Space and Economics Chapter 8: Intraregional and interregional relations NTRREGIONAL AND INTERREGIONAL RELATIONS   Author Wim Heijman (Wageningen, the Netherlands)  August 28, 2009
8. Intraregional and interregional relations 8.1 Input output table 8.2 Agro-clusters   8.3 Interregional input output analysis  8.4 Indirect effects 8.5 deriving regional input output tables from national input output tables 8.6 Application: Tourism in Slovenia
8.1 Input output table - Intra-sector deliverances - Inter-sector deliverances - Final demand = Final regional demand + Exports - Total output = Turnover - Value added = Total Output ­ Total Input
8.2 Agro-clusters
8.2 Agro-clusters Value added Frisian agro-cluster: Value added agriculture + Value added agribusiness: Value added Frisian agriculture: € 621 mln Agri-inputs Remaining Sectors (RS) in Friesland: 574 + 318 + 175 = € 1067 mln Share agri-inputs in total inputs of RS: (1067/6649) x 100% = 16.05% 16.05% of Value added RS equals: 0.1605 x 7598 = € 1219.48 mln Value added agro-cluster: 621 + 1219.48 = € 1840.48 mln Share in total value added: (1840.48/8219) x 100% = 22.4%.
8.2 Agro-clusters
8.2 Agro-clusters  Figure 8.2: Relationship between value added Agriculture and value added agribusiness for Dutch provinces in 1992.
8.2 Agro-clusters LQ  = Sectoral share region / Sectoral share country Figure 8.3: Location quotients for agriculture, agribusiness and agro-cluster for 12 Dutch provinces in 1992
8.3 Interregional input output analysis Figure 8.4: Regions Drenthe, Greater Amsterdam, Greater Rijnmond (Rotterdam), and Achterhoek in the Netherlands.  http://www.cbs.nl/NR/rdonlyres/F40C0A58-7E1E-4BD5-93B3-F050153117B3/0/2006cr.pdf
8.3 Interregional input output analysis
8.3 Interregional model input output analysis
8.3 Interregional input output analysis
8.3 Interregional input output analysis Leontief Equation!
8.3 Interregional input output analysis Wassily Leontief (1905-1999).
8.3 Interregional input output analysis Multiplier (M): Effect / Impulse In the case of Drenthe:
8.3 Interregional input output analysis
8.3 Interregional input output analysis Figure 8.5: Regional multipliers for the twelve Dutch provinces.
8.4 Indirect effects
8.4 Indirect effects
8.5   Deriving regional input output tables from national input output tables
8.5   Deriving regional input output tables from national input output tables
8.5   Deriving regional input output tables from national input output tables
8.5   Deriving regional input output tables from national input output tables
8.5   Deriving regional input output tables from national input output tables LQ>1: The sector is clearly localized in the region; the regional input output coefficient is supposed to be equal to the national input output coefficient. LQ< 1: The sector is not localised in the region; the regional technical coefficient is computed by multiplying the national technical coefficient by the appropriate Location Quotient.  So:
8.5   Deriving regional input output tables from national input output tables
8.5   Deriving regional input output tables from national input output tables
8.6   Tourism in Slovenia
8.6   Tourism in Slovenia
8.6   Tourism in Slovenia
8.6   Tourism in Slovenia

Chapter 8: Intraregional and Interregional Relations

  • 1.
    Space and EconomicsChapter 8: Intraregional and interregional relations NTRREGIONAL AND INTERREGIONAL RELATIONS Author Wim Heijman (Wageningen, the Netherlands) August 28, 2009
  • 2.
    8. Intraregional andinterregional relations 8.1 Input output table 8.2 Agro-clusters 8.3 Interregional input output analysis 8.4 Indirect effects 8.5 deriving regional input output tables from national input output tables 8.6 Application: Tourism in Slovenia
  • 3.
    8.1 Input outputtable - Intra-sector deliverances - Inter-sector deliverances - Final demand = Final regional demand + Exports - Total output = Turnover - Value added = Total Output ­ Total Input
  • 4.
  • 5.
    8.2 Agro-clusters Valueadded Frisian agro-cluster: Value added agriculture + Value added agribusiness: Value added Frisian agriculture: € 621 mln Agri-inputs Remaining Sectors (RS) in Friesland: 574 + 318 + 175 = € 1067 mln Share agri-inputs in total inputs of RS: (1067/6649) x 100% = 16.05% 16.05% of Value added RS equals: 0.1605 x 7598 = € 1219.48 mln Value added agro-cluster: 621 + 1219.48 = € 1840.48 mln Share in total value added: (1840.48/8219) x 100% = 22.4%.
  • 6.
  • 7.
    8.2 Agro-clusters Figure 8.2: Relationship between value added Agriculture and value added agribusiness for Dutch provinces in 1992.
  • 8.
    8.2 Agro-clusters LQ = Sectoral share region / Sectoral share country Figure 8.3: Location quotients for agriculture, agribusiness and agro-cluster for 12 Dutch provinces in 1992
  • 9.
    8.3 Interregional inputoutput analysis Figure 8.4: Regions Drenthe, Greater Amsterdam, Greater Rijnmond (Rotterdam), and Achterhoek in the Netherlands. http://www.cbs.nl/NR/rdonlyres/F40C0A58-7E1E-4BD5-93B3-F050153117B3/0/2006cr.pdf
  • 10.
    8.3 Interregional inputoutput analysis
  • 11.
    8.3 Interregional modelinput output analysis
  • 12.
    8.3 Interregional inputoutput analysis
  • 13.
    8.3 Interregional inputoutput analysis Leontief Equation!
  • 14.
    8.3 Interregional inputoutput analysis Wassily Leontief (1905-1999).
  • 15.
    8.3 Interregional inputoutput analysis Multiplier (M): Effect / Impulse In the case of Drenthe:
  • 16.
    8.3 Interregional inputoutput analysis
  • 17.
    8.3 Interregional inputoutput analysis Figure 8.5: Regional multipliers for the twelve Dutch provinces.
  • 18.
  • 19.
  • 20.
    8.5 Deriving regional input output tables from national input output tables
  • 21.
    8.5 Deriving regional input output tables from national input output tables
  • 22.
    8.5 Deriving regional input output tables from national input output tables
  • 23.
    8.5 Deriving regional input output tables from national input output tables
  • 24.
    8.5 Deriving regional input output tables from national input output tables LQ>1: The sector is clearly localized in the region; the regional input output coefficient is supposed to be equal to the national input output coefficient. LQ< 1: The sector is not localised in the region; the regional technical coefficient is computed by multiplying the national technical coefficient by the appropriate Location Quotient. So:
  • 25.
    8.5 Deriving regional input output tables from national input output tables
  • 26.
    8.5 Deriving regional input output tables from national input output tables
  • 27.
    8.6 Tourism in Slovenia
  • 28.
    8.6 Tourism in Slovenia
  • 29.
    8.6 Tourism in Slovenia
  • 30.
    8.6 Tourism in Slovenia