric acid molecule (H3BO3). Since this form of B is highly water-soluble and has no charge, it is mobile in soils.
  • 25. Are all divalent and trivalent nutrient ions immobile in the soil? ā€¢ Divalent and trivalent nutrient ions are immobile in soils (exception SO4 2-) ā€¢ In tropical soils, are enough anion exchange sites to provide significant adsorption of SO4 2- and cause it to be somewhat immobile. Although sulfate compounds, such as CaSO4 and MgSO4 are relatively insoluble, the equilibrium concentration of SO4 2- with these solid compounds is far greater than that needed for plant growth. Phosphate is immobile in soils because it tends to form insoluble compounds with Ca in neutral and calcareous soils and Al and Fe in acidic soils (described in more detail in the chapter on P). Molybdate (MoO4 --) reacts to from insoluble solids similar to the solid-forming reactions described for phosphate. ā€¢ The divalent cation nutrients, Ca 2+ , Mg2+ , Cu2+ , Mn2+ , and Zn2+ are adsorbed on cation exchange sites in soils, which prevents them from being mobile. In addition, when divalent and trivalent anions are present, these cations will react to form sparingly soluble and insoluble solids (e.g. Ca3(PO4)2). ā€¢ Iron absorption by plants involves both Fe2+ and Fe+3 . ā€¢ Both are immobile in soils. ā€¢ Reduced form is usually not present in significant amounts, but could be absorbed on cation exchange sites. ā€¢ Trivalent iron forms insoluble solid oxides (rust) that prevent the ion from being mobile. ā€¢ Reduced (Fe++) Oxidized (Fe+++) gains electrons loss of electrons ā€¢ Ferrous Ferric
  • 26. Whatare the plantconcentrations, functionsand deficiencysymptomsof the essentialnutrients? ā€¢ Plant concentration of nutrients is helpful in managing nutrients that are mobile in the soil. ā€¢ For these nutrients, the crop requirement can be estimated by multiplying yield times plant concentration. ā€¢ Nitrogen ā€¢ Nitrogen component of all amino acids ā€¢ part of all proteins and enzymes ā€¢ Plants contain from 1 to 5 %N ā€¢ Wheat (2.35%) Corn (1.18%N) Soybeans (5.2%N) ā€¢ Young legumes contain about 4 % N (25 % crude protein) and recently fertilized turf may contain 5 % N. ā€¢ Nitrogen is a structural component of many plant compounds including chlorophyll and DNA. ā€¢ Deficiencies of N are the most common, worldwide, of any of the nutrients.
  • 27. Nutrients are grouped according to crop removal. ā€¢ Primary (N, P, K). ā€¢ Removed in largest amount by crop. ā€¢ Most commonly deficient. ā€¢ Secondary. ā€¢ Removed in moderate amount by crop. ā€¢ Micro. ā€¢ Removed in minute amount by crop.
  • 28. What are the Primary Nutrients needed by all crops Nutrient Nitrogen (N) Potassium (K) Phosphorus (P) Soil (lb/a)* 400 ā€“ 8,000 800 - 60,000 400 ā€“ 10,000 Crop (lb/a)** 80 40 12 *Range of total amount in soil. From Chemical Equilibria in Soils. W.L.Lindsay, 1979. Wiley & Sons. **Calculated for 2 ton crop yield (67 bushel wheat).
  • 29. Secondary Nutrients Needed by all Crops Nutrient Calcium Magnesium Sulfur Soil (lb/a)* 14,000 ā€“ 1,000,000 1,200 - 12,000 60 ā€“ 20,000 Crop (lb/a)** 16 8 6 * Range of total in soil. From Chemical Equilibria in Soils. W.L.Lindsay, 1979. Wiley & Sons. **Calculated for 2 ton crop yield (67 bushel wheat).
  • 30. Micronutrients Needed by all Crops Nutrient Iron Manganese Copper Zinc Boron Chlorine Molybdenum Nickel Soil (lb/a)* 14,000 ā€“ 1,100,000 40 ā€“ 6,000 4 - 200 20 - 600 4 - 200 40 ā€“ 1,800 0.4 - 10 6 - 2000 *Range of total in soils. From Chemical Equilibria in Soils. W.L.Lindsay, 1979. Wiley & Sons. Crop (lb/a)** 1 0.8 0.08 0.6 0.08 4 0.0008 .05 **Calculated for 2 ton crop yield (67 bushel wheat).
  • 31. Nutrient take up is Crop spec.
  • 32. Review: Nutrients Needed by all Crops Primary Nitrogen (N) Potassium (K) Phosphorus (P) Secondary Calcium (Ca) Magnesium (Mg) Sulfur (S) Micro Iron (Fe) Zinc (Zn) Manganese (Mn) Copper (Cu) Chlorine (Cl) Boron (B) Molybdenum (Mo) Nickel (Ni)
  • 33. Nutrients not commonly found deficient in Oklahoma crops. ā€¢ Calcium. ā€¢ Liming prevents Ca deficiency. ā€¢ Manganese. ā€¢ Copper. ā€¢ Molybdenum. ā€¢ Nickel
  • 34. Nutrients seldom found deficient in Oklahoma crops. ā€¢ Magnesium. ā€¢ Sulfur. ā€¢ Iron. ā€¢ Zinc. ā€¢ Boron. ā€¢ Chlorine.
  • 35. Nutrients often Deficient in Oklahoma crops. ā€¢ Nitrogen (N). ā€¢ Legumes like soybeans and alfalfa get their N from microorganisms (rhizobium) that fix N from the atmosphere. ā€¢ Phosphorus (P). ā€¢ Potassium (K).
  • 36. Nitrogen ā€¢ Wherever non-legumes are grown in a high-yielding monoculture system, and the crop is removed in harvest as a part of the farming enterprise, N deficiencies occur within a few years. (Straw, Residues) ā€¢ Deficient plants are stunted ā€¢ Low protein content ā€¢ develop chlorosis (yellowing) at the tip, progressing along the mid-rib toward the base of the oldest leaf. http://www.nue.okstate.edu/Spatial_N_Variability.htm
  • 37. Nitrogen If the deficiency persists, the oldest leaf becomes completely chlorotic, eventually dying, while the pattern of chlorosis begins developing in the next to oldest leaf. The pattern of chlorosis develops as N is translocated to newly developing tissue (N is mobile in plants). Nitrogen deficiency reduces yield and hastens maturity in many plants.
  • 38. Nitrogen Deficiency. ā€¢ Shows up as chlorosis (yellowing) at the tip of the oldest leaf. ā€¢ Progresses toward the base of the leaf along the midrib (corn). ā€¢ Chlorosis continues to the next oldest leaf, after the oldest leaf becomes almost completely chlorotic, if deficiency continues.
  • 39. Nitrogen Deficiency in Corn. chlorosis (yellowing) at the tip of the oldest leaf.
  • 40. Nitrogen Deficiency in Corn. Chlorosis continues to the next oldest leaf
  • 41. Phosphorus ā€¢ The P content of plants ranges from about 0.1 to 0.4 %, and is thus about 1/10th the concentration of N in plants. ā€¢ Storage and transfer of energy as ADP (adenosine di-phosphate) and ATP (adenosine tri-phosphate). High-energy phosphate bonds (ester linkage of phosphate groups) are involved
  • 42. ATP ā€¢ Biochemical reaction illustrating the release of energy and primary orthophosphate when ATP is converted to ADP (R denotes adenosine). O O O O O O ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ ļ¼ļ¼ R-O-P-O-P-O-P-OH ļƒØ energy + R-O-P-O-P-OH + O-P-OH ļ¼ ļ¼ ļ¼ ļ¼ ļ¼ ļ¼ OH OH OH OH OH OH ATP ADP Primary ortho phosphate (H2PO4 - )
  • 43. Phosphorus ā€¢ Plant symptoms of P deficiency include poor root and seed development, and a purple discoloration of oldest (lower) leaves. Purple discoloration at the base of plant stalks (corn) and leaf petioles (cotton) is sometimes a genetic trait that may be incorrectly diagnosed as P deficiency.
  • 44. Phosphorus Deficiency. purple coloring and sometimes yellow on lower (oldest) leaves. CORN
  • 45. Phosphorus Deficiency. ā€¢ Deficiency in Oklahoma cultivated soils is related to historical use of P-fertilizers. ā€¢ P builds up in soils when high-P, low-N fertilizers are the only input. ā€¢ 10-20-10 and 18-46-0.
  • 46. Rate of P Applied ā€¢ So, we know that plants have 1/10 the amount of P as N ā€¢ If both N and P were deficient, would we apply a. 1/10 the amount of N b. 1/5 the amount of N c. 1/2 the amount of N d. Doesnā€™t matter, Bray said so
  • 47. Potassium. ā€¢ The content of K in plants is almost as high as for N, ranging from about 1 to 5 %. Potassium functions as a co-factor (stimulator) for several enzyme reactions and is involved in the regulation of water in plants by influencing turgor pressure of stomatal guard cells. ā€¢ Potassium is mobile in plants and the deficiency symptoms are similar to those for N, except the chlorosis progresses from the tip, along the leaf margins (instead of the midrib), toward the base of the oldest leaf. ā€¢ Leaf margins usually die soon after chlorosis develops, resulting in a condition referred to as ā€œfiringā€ or leaf burn. Deficiencies are related to soil parent material, fertilizer use and cropping histories.
  • 48. Potassium Deficiency. ā€¢ Common in crops grown in weathered soils developed under high rainfall. ā€¢ Symptoms are chlorosis at the tip of the oldest leaf (like N), that progresses toward the base along the leaf margins.
  • 49. Potassium Deficiency. ā€¢ Common in crops grown in weathered soils developed under high rainfall. K Usually adequate K Usually deficient
  • 50. Potassium Deficiency. ā€¢ Chlorosis at the tip of the oldest leaf progressing toward the base along the leaf margins (corn, alfalfa).
  • 51. Calcium and Magnesium ā€¢ Calcium deficiencies are rare, although the concentration of Ca is relatively high (0.5 %) in plants. The primary function is in the formation and differentiation of cells. Deficiency results in development of a gelatinous mass in the region of the apical meristem where new cells would normally form. N N Mg N N R R Chlorophyll, showing the importance of N (apex of four pyrrole rings) and Mg (centrally coordinated atom in the porphyrin type structure). R indicates carbon-chain groups.
  • 52. Mg cont. ā€¢ Magnesium is present at about 0.2%, or one-half the concentration of Ca in plant tissue. ā€¢ Soil Mg levels are considerably lower than for Ca, and Mg deficiency does occasionally occur. ā€¢ Magnesium functions as a co-factor for several enzyme reactions and is the centrally coordinated metal atom in the chlorophyll molecule ā€¢ Intermediately mobile in plants, leading to deficiency symptoms of interveinal chlorosis in lower leaves. ā€¢ Deficiencies may be expected in deep, well-drained soils developed under high rainfall that are managed to produce and remove high forage yields (Example?)
  • 53. Magnesium and Sulfur additions. ā€¢ Lime, especially dolomitic, adds Mg. ā€¢ Rainfall adds 6 lb/acre/yr of S. ā€¢ Like 120 lb of N (crop needs 1 lb S for every 20 lb N).
  • 55. Magnesium and Sulfur deficiencies. ā€¢ Occur on deep, sandy, low organic matter soils in high rainfall regions with high yielding forage production. ā€¢ Storage capacity for Mg and S is low. ā€¢ Large annual removal of nutrients.
  • 56. Sulfur Sulfur is present in plant tissue in concentrations ranging from 0.1 to 0.2 %, similar to that for Mg. The function of S in plants is similar to that for N, component of three amino acids, cystine, cysteine, and methionine, which are important in the structural changes and shapes of enzymes Sulfur NCSU
  • 57. Sulfur Deficiency in Corn. Overall light green color, worse on new leaves during rapid growth.
  • 58. Sulfur Deficiency in Wheat. Overall light green color, worse on new leaves during rapid growth.
  • 59.
  • 60. Zinc Deficiency in Corn (Kansas). Note short internodes (stunted plants). Note ā€œbronzeā€ coloring of leaf.
  • 61. Zinc Deficiency in Cotton (Mississippi)
  • 62. Zinc deficiencies. ā€¢ Usually found in high pH, low organic matter soils, and sensitive crops. ā€¢ Pecans, corn, soybeans and cotton. ā€¢ Crop symptoms are shortened internodes and bronze coloring.
  • 63. Correcting Zinc Deficiency in Crops. ā€¢ Broadcast and incorporate 6 to 10 lb of Zn as zinc sulfate preplant. ā€¢ This rate should eliminate the deficiency for 3 to 4 years as compared to 1 to 2 lb applied annually. ā€¢ Foliar apply low rate to pecans annually.
  • 64. Micronutrient cation elements ā€¢ Immobile in plants and function as co-factors in enzyme reactions (Mn and Zn) or oxidation-reduction reactions ā€¢ Deficiency symptoms are found on the newest leaves. ā€¢ For Fe deficiency, the symptoms are a dramatic interveinal chlorosis (yellowing) of the newest leaves.
  • 65. Iron deficiencies. ā€¢ Limited to high pH soils and sensitive crops. ā€¢ West-central and western Oklahoma. ā€¢ Grain sorghum, sorghum sudan, and wheat (also pin oak, blueberries and azaleas). ā€¢ Crop symptoms are chlorosis between veins of newest leaves
  • 66. Iron Deficiency in Corn. Note yellowing (chlorosis) between veins.
  • 67.
  • 68. Iron Deficiency in Peanuts Note yellowing (chlorosis) between veins of newest leaves.
  • 69. Correcting and Minimizing Iron Deficiency in Crops. ā€¢ Select tolerant varieties and crops. ā€¢ Incorporate several tons of rotted organic matter per acre of affected soil. ā€¢ Use a foliar spray of 1 % Fe as iron sulfate. ā€¢ Usually will require repeat spraying and will not be economical.
  • 70. Molybdenum ā€¢ Plants require Mo at tissue concentrations of about 0.1 to 0.2 ppm. It functions in critical enzymes related to N metabolism; nitrate reductase, which reduces nitrate to amino-N, and nitrogenase, which is required for N2 fixation by legumes. ā€¢ Deficiency symptoms are similar to that described for N deficiency. Molybdenum appears to be mobile in plants (translocated from old to new tissue). Deficiencies are rare and are associated with very acid soils and soils that have a high content of iron oxides.
  • 71. Boron ā€¢ Of the remaining micronutrients, B is the most commonly deficient. However, even its deficiency is somewhat rare and most common in regions of relatively high rainfall (> 40 inches per year). ā€¢ It is found at tissue concentrations of about 20 ppm and is believed to function in sugar translocation, although it is extremely immobile in plants. Deficiency symptoms include poor root and internal seed development (ā€œhollow heartā€ in peanuts)
  • 72. Correcting Boron Deficiency in Crops. ā€¢ Apply Ā½ to 1 lb B according to soil test. ā€¢ May be applied as addition to N-P-K blend or foliar spray in- season. ā€¢ Excessive rates may kill crop. ā€¢ Applications may be needed each year. BORAX
  • 73. Boron Deficiencies. ā€¢ Occasionally found in peanuts grown in sandy, low organic matter soils. ā€¢ Responsible for ā€œhollow heartā€.
  • 74.
  • 75. Chlorine ā€¢ Since its discovery as an essential plant nutrient in the mid 1950ā€™s, the function of Cl in plants has been somewhat of a mystery. ā€¢ Required in plant tissue at concentrations of only about 100 ppm (1 lb Cl/10,000 lb plant material). ā€¢ Yield response associated with application rates 20 to 50 times higher than that required to supply plant concentration requirements. ā€¢ Believed to function in internal water regulations and as a counter ion associated with excess cation uptake. ā€¢ Deficiencies have been reported in small grains (wheat and barley) grown in the central Great Plains (far from Cl containing ocean sprays and hurricanes) in soils that do not require annual K fertilization. ā€¢ The most common K fertilizer is KCl. Some crops also show a positive response to Cl fertilizer because of disease suppression (not a nutritional response). Chloride deficiency symptoms appear as chlorotic, leaf-spot lesions on older leaves (chloride is mobile in plants). Chloride Research-Kansas State University
  • 76. Chlorine Deficiency. ā€¢ Occasionally found in wheat grown in sandy, low organic matter soils.
  • 77. Chlorine Deficiencies. ā€¢ Symptoms are yellow ā€œblotchesā€™ on mature leaves.
  • 78.
  • 79. Chlorine Deficiencies. ā€¢ Limited to areas where potassium (K) fertilizer is not used. ā€¢ K fertilizer is usually potassium chloride. ā€¢ Soil test Cl is < 20 lb/acre in top 2 feet.
  • 80. Nickel ā€¢ Crop Deficiencies ā€¢ No Nickel deficiencies have been observed under crop- growing conditions, but in crop research settings, ag scientists have reproduced deficiency symptoms such as chlorosis of young leaves and dead meristematic tissue. ā€¢ Plant Nitrogen (N) Metabolism ā€¢ Nickel is a component of the urease enzyme and is, therefore, necessary for the conversion of urea to ammonia (NHā‚ƒ) in plant tissue, making it important in plant nitrogen (N) metabolism.