SlideShare a Scribd company logo
1 of 69
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
PowerPoint Lectures for
Biology, Seventh Edition
Neil Campbell and Jane Reece
Lectures by Chris Romero
Chapter 18
The Genetics of Viruses
and Bacteria
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Overview: Microbial Model Systems
• Viruses called bacteriophages
– Can infect and set in motion a genetic takeover
of bacteria, such as Escherichia coli
Figure 18.1
0.5 m
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• E. coli and its viruses
– Are called model systems because of their
frequent use by researchers in studies that
reveal broad biological principles
• Beyond their value as model systems
– Viruses and bacteria have unique genetic
mechanisms that are interesting in their own
right
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Recall that bacteria are prokaryotes
– With cells much smaller and more simply
organized than those of eukaryotes
• Viruses
– Are smaller and simpler still
Figure 18.2
0.25 m
Virus
Animal
cell
Bacterium
Animal cell nucleus
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Concept 18.1: A virus has a genome but can
reproduce only within a host cell
• Scientists were able to detect viruses indirectly
– Long before they were actually able to see
them
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Discovery of Viruses: Scientific Inquiry
• Tobacco mosaic disease
– Stunts the growth of tobacco plants and gives
their leaves a mosaic coloration
Figure 18.3
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• In the late 1800s
– Researchers hypothesized that a particle
smaller than bacteria caused tobacco mosaic
disease
• In 1935, Wendell Stanley
– Confirmed this hypothesis when he crystallized
the infectious particle, now known as tobacco
mosaic virus (TMV)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Structure of Viruses
• Viruses
– Are very small infectious particles consisting of
nucleic acid enclosed in a protein coat and, in
some cases, a membranous envelope
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Viral Genomes
• Viral genomes may consist of
– Double- or single-stranded DNA
– Double- or single-stranded RNA
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 18.4a, b
18  250 mm 70–90 nm (diameter)
20 nm 50 nm
(a) Tobacco mosaic virus (b) Adenoviruses
RNA
DNA
Capsomere
Glycoprotein
Capsomere
of capsid
Capsids and Envelopes
• A capsid
– Is the protein shell that encloses the viral genome
– Can have various structures
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Some viruses have envelopes
– Which are membranous coverings derived
from the membrane of the host cell
Figure 18.4c
80–200 nm (diameter)
50 nm
(c) Influenza viruses
RNA
Glycoprotein
Membranous
envelope
Capsid
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Bacteriophages, also called phages
– Have the most complex capsids found among
viruses
Figure 18.4d
80  225 nm
50 nm
(d) Bacteriophage T4
DNA
Head
Tail
fiber
Tail
sheath
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
General Features of Viral Reproductive Cycles
• Viruses are obligate intracellular parasites
– They can reproduce only within a host cell
• Each virus has a host range
– A limited number of host cells that it can infect
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Viruses use enzymes, ribosomes, and small
molecules of host cells
– To synthesize progeny viruses
VIRUS
Capsid
proteins
mRNA
Viral DNA
HOST CELL
Viral DNA
DNA
Capsid
Figure 18.5
Entry into cell and
uncoating of DNA
Replication
Transcription
Self-assembly of
new
virus particles and
their exit from cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Reproductive Cycles of Phages
• Phages
– Are the best understood of all viruses
– Go through two alternative reproductive
mechanisms: the lytic cycle and the lysogenic
cycle
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Lytic Cycle
• The lytic cycle
– Is a phage reproductive cycle that culminates
in the death of the host
– Produces new phages and digests the host’s
cell wall, releasing the progeny viruses
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The lytic cycle of phage T4, a virulent phage
Phage assembly
Head Tails Tail fibers
Figure 18.6
Attachment. The T4 phage uses
its tail fibers to bind to specific
receptor sites on the outer
surface of an E. coli cell.
1
Entry of phage DNA
and degradation of host DNA.
The sheath of the tail contracts,
injecting the phage DNA into
the cell and leaving an empty
capsid outside. The cell’s
DNA is hydrolyzed.
2
Synthesis of viral genomes
and proteins. The phage DNA
directs production of phage
proteins and copies of the phage
genome by host enzymes, using
components within the cell.
3
Assembly. Three separate sets of proteins
self-assemble to form phage heads, tails,
and tail fibers. The phage genome is
packaged inside the capsid as the head forms.
4
Release. The phage directs production
of an enzyme that damages the bacterial
cell wall, allowing fluid to enter. The cell
swells and finally bursts, releasing 100
to 200 phage particles.
5
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Lysogenic Cycle
• The lysogenic cycle
– Replicates the phage genome without
destroying the host
• Temperate phages
– Are capable of using both the lytic and
lysogenic cycles of reproduction
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The lytic and lysogenic cycles of phage , a
temperate phage
Many cell divisions
produce a large
population of bacteria
infected with the
prophage.
The bacterium reproduces
normally, copying the prophage
and transmitting it to daughter cells.
Phage DNA integrates into
the bacterial chromosome,
becoming a prophage.
New phage DNA and
proteins are synthesized
and assembled into phages.
Occasionally, a prophage
exits the bacterial chromosome,
initiating a lytic cycle.
Certain factors
determine whether
The phage attaches to a
host cell and injects its DNA.
Phage DNA
circularizes
The cell lyses, releasing phages.
Lytic cycle
is induced
Lysogenic cycle
is entered
Lysogenic cycle
Lytic cycle
or Prophage
Bacterial
chromosome
Phage
Phage
DNA
Figure 18.7
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Reproductive Cycles of Animal Viruses
• The nature of the genome
– Is the basis for the common classification of
animal viruses
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Classes of animal viruses
Table 18.1
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Viral Envelopes
• Many animal viruses
– Have a membranous envelope
• Viral glycoproteins on the envelope
– Bind to specific receptor molecules on the
surface of a host cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
RNA
Capsid
Envelope (with
glycoproteins)
HOST CELL
Viral genome (RNA)
Template
Capsid
proteins
Glyco-
proteins
mRNA
Copy of
genome (RNA)
ER
Figure 18.8
• The reproductive cycle of an enveloped RNA virus
Glycoproteins on the viral envelope
bind to specific receptor molecules
(not shown) on the host cell,
promoting viral entry into the cell.
1
Capsid and viral genome
enter cell
2
The viral genome (red)
functions as a template for
synthesis of complementary
RNA strands (pink) by a viral
enzyme.
3
New copies of viral
genome RNA are made
using complementary RNA
strands as templates.
4
Complementary RNA
strands also function as mRNA,
which is translated into both
capsid proteins (in the cytosol)
and glycoproteins for the viral
envelope (in the ER).
5
Vesicles transport
envelope glycoproteins to
the plasma membrane.
6
A capsid assembles
around each viral
genome molecule.
7
New virus
8
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
RNA as Viral Genetic Material
• The broadest variety of RNA genomes
– Is found among the viruses that infect animals
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Retroviruses, such as HIV, use the enzyme
reverse transcriptase
– To copy their RNA genome into DNA, which
can then be integrated into the host genome
as a provirus
Figure 18.9
Reverse
transcriptase
Viral envelope
Capsid
Glycoprotein
RNA
(two identical
strands)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The reproductive cycle of HIV, a retrovirus
Figure 18.10
mRNA
RNA genome
for the next
viral generation
Viral RNA
RNA-DNA
hybrid
DNA
Chromosomal
DNA
NUCLEUS
Provirus
HOST CELL
Reverse
transcriptase
New HIV leaving a cell
HIV entering a cell
0.25 µm
HIV Membrane of
white blood cell
The virus fuses with the
cell’s plasma membrane.
The capsid proteins are
removed, releasing the
viral proteins and RNA.
1
Reverse transcriptase
catalyzes the synthesis of a
DNA strand complementary
to the viral RNA.
2
Reverse transcriptase
catalyzes the synthesis of
a second DNA strand
complementary to the first.
3
The double-stranded
DNA is incorporated
as a provirus into the
cell’s DNA.
4
Proviral genes are
transcribed into RNA
molecules, which serve as
genomes for the next viral
generation and as mRNAs
for translation into viral
proteins.
5
The viral proteins include
capsid proteins and reverse
transcriptase (made in the cytosol)
and envelope glycoproteins
(made in the ER).
6
Vesicles transport the
glycoproteins from the ER to
the cell’s plasma membrane.
7
Capsids are
assembled around
viral genomes and
reverse transcriptase
molecules.
8
New viruses bud
off from the host cell.
9
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Evolution of Viruses
• Viruses do not really fit our definition of living
organisms
• Since viruses can reproduce only within cells
– They probably evolved after the first cells
appeared, perhaps packaged as fragments of
cellular nucleic acid
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Concept 18.2: Viruses, viroids, and prions are
formidable pathogens in animals and plants
• Diseases caused by viral infections
– Affect humans, agricultural crops, and livestock
worldwide
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Viral Diseases in Animals
• Viruses may damage or kill cells
– By causing the release of hydrolytic enzymes
from lysosomes
• Some viruses cause infected cells
– To produce toxins that lead to disease
symptoms
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Vaccines
– Are harmless derivatives of pathogenic
microbes that stimulate the immune system to
mount defenses against the actual pathogen
– Can prevent certain viral illnesses
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Emerging Viruses
• Emerging viruses
– Are those that appear suddenly or suddenly
come to the attention of medical scientists
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Severe acute respiratory syndrome (SARS)
– Recently appeared in China
Figure 18.11 A, B
(a) Young ballet students in Hong Kong
wear face masks to protect themselves
from the virus causing SARS.
(b) The SARS-causing agent is a coronavirus
like this one (colorized TEM), so named for the
“corona” of glycoprotein spikes protruding from
the envelope.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Outbreaks of “new” viral diseases in humans
– Are usually caused by existing viruses that
expand their host territory
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Viral Diseases in Plants
• More than 2,000 types of viral diseases of
plants are known
• Common symptoms of viral infection include
– Spots on leaves and fruits, stunted growth, and
damaged flowers or roots
Figure 18.12
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Plant viruses spread disease in two major
modes
– Horizontal transmission, entering through
damaged cell walls
– Vertical transmission, inheriting the virus from
a parent
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Viroids and Prions: The Simplest Infectious Agents
• Viroids
– Are circular RNA molecules that infect plants
and disrupt their growth
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Prions
– Are slow-acting, virtually indestructible
infectious proteins that cause brain diseases in
mammals
– Propagate by converting normal proteins into
the prion version
Figure 18.13
Prion
Normal
protein
Original
prion
New
prion
Many prions
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Concept 18.3: Rapid reproduction, mutation,
and genetic recombination contribute to the
genetic diversity of bacteria
• Bacteria allow researchers
– To investigate molecular genetics in the
simplest true organisms
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The Bacterial Genome and Its Replication
• The bacterial chromosome
– Is usually a circular DNA molecule with few
associated proteins
• In addition to the chromosome
– Many bacteria have plasmids, smaller circular
DNA molecules that can replicate
independently of the bacterial chromosome
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Bacterial cells divide by binary fission
– Which is preceded by replication of the
bacterial chromosome
Replication
fork
Origin of
replication
Termination
of replication
Figure 18.14
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Mutation and Genetic Recombination as Sources
of Genetic Variation
• Since bacteria can reproduce rapidly
– New mutations can quickly increase a
population’s genetic diversity
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Further genetic diversity
– Can arise by recombination of the DNA from
two different bacterial cells
Mutant
strain
arg trp+
EXPERIMENT
Figure 18.15
Only the samples from the mixed culture, contained cells that gave rise to colonies on
minimal medium, which lacks amino acids.
RESULTS
Researchers had two mutant strains, one that could make arginine but not
tryptophan (arg+ trp–) and one that could make tryptophan but not arginine (arg trp+). Each
mutant strain and a mixture of both strains were grown in a liquid medium containing all the
required amino acids. Samples from each liquid culture were spread on plates containing a
solution of glucose and inorganic salts (minimal medium), solidified with agar.
Mutant
strain
arg+ trp–
Mixture
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Colonies
grew
Mutant
strain
arg+ trp–
Mutant
strain
arg– trp+
No
colonies
(control)
No
colonies
(control)
Mixture
Because only cells that can make both arginine and tryptophan (arg+ trp+ cells) can grow into
colonies on minimal medium, the lack of colonies on the two control plates showed that no further mutations had
occurred restoring this ability to cells of the mutant strains. Thus, each cell from the mixture that formed a colony on the
minimal medium must have acquired one or more genes from a cell of the other strain by genetic recombination.
CONCLUSION
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Mechanisms of Gene Transfer and Genetic
Recombination in Bacteria
• Three processes bring bacterial DNA from
different individuals together
– Transformation
– Transduction
– Conjugation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Transformation
• Transformation
– Is the alteration of a bacterial cell’s genotype
and phenotype by the uptake of naked, foreign
DNA from the surrounding environment
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Transduction
• In the process known as transduction
– Phages carry bacterial genes from one host
cell to another
1
Figure 18.16
Donor
cell
Recipient
cell
A+
B+
A+
A+ B–
A– B–
A+
Recombinant cell
Crossing
over
Phage infects bacterial cell that has alleles A+ and B+
Host DNA (brown) is fragmented, and phage DNA
and proteins are made. This is the donor cell.
A bacterial DNA fragment (in this case a fragment with
the A+ allele) may be packaged in a phage capsid.
Phage with the A+ allele from the donor cell infects
a recipient A–B– cell, and crossing over (recombination)
between donor DNA (brown) and recipient DNA
(green) occurs at two places (dotted lines).
The genotype of the resulting recombinant cell (A+B–)
differs from the genotypes of both the donor (A+B+) and
the recipient (A–B–).
2
3
4
5
Phage DNA
A+ B+
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Conjugation and Plasmids
• Conjugation
– Is the direct transfer of genetic material between
bacterial cells that are temporarily joined
Figure 18.17 Sex pilus 1 m
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
The F Plasmid and Conjugation
• Cells containing the F plasmid, designated F+
cells
– Function as DNA donors during conjugation
– Transfer plasmid DNA to an F recipient cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Conjugation and transfer of an F plasmid from
an F+ donor to an F recipient
Figure 18.18a
A cell carrying an F plasmid
(an F+ cell) can form a
mating bridge with an F– cell
and transfer its F plasmid.
A single strand of the
F plasmid breaks at a
specific point (tip of blue
arrowhead) and begins to
move into the recipient cell.
As transfer continues, the
donor plasmid rotates
(red arrow).
2 DNA replication occurs in
both donor and recipient
cells, using the single
parental strands of the
F plasmid as templates
to synthesize complementary
strands.
3 The plasmid in the
recipient cell
circularizes. Transfer
and replication result
in a compete F plasmid
in each cell. Thus, both
cells are now F+.
4
F Plasmid Bacterial chromosome
Bacterial
chromosome
F+ cell
F+ cell
F+ cell
Mating
bridge
1
Conjugation and transfer of an
F plasmid from an F+ donor to
an F– recipient
(a)
F– cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Chromosomal genes can be transferred during
conjugation
– When the donor cell’s F factor is integrated into the
chromosome
• A cell with the F factor built into its chromosome
– Is called an Hfr cell
• The F factor of an Hfr cell
– Brings some chromosomal DNA along with it when it
is transferred to an F– cell
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Conjugation and transfer of part of the
bacterial chromosome from an Hfr donor
to an F– recipient, resulting in recombination
F+ cell Hfr cell
F factor
The circular F plasmid in an F+ cell
can be integrated into the circular
chromosome by a single crossover
event (dotted line).
1
The resulting cell is called an Hfr cell
(for High frequency of recombination).
2
Since an Hfr cell has all
the F-factor genes, it can
form a mating bridge with
an F– cell and transfer DNA.
3 A single strand of the F factor
breaks and begins to move
through the bridge. DNA
replication occurs in both donor
and recipient cells, resulting in
double-stranded DNA
4 The location and orientation
of the F factor in the donor
chromosome determine
the sequence of gene transfer
during conjugation. In this
example, the transfer sequence
for four genes is A-B-C-D.
5 The mating bridge
usually breaks well
before the entire
chromosome and
the rest of the
F factor are transferred.
6
Two crossovers can result
in the exchange of similar
(homologous) genes between
the transferred chromosome fragment
(brown) and the recipient cell’s
chromosome (green).
7 The piece of DNA ending up outside the
bacterial chromosome will eventually be
degraded by the cell’s enzymes. The recipient
cell now contains a new combination of genes
but no F factor; it is a recombinant F– cell.
8
Temporary
partial
diploid
Recombinant F–
bacterium
A+
B+
C+
D+
F– cell A–
B–
C–
D–
A–
B–
C–
D– D–
A–
C–
B–
A+
B+
C+
D+
A+
B+
D+
C+
A+
A+
B+
A–
B–
C–
D–
A–
B+
C–
D–
A+
B+
B–
A+
Hfr cell
D–
A–
C–
B–
A+
B+
C+
D+
A+
B+
Conjugation and transfer of part
of the bacterial chromosome from
an Hfr donor to an F– recipient,
resulting in recombination
(b)
Figure 18.18b
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
R plasmids and Antibiotic Resistance
• R plasmids
– Confer resistance to various antibiotics
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Transposition of Genetic Elements
• Transposable elements
– Can move around within a cell’s genome
– Are often called “jumping genes”
– Contribute to genetic shuffling in bacteria
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 18.19a
(a) Insertion sequences, the simplest transposable elements in bacteria, contain a single gene that
encodes transposase, which catalyzes movement within the genome. The inverted repeats are
backward, upside-down versions of each other; only a portion is shown. The inverted repeat
sequence varies from one type of insertion sequence to another.
Insertion sequence
Transposase gene
Inverted
repeat
Inverted
repeat
3
5
3
5
A T C C G G T…
T A G G C C A …
A C C G G A T…
T G G C C T A …
Insertion Sequences
• An insertion sequence contains a single gene
for transposase
– An enzyme that catalyzes movement of the
insertion sequence from one site to another
within the genome
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Transposons
• Bacterial transposons
– Also move about within the bacterial genome
– Have additional genes, such as those for
antibiotic resistance
Figure 18.19b
(b) Transposons contain one or more genes in addition to the transposase gene. In the transposon
shown here, a gene for resistance to an antibiotic is located between twin insertion sequences.
The gene for antibiotic resistance is carried along as part of the transposon when the transposon
is inserted at a new site in the genome.
Inverted repeats Transposase gene
Insertion
sequence
Insertion
sequence
Antibiotic
resistance gene
Transposon
5
3
5
3
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Concept 18.4: Individual bacteria respond to
environmental change by regulating their gene
expression
• E. coli, a type of bacteria that lives in the
human colon
– Can tune its metabolism to the changing
environment and food sources
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• This metabolic control occurs on two levels
– Adjusting the activity of metabolic enzymes
already present
– Regulating the genes encoding the metabolic
enzymes
Figure 18.20a, b
(a) Regulation of enzyme
activity
Enzyme 1
Enzyme 2
Enzyme 3
Enzyme 4
Enzyme 5
Regulation
of gene
expression
Feedback
inhibition
Tryptophan
Precursor
(b) Regulation of enzyme
production
Gene 2
Gene 1
Gene 3
Gene 4
Gene 5
–
–
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Operons: The Basic Concept
• In bacteria, genes are often clustered into
operons, composed of
– An operator, an “on-off” switch
– A promoter
– Genes for metabolic enzymes
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• An operon
– Is usually turned “on”
– Can be switched off by a protein called a
repressor
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The trp operon: regulated synthesis of
repressible enzymes
Figure 18.21a
(a) Tryptophan absent, repressor inactive, operon on. RNA polymerase attaches to the DNA at the
promoter and transcribes the operon’s genes.
Genes of operon
Inactive
repressor
Protein
Operator
Polypeptides that make up
enzymes for tryptophan synthesis
Promoter
Regulatory
gene
RNA
polymerase
Start codon Stop codon
Promoter
trp operon
5
3
mRNA 5
trpD
trpE trpC trpB trpA
trpR
DNA
mRNA
E D C B A
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
DNA
mRNA
Protein
Tryptophan
(corepressor)
Active
repressor
No RNA made
Tryptophan present, repressor active, operon off. As tryptophan
accumulates, it inhibits its own production by activating the repressor protein.
(b)
Figure 18.21b
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Repressible and Inducible Operons: Two Types of
Negative Gene Regulation
• In a repressible operon
– Binding of a specific repressor protein to the
operator shuts off transcription
• In an inducible operon
– Binding of an inducer to an innately inactive
repressor inactivates the repressor and turns
on transcription
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• The lac operon: regulated synthesis of
inducible enzymes
Figure 18.22a
DNA
mRNA
Protein
Active
repressor
RNA
polymerase
No
RNA
made
lacZ
lacl
Regulatory
gene
Operator
Promoter
Lactose absent, repressor active, operon off. The lac repressor is innately active, and in
the absence of lactose it switches off the operon by binding to the operator.
(a)
5
3
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
mRNA 5'
DNA
mRNA
Protein
Allolactose
(inducer)
Inactive
repressor
lacl lacz lacY lacA
RNA
polymerase
Permease Transacetylase
-Galactosidase
5
3
(b) Lactose present, repressor inactive, operon on. Allolactose, an isomer of lactose, derepresses
the operon by inactivating the repressor. In this way, the enzymes for lactose utilization are induced.
mRNA 5
lac operon
Figure 18.22b
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Inducible enzymes
– Usually function in catabolic pathways
• Repressible enzymes
– Usually function in anabolic pathways
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• Regulation of both the trp and lac operons
– Involves the negative control of genes,
because the operons are switched off by the
active form of the repressor protein
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Positive Gene Regulation
• Some operons are also subject to positive
control
– Via a stimulatory activator protein, such as
catabolite activator protein (CAP)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
Promoter
Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized.
If glucose is scarce, the high level of cAMP activates CAP, and the lac operon produces
large amounts of mRNA for the lactose pathway.
(a)
CAP-binding site Operator
RNA
polymerase
can bind
and transcribe
Inactive
CAP
Active
CAP
cAMP
DNA
Inactive lac
repressor
lacl lacZ
Figure 18.23a
• In E. coli, when glucose, a preferred food
source, is scarce
– The lac operon is activated by the binding of a
regulatory protein, catabolite activator protein
(CAP)
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings
• When glucose levels in an E. coli cell increase
– CAP detaches from the lac operon, turning it
off
Figure 18.23b
(b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized.
When glucose is present, cAMP is scarce, and CAP is unable to stimulate transcription.
Inactive lac
repressor
Inactive
CAP
DNA
RNA
polymerase
can’t bind
Operator
lacl lacZ
CAP-binding site
Promoter

More Related Content

Similar to chapter18_genetics_of_viruses_and_bacteria.ppt

Microbiology Ch 13 lecture_presentation
Microbiology Ch 13 lecture_presentationMicrobiology Ch 13 lecture_presentation
Microbiology Ch 13 lecture_presentationTheSlaps
 
17lecturepresentation 160212183041
17lecturepresentation 16021218304117lecturepresentation 160212183041
17lecturepresentation 160212183041Cleophas Rwemera
 
Biology in Focus - Chapter 17
Biology in Focus - Chapter 17Biology in Focus - Chapter 17
Biology in Focus - Chapter 17mpattani
 
Viral replication by Kainat Ramzan-SlideShare
Viral replication by Kainat Ramzan-SlideShareViral replication by Kainat Ramzan-SlideShare
Viral replication by Kainat Ramzan-SlideShareKainatRamzan3
 
27lecturepresentation 110329065024-phpapp01
27lecturepresentation 110329065024-phpapp0127lecturepresentation 110329065024-phpapp01
27lecturepresentation 110329065024-phpapp01Cleophas Rwemera
 
General steps in virus replication
General steps in virus replicationGeneral steps in virus replication
General steps in virus replicationAvijit Pramanik
 
Ch 13_lecture_presentation
 Ch 13_lecture_presentation Ch 13_lecture_presentation
Ch 13_lecture_presentationkevperrino
 
20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.ppt20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.pptRavianMheBiton
 
Dn atechn genomics-developmemt
Dn atechn genomics-developmemtDn atechn genomics-developmemt
Dn atechn genomics-developmemtAndrew McCaskill
 
Host cell and vectors
Host cell and vectorsHost cell and vectors
Host cell and vectorsDr. R Salini
 

Similar to chapter18_genetics_of_viruses_and_bacteria.ppt (20)

Chapter 13.pdf
Chapter 13.pdfChapter 13.pdf
Chapter 13.pdf
 
Microbiology Ch 13 lecture_presentation
Microbiology Ch 13 lecture_presentationMicrobiology Ch 13 lecture_presentation
Microbiology Ch 13 lecture_presentation
 
Chapter 13.pdf
Chapter 13.pdfChapter 13.pdf
Chapter 13.pdf
 
Virology
VirologyVirology
Virology
 
17lecturepresentation 160212183041
17lecturepresentation 16021218304117lecturepresentation 160212183041
17lecturepresentation 160212183041
 
Biology in Focus - Chapter 17
Biology in Focus - Chapter 17Biology in Focus - Chapter 17
Biology in Focus - Chapter 17
 
Virus Ppt Presentation
Virus Ppt Presentation Virus Ppt Presentation
Virus Ppt Presentation
 
Chapter 17 - Viruses.pdf
Chapter 17 - Viruses.pdfChapter 17 - Viruses.pdf
Chapter 17 - Viruses.pdf
 
Chapter 13 viruse
Chapter 13 viruseChapter 13 viruse
Chapter 13 viruse
 
C3 Viruses
C3 VirusesC3 Viruses
C3 Viruses
 
Viral replication by Kainat Ramzan-SlideShare
Viral replication by Kainat Ramzan-SlideShareViral replication by Kainat Ramzan-SlideShare
Viral replication by Kainat Ramzan-SlideShare
 
Lecture1.pptx
Lecture1.pptxLecture1.pptx
Lecture1.pptx
 
27lecturepresentation 110329065024-phpapp01
27lecturepresentation 110329065024-phpapp0127lecturepresentation 110329065024-phpapp01
27lecturepresentation 110329065024-phpapp01
 
General steps in virus replication
General steps in virus replicationGeneral steps in virus replication
General steps in virus replication
 
Ch 13_lecture_presentation
 Ch 13_lecture_presentation Ch 13_lecture_presentation
Ch 13_lecture_presentation
 
Virus and bacteriophage
Virus and bacteriophageVirus and bacteriophage
Virus and bacteriophage
 
20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.ppt20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.ppt
 
20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.ppt20_Lecture_Presentation_0.ppt
20_Lecture_Presentation_0.ppt
 
Dn atechn genomics-developmemt
Dn atechn genomics-developmemtDn atechn genomics-developmemt
Dn atechn genomics-developmemt
 
Host cell and vectors
Host cell and vectorsHost cell and vectors
Host cell and vectors
 

Recently uploaded

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxjana861314
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Recently uploaded (20)

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptxBroad bean, Lima Bean, Jack bean, Ullucus.pptx
Broad bean, Lima Bean, Jack bean, Ullucus.pptx
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 

chapter18_genetics_of_viruses_and_bacteria.ppt

  • 1. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Chapter 18 The Genetics of Viruses and Bacteria
  • 2. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Overview: Microbial Model Systems • Viruses called bacteriophages – Can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Figure 18.1 0.5 m
  • 3. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • E. coli and its viruses – Are called model systems because of their frequent use by researchers in studies that reveal broad biological principles • Beyond their value as model systems – Viruses and bacteria have unique genetic mechanisms that are interesting in their own right
  • 4. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Recall that bacteria are prokaryotes – With cells much smaller and more simply organized than those of eukaryotes • Viruses – Are smaller and simpler still Figure 18.2 0.25 m Virus Animal cell Bacterium Animal cell nucleus
  • 5. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Concept 18.1: A virus has a genome but can reproduce only within a host cell • Scientists were able to detect viruses indirectly – Long before they were actually able to see them
  • 6. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Discovery of Viruses: Scientific Inquiry • Tobacco mosaic disease – Stunts the growth of tobacco plants and gives their leaves a mosaic coloration Figure 18.3
  • 7. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • In the late 1800s – Researchers hypothesized that a particle smaller than bacteria caused tobacco mosaic disease • In 1935, Wendell Stanley – Confirmed this hypothesis when he crystallized the infectious particle, now known as tobacco mosaic virus (TMV)
  • 8. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Structure of Viruses • Viruses – Are very small infectious particles consisting of nucleic acid enclosed in a protein coat and, in some cases, a membranous envelope
  • 9. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viral Genomes • Viral genomes may consist of – Double- or single-stranded DNA – Double- or single-stranded RNA
  • 10. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 18.4a, b 18  250 mm 70–90 nm (diameter) 20 nm 50 nm (a) Tobacco mosaic virus (b) Adenoviruses RNA DNA Capsomere Glycoprotein Capsomere of capsid Capsids and Envelopes • A capsid – Is the protein shell that encloses the viral genome – Can have various structures
  • 11. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Some viruses have envelopes – Which are membranous coverings derived from the membrane of the host cell Figure 18.4c 80–200 nm (diameter) 50 nm (c) Influenza viruses RNA Glycoprotein Membranous envelope Capsid
  • 12. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Bacteriophages, also called phages – Have the most complex capsids found among viruses Figure 18.4d 80  225 nm 50 nm (d) Bacteriophage T4 DNA Head Tail fiber Tail sheath
  • 13. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings General Features of Viral Reproductive Cycles • Viruses are obligate intracellular parasites – They can reproduce only within a host cell • Each virus has a host range – A limited number of host cells that it can infect
  • 14. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Viruses use enzymes, ribosomes, and small molecules of host cells – To synthesize progeny viruses VIRUS Capsid proteins mRNA Viral DNA HOST CELL Viral DNA DNA Capsid Figure 18.5 Entry into cell and uncoating of DNA Replication Transcription Self-assembly of new virus particles and their exit from cell
  • 15. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Reproductive Cycles of Phages • Phages – Are the best understood of all viruses – Go through two alternative reproductive mechanisms: the lytic cycle and the lysogenic cycle
  • 16. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Lytic Cycle • The lytic cycle – Is a phage reproductive cycle that culminates in the death of the host – Produces new phages and digests the host’s cell wall, releasing the progeny viruses
  • 17. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The lytic cycle of phage T4, a virulent phage Phage assembly Head Tails Tail fibers Figure 18.6 Attachment. The T4 phage uses its tail fibers to bind to specific receptor sites on the outer surface of an E. coli cell. 1 Entry of phage DNA and degradation of host DNA. The sheath of the tail contracts, injecting the phage DNA into the cell and leaving an empty capsid outside. The cell’s DNA is hydrolyzed. 2 Synthesis of viral genomes and proteins. The phage DNA directs production of phage proteins and copies of the phage genome by host enzymes, using components within the cell. 3 Assembly. Three separate sets of proteins self-assemble to form phage heads, tails, and tail fibers. The phage genome is packaged inside the capsid as the head forms. 4 Release. The phage directs production of an enzyme that damages the bacterial cell wall, allowing fluid to enter. The cell swells and finally bursts, releasing 100 to 200 phage particles. 5
  • 18. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Lysogenic Cycle • The lysogenic cycle – Replicates the phage genome without destroying the host • Temperate phages – Are capable of using both the lytic and lysogenic cycles of reproduction
  • 19. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The lytic and lysogenic cycles of phage , a temperate phage Many cell divisions produce a large population of bacteria infected with the prophage. The bacterium reproduces normally, copying the prophage and transmitting it to daughter cells. Phage DNA integrates into the bacterial chromosome, becoming a prophage. New phage DNA and proteins are synthesized and assembled into phages. Occasionally, a prophage exits the bacterial chromosome, initiating a lytic cycle. Certain factors determine whether The phage attaches to a host cell and injects its DNA. Phage DNA circularizes The cell lyses, releasing phages. Lytic cycle is induced Lysogenic cycle is entered Lysogenic cycle Lytic cycle or Prophage Bacterial chromosome Phage Phage DNA Figure 18.7
  • 20. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Reproductive Cycles of Animal Viruses • The nature of the genome – Is the basis for the common classification of animal viruses
  • 21. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Classes of animal viruses Table 18.1
  • 22. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viral Envelopes • Many animal viruses – Have a membranous envelope • Viral glycoproteins on the envelope – Bind to specific receptor molecules on the surface of a host cell
  • 23. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings RNA Capsid Envelope (with glycoproteins) HOST CELL Viral genome (RNA) Template Capsid proteins Glyco- proteins mRNA Copy of genome (RNA) ER Figure 18.8 • The reproductive cycle of an enveloped RNA virus Glycoproteins on the viral envelope bind to specific receptor molecules (not shown) on the host cell, promoting viral entry into the cell. 1 Capsid and viral genome enter cell 2 The viral genome (red) functions as a template for synthesis of complementary RNA strands (pink) by a viral enzyme. 3 New copies of viral genome RNA are made using complementary RNA strands as templates. 4 Complementary RNA strands also function as mRNA, which is translated into both capsid proteins (in the cytosol) and glycoproteins for the viral envelope (in the ER). 5 Vesicles transport envelope glycoproteins to the plasma membrane. 6 A capsid assembles around each viral genome molecule. 7 New virus 8
  • 24. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings RNA as Viral Genetic Material • The broadest variety of RNA genomes – Is found among the viruses that infect animals
  • 25. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Retroviruses, such as HIV, use the enzyme reverse transcriptase – To copy their RNA genome into DNA, which can then be integrated into the host genome as a provirus Figure 18.9 Reverse transcriptase Viral envelope Capsid Glycoprotein RNA (two identical strands)
  • 26. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The reproductive cycle of HIV, a retrovirus Figure 18.10 mRNA RNA genome for the next viral generation Viral RNA RNA-DNA hybrid DNA Chromosomal DNA NUCLEUS Provirus HOST CELL Reverse transcriptase New HIV leaving a cell HIV entering a cell 0.25 µm HIV Membrane of white blood cell The virus fuses with the cell’s plasma membrane. The capsid proteins are removed, releasing the viral proteins and RNA. 1 Reverse transcriptase catalyzes the synthesis of a DNA strand complementary to the viral RNA. 2 Reverse transcriptase catalyzes the synthesis of a second DNA strand complementary to the first. 3 The double-stranded DNA is incorporated as a provirus into the cell’s DNA. 4 Proviral genes are transcribed into RNA molecules, which serve as genomes for the next viral generation and as mRNAs for translation into viral proteins. 5 The viral proteins include capsid proteins and reverse transcriptase (made in the cytosol) and envelope glycoproteins (made in the ER). 6 Vesicles transport the glycoproteins from the ER to the cell’s plasma membrane. 7 Capsids are assembled around viral genomes and reverse transcriptase molecules. 8 New viruses bud off from the host cell. 9
  • 27. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Evolution of Viruses • Viruses do not really fit our definition of living organisms • Since viruses can reproduce only within cells – They probably evolved after the first cells appeared, perhaps packaged as fragments of cellular nucleic acid
  • 28. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Concept 18.2: Viruses, viroids, and prions are formidable pathogens in animals and plants • Diseases caused by viral infections – Affect humans, agricultural crops, and livestock worldwide
  • 29. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viral Diseases in Animals • Viruses may damage or kill cells – By causing the release of hydrolytic enzymes from lysosomes • Some viruses cause infected cells – To produce toxins that lead to disease symptoms
  • 30. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Vaccines – Are harmless derivatives of pathogenic microbes that stimulate the immune system to mount defenses against the actual pathogen – Can prevent certain viral illnesses
  • 31. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Emerging Viruses • Emerging viruses – Are those that appear suddenly or suddenly come to the attention of medical scientists
  • 32. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Severe acute respiratory syndrome (SARS) – Recently appeared in China Figure 18.11 A, B (a) Young ballet students in Hong Kong wear face masks to protect themselves from the virus causing SARS. (b) The SARS-causing agent is a coronavirus like this one (colorized TEM), so named for the “corona” of glycoprotein spikes protruding from the envelope.
  • 33. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Outbreaks of “new” viral diseases in humans – Are usually caused by existing viruses that expand their host territory
  • 34. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viral Diseases in Plants • More than 2,000 types of viral diseases of plants are known • Common symptoms of viral infection include – Spots on leaves and fruits, stunted growth, and damaged flowers or roots Figure 18.12
  • 35. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Plant viruses spread disease in two major modes – Horizontal transmission, entering through damaged cell walls – Vertical transmission, inheriting the virus from a parent
  • 36. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Viroids and Prions: The Simplest Infectious Agents • Viroids – Are circular RNA molecules that infect plants and disrupt their growth
  • 37. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Prions – Are slow-acting, virtually indestructible infectious proteins that cause brain diseases in mammals – Propagate by converting normal proteins into the prion version Figure 18.13 Prion Normal protein Original prion New prion Many prions
  • 38. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Concept 18.3: Rapid reproduction, mutation, and genetic recombination contribute to the genetic diversity of bacteria • Bacteria allow researchers – To investigate molecular genetics in the simplest true organisms
  • 39. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Bacterial Genome and Its Replication • The bacterial chromosome – Is usually a circular DNA molecule with few associated proteins • In addition to the chromosome – Many bacteria have plasmids, smaller circular DNA molecules that can replicate independently of the bacterial chromosome
  • 40. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Bacterial cells divide by binary fission – Which is preceded by replication of the bacterial chromosome Replication fork Origin of replication Termination of replication Figure 18.14
  • 41. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mutation and Genetic Recombination as Sources of Genetic Variation • Since bacteria can reproduce rapidly – New mutations can quickly increase a population’s genetic diversity
  • 42. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Further genetic diversity – Can arise by recombination of the DNA from two different bacterial cells Mutant strain arg trp+ EXPERIMENT Figure 18.15 Only the samples from the mixed culture, contained cells that gave rise to colonies on minimal medium, which lacks amino acids. RESULTS Researchers had two mutant strains, one that could make arginine but not tryptophan (arg+ trp–) and one that could make tryptophan but not arginine (arg trp+). Each mutant strain and a mixture of both strains were grown in a liquid medium containing all the required amino acids. Samples from each liquid culture were spread on plates containing a solution of glucose and inorganic salts (minimal medium), solidified with agar. Mutant strain arg+ trp– Mixture
  • 43. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Colonies grew Mutant strain arg+ trp– Mutant strain arg– trp+ No colonies (control) No colonies (control) Mixture Because only cells that can make both arginine and tryptophan (arg+ trp+ cells) can grow into colonies on minimal medium, the lack of colonies on the two control plates showed that no further mutations had occurred restoring this ability to cells of the mutant strains. Thus, each cell from the mixture that formed a colony on the minimal medium must have acquired one or more genes from a cell of the other strain by genetic recombination. CONCLUSION
  • 44. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mechanisms of Gene Transfer and Genetic Recombination in Bacteria • Three processes bring bacterial DNA from different individuals together – Transformation – Transduction – Conjugation
  • 45. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Transformation • Transformation – Is the alteration of a bacterial cell’s genotype and phenotype by the uptake of naked, foreign DNA from the surrounding environment
  • 46. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Transduction • In the process known as transduction – Phages carry bacterial genes from one host cell to another 1 Figure 18.16 Donor cell Recipient cell A+ B+ A+ A+ B– A– B– A+ Recombinant cell Crossing over Phage infects bacterial cell that has alleles A+ and B+ Host DNA (brown) is fragmented, and phage DNA and proteins are made. This is the donor cell. A bacterial DNA fragment (in this case a fragment with the A+ allele) may be packaged in a phage capsid. Phage with the A+ allele from the donor cell infects a recipient A–B– cell, and crossing over (recombination) between donor DNA (brown) and recipient DNA (green) occurs at two places (dotted lines). The genotype of the resulting recombinant cell (A+B–) differs from the genotypes of both the donor (A+B+) and the recipient (A–B–). 2 3 4 5 Phage DNA A+ B+
  • 47. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Conjugation and Plasmids • Conjugation – Is the direct transfer of genetic material between bacterial cells that are temporarily joined Figure 18.17 Sex pilus 1 m
  • 48. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The F Plasmid and Conjugation • Cells containing the F plasmid, designated F+ cells – Function as DNA donors during conjugation – Transfer plasmid DNA to an F recipient cell
  • 49. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Conjugation and transfer of an F plasmid from an F+ donor to an F recipient Figure 18.18a A cell carrying an F plasmid (an F+ cell) can form a mating bridge with an F– cell and transfer its F plasmid. A single strand of the F plasmid breaks at a specific point (tip of blue arrowhead) and begins to move into the recipient cell. As transfer continues, the donor plasmid rotates (red arrow). 2 DNA replication occurs in both donor and recipient cells, using the single parental strands of the F plasmid as templates to synthesize complementary strands. 3 The plasmid in the recipient cell circularizes. Transfer and replication result in a compete F plasmid in each cell. Thus, both cells are now F+. 4 F Plasmid Bacterial chromosome Bacterial chromosome F+ cell F+ cell F+ cell Mating bridge 1 Conjugation and transfer of an F plasmid from an F+ donor to an F– recipient (a) F– cell
  • 50. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Chromosomal genes can be transferred during conjugation – When the donor cell’s F factor is integrated into the chromosome • A cell with the F factor built into its chromosome – Is called an Hfr cell • The F factor of an Hfr cell – Brings some chromosomal DNA along with it when it is transferred to an F– cell
  • 51. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Conjugation and transfer of part of the bacterial chromosome from an Hfr donor to an F– recipient, resulting in recombination F+ cell Hfr cell F factor The circular F plasmid in an F+ cell can be integrated into the circular chromosome by a single crossover event (dotted line). 1 The resulting cell is called an Hfr cell (for High frequency of recombination). 2 Since an Hfr cell has all the F-factor genes, it can form a mating bridge with an F– cell and transfer DNA. 3 A single strand of the F factor breaks and begins to move through the bridge. DNA replication occurs in both donor and recipient cells, resulting in double-stranded DNA 4 The location and orientation of the F factor in the donor chromosome determine the sequence of gene transfer during conjugation. In this example, the transfer sequence for four genes is A-B-C-D. 5 The mating bridge usually breaks well before the entire chromosome and the rest of the F factor are transferred. 6 Two crossovers can result in the exchange of similar (homologous) genes between the transferred chromosome fragment (brown) and the recipient cell’s chromosome (green). 7 The piece of DNA ending up outside the bacterial chromosome will eventually be degraded by the cell’s enzymes. The recipient cell now contains a new combination of genes but no F factor; it is a recombinant F– cell. 8 Temporary partial diploid Recombinant F– bacterium A+ B+ C+ D+ F– cell A– B– C– D– A– B– C– D– D– A– C– B– A+ B+ C+ D+ A+ B+ D+ C+ A+ A+ B+ A– B– C– D– A– B+ C– D– A+ B+ B– A+ Hfr cell D– A– C– B– A+ B+ C+ D+ A+ B+ Conjugation and transfer of part of the bacterial chromosome from an Hfr donor to an F– recipient, resulting in recombination (b) Figure 18.18b
  • 52. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings R plasmids and Antibiotic Resistance • R plasmids – Confer resistance to various antibiotics
  • 53. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Transposition of Genetic Elements • Transposable elements – Can move around within a cell’s genome – Are often called “jumping genes” – Contribute to genetic shuffling in bacteria
  • 54. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 18.19a (a) Insertion sequences, the simplest transposable elements in bacteria, contain a single gene that encodes transposase, which catalyzes movement within the genome. The inverted repeats are backward, upside-down versions of each other; only a portion is shown. The inverted repeat sequence varies from one type of insertion sequence to another. Insertion sequence Transposase gene Inverted repeat Inverted repeat 3 5 3 5 A T C C G G T… T A G G C C A … A C C G G A T… T G G C C T A … Insertion Sequences • An insertion sequence contains a single gene for transposase – An enzyme that catalyzes movement of the insertion sequence from one site to another within the genome
  • 55. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Transposons • Bacterial transposons – Also move about within the bacterial genome – Have additional genes, such as those for antibiotic resistance Figure 18.19b (b) Transposons contain one or more genes in addition to the transposase gene. In the transposon shown here, a gene for resistance to an antibiotic is located between twin insertion sequences. The gene for antibiotic resistance is carried along as part of the transposon when the transposon is inserted at a new site in the genome. Inverted repeats Transposase gene Insertion sequence Insertion sequence Antibiotic resistance gene Transposon 5 3 5 3
  • 56. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Concept 18.4: Individual bacteria respond to environmental change by regulating their gene expression • E. coli, a type of bacteria that lives in the human colon – Can tune its metabolism to the changing environment and food sources
  • 57. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • This metabolic control occurs on two levels – Adjusting the activity of metabolic enzymes already present – Regulating the genes encoding the metabolic enzymes Figure 18.20a, b (a) Regulation of enzyme activity Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 Regulation of gene expression Feedback inhibition Tryptophan Precursor (b) Regulation of enzyme production Gene 2 Gene 1 Gene 3 Gene 4 Gene 5 – –
  • 58. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Operons: The Basic Concept • In bacteria, genes are often clustered into operons, composed of – An operator, an “on-off” switch – A promoter – Genes for metabolic enzymes
  • 59. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • An operon – Is usually turned “on” – Can be switched off by a protein called a repressor
  • 60. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The trp operon: regulated synthesis of repressible enzymes Figure 18.21a (a) Tryptophan absent, repressor inactive, operon on. RNA polymerase attaches to the DNA at the promoter and transcribes the operon’s genes. Genes of operon Inactive repressor Protein Operator Polypeptides that make up enzymes for tryptophan synthesis Promoter Regulatory gene RNA polymerase Start codon Stop codon Promoter trp operon 5 3 mRNA 5 trpD trpE trpC trpB trpA trpR DNA mRNA E D C B A
  • 61. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA mRNA Protein Tryptophan (corepressor) Active repressor No RNA made Tryptophan present, repressor active, operon off. As tryptophan accumulates, it inhibits its own production by activating the repressor protein. (b) Figure 18.21b
  • 62. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Repressible and Inducible Operons: Two Types of Negative Gene Regulation • In a repressible operon – Binding of a specific repressor protein to the operator shuts off transcription • In an inducible operon – Binding of an inducer to an innately inactive repressor inactivates the repressor and turns on transcription
  • 63. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The lac operon: regulated synthesis of inducible enzymes Figure 18.22a DNA mRNA Protein Active repressor RNA polymerase No RNA made lacZ lacl Regulatory gene Operator Promoter Lactose absent, repressor active, operon off. The lac repressor is innately active, and in the absence of lactose it switches off the operon by binding to the operator. (a) 5 3
  • 64. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings mRNA 5' DNA mRNA Protein Allolactose (inducer) Inactive repressor lacl lacz lacY lacA RNA polymerase Permease Transacetylase -Galactosidase 5 3 (b) Lactose present, repressor inactive, operon on. Allolactose, an isomer of lactose, derepresses the operon by inactivating the repressor. In this way, the enzymes for lactose utilization are induced. mRNA 5 lac operon Figure 18.22b
  • 65. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Inducible enzymes – Usually function in catabolic pathways • Repressible enzymes – Usually function in anabolic pathways
  • 66. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Regulation of both the trp and lac operons – Involves the negative control of genes, because the operons are switched off by the active form of the repressor protein
  • 67. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Positive Gene Regulation • Some operons are also subject to positive control – Via a stimulatory activator protein, such as catabolite activator protein (CAP)
  • 68. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Promoter Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized. If glucose is scarce, the high level of cAMP activates CAP, and the lac operon produces large amounts of mRNA for the lactose pathway. (a) CAP-binding site Operator RNA polymerase can bind and transcribe Inactive CAP Active CAP cAMP DNA Inactive lac repressor lacl lacZ Figure 18.23a • In E. coli, when glucose, a preferred food source, is scarce – The lac operon is activated by the binding of a regulatory protein, catabolite activator protein (CAP)
  • 69. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • When glucose levels in an E. coli cell increase – CAP detaches from the lac operon, turning it off Figure 18.23b (b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized. When glucose is present, cAMP is scarce, and CAP is unable to stimulate transcription. Inactive lac repressor Inactive CAP DNA RNA polymerase can’t bind Operator lacl lacZ CAP-binding site Promoter