SlideShare a Scribd company logo
Ge#ng	
  to	
  Know	
  the	
  Neighbors:	
  	
  
Deep	
  Imaging	
  of	
  the	
  Andromeda	
  Satellite	
  Dwarf	
  Galaxy	
  Cassiopeia	
  III	
  with	
  WIYN	
  pODI	
  
Madison	
  Smith	
  1,	
  Katherine	
  Rhode	
  2,	
  Steven	
  Janowiecki	
  2	
  
(1)	
  New	
  College	
  of	
  Florida,	
  Maria	
  Mitchell	
  Observatory;	
  (2)	
  Indiana	
  University	
  
OVERVIEW	
  
We	
  present	
  results	
  from	
  WIYN	
  pODI	
  imaging	
  of	
  Cassiopeia	
  III	
  (And	
  
XXXII),	
  an	
  Andromeda	
  satellite	
  galaxy	
  discovered	
  by	
  MarOn	
  et	
  al.	
  
(2013)	
   in	
   Pan-­‐STARRS1	
   survey	
   data.	
   Cas	
   III	
   had	
   not	
   been	
  
discovered	
  earlier	
  because	
  of	
  its	
  locaOon	
  near	
  the	
  GalacOc	
  plane,	
  
in	
   an	
   area	
   that	
   had	
   not	
   been	
   systemaOcally	
   surveyed	
   unOl	
   Pan-­‐
STARRS1.	
   We	
   use	
   deep,	
   wide-­‐field	
   photometry	
   with	
   WIYN	
   to	
  
study	
   the	
   stellar	
   populaOon	
   of	
   Cas	
   III	
   in	
   more	
   detail.	
   Here	
   we	
  
present	
   a	
   color-­‐magnitude	
   diagram	
   (CMD)	
   and	
   preliminary	
  
measurements	
  of	
  the	
  galaxy’s	
  structural	
  properOes.	
  	
  
SUMMARY	
  OF	
  RESULTS	
  
A	
  12-­‐Gyr	
  isochrone	
  from	
  Bressan	
  et	
  al.	
  (2012)	
  with	
  [Fe/H]	
  =	
  -­‐1.7	
  
(the	
  spectroscopic	
  metallicity	
  for	
  Cas	
  III	
  from	
  MarOn	
  et	
  al.	
  2014)	
  
and	
  a	
  distance	
  modulus	
  of	
  m-­‐M	
  =	
  24.45	
  (from	
  the	
  PanSTARRS1	
  
discovery	
  paper)	
  coincides	
  with	
  the	
  Red	
  Giant	
  Branch	
  locaOon	
  in	
  
our	
  CMD.	
  
	
  
We	
  selected	
  Red	
  Giant	
  Branch	
  stars	
  on	
  the	
  CMD	
  and	
  analyzed	
  
the	
  structural	
  parameters	
  of	
  Cas	
  III,	
  following	
  the	
  method	
  
described	
  in	
  MarOn	
  et	
  al.	
  2008	
  and	
  Sand	
  et	
  al.	
  (2012).	
  
Preliminary	
  best-­‐fidng	
  values	
  for	
  Cas	
  III	
  are:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Our	
  PA,	
  ellipOcity,	
  and	
  rh	
  values	
  are	
  consistent	
  with	
  those	
  in	
  the	
  
MarOn	
  et	
  al.	
  2013	
  discovery	
  paper	
  within	
  the	
  stated	
  errors,	
  but	
  
our	
  values	
  have	
  smaller	
  uncertainOes.	
  
OBSERVATIONS	
  &	
  INITIAL	
  REDUCTIONS	
  
Images	
  were	
  obtained	
  with	
  the	
  WIYN	
  3.5-­‐m	
  telescope	
  and	
  the	
  
parOally-­‐filled	
   One	
   Degree	
   Imager	
   (pODI),	
   which	
   provided	
   a	
  
24’x24’	
  field-­‐of-­‐view	
  and	
  a	
  pixel	
  scale	
  of	
  0.11”	
  pixel-­‐1.	
  
	
  
We	
  used	
  nine	
  700-­‐sec	
  dithered	
  exposures	
  in	
  g’	
  and	
  seven	
  600-­‐
sec	
  dithered	
  exposures	
  in	
  i’,	
  with	
  FWHM	
  PSF	
  of	
  0.8”-­‐0.9”.	
  	
  
	
  
Standard	
  reducOons	
  (e.g.,	
  bias,	
  flat-­‐field	
  correcOons,	
  etc.)	
  were	
  
applied	
  to	
  the	
  images	
  with	
  QuickReduce	
  (Kotulla	
  2014)	
  in	
  the	
  
ODI	
  Portal,	
  Pipeline,	
  &	
  Archive	
  (ODI-­‐PPA).	
  
	
  
The	
   images	
   were	
   illuminaOon-­‐corrected,	
   projected	
   to	
   a	
  
common	
  pixel	
  scale,	
  and	
  combined	
  into	
  a	
  single,	
  deep	
  image	
  in	
  
each	
   filter.	
   	
   The	
   high-­‐noise	
   edges	
   of	
   the	
   dither	
   pamern	
   were	
  
clipped	
  to	
  yield	
  a	
  20’	
  x	
  20’	
  usable	
  field	
  (Figure	
  1).	
  
ACKNOWLEDGMENTS	
  
We	
   are	
   grateful	
   to	
   Michael	
   West,	
   Gary	
   Walker,	
   Hannah	
   Pagel,	
   Bill	
   Janesh,	
   and	
  
Dave	
  Sand	
  for	
  their	
  support	
  and	
  assistance	
  during	
  various	
  stages	
  of	
  this	
  project.	
  
This	
   research	
   was	
   supported	
   by	
   the	
   NSF	
   Research	
   Experiences	
   for	
  
Undergraduates	
  program	
  (grant	
  number	
  AST-­‐1358980).	
  
REFERENCES	
  
Bressan	
  et	
  al.	
  2012,	
  MNRAS	
  472,	
  127 	
   	
  MarOn	
  et	
  al.	
  2013,	
  ApJ	
  772,	
  15	
  
Kotulla,	
  R.	
  2014,	
  in	
  ADASS	
  XXIII,	
  ASP	
  Conf.	
  Ser.	
  485,	
  375 	
  Sand	
  et	
  al.	
  2012,	
  ApJ	
  756,	
  79	
  
MarOn,	
  de	
  Jong,	
  &	
  Rix	
  2008,	
  ApJ	
  684,	
  1075 	
   	
   	
  	
  
Figure	
  1.	
  (LeP)	
  Combined	
  g’-­‐band	
  pODI	
  image	
  of	
  Cas	
  III.	
  (Right)	
  LocaUons	
  of	
  11,310	
  
point	
  sources	
  that	
  appear	
  in	
  both	
  the	
  g’	
  and	
  i’	
  images.	
  	
  The	
  overdensity	
  of	
  stars	
  in	
  
Cas	
  III	
  is	
  much	
  more	
  apparent	
  here	
  than	
  in	
  the	
  image.	
  
ANALYSIS	
  STEPS	
  
We	
  used	
  DAOFIND	
  to	
  detect	
  sources	
  in	
  the	
  images	
  with	
  	
  S/N	
  >	
  
3.5.	
  	
  Extended	
  sources	
  were	
  removed.	
  	
  We	
  calculated	
  aperture	
  
correcOons	
   for	
   each	
   image	
   and	
   applied	
   these	
   along	
   with	
  
GalacOc	
   exOncOon	
   correcOons	
   and	
   photometric	
   calibraOon	
  
coefficients	
  to	
  compute	
  a	
  final	
  set	
  of	
  calibrated	
  magnitudes	
  for	
  
all	
  the	
  point	
  sources	
  appearing	
  in	
  and	
  around	
  Cas	
  III.	
  Our	
  CMD	
  
(Figure	
  2)	
  reaches	
  ~2.5	
  mag	
  deeper	
  than	
  the	
  CMD	
  shown	
  in	
  the	
  
discovery	
   paper.	
   The	
   4σ	
   limit	
   on	
   the	
   brightness	
   of	
   a	
   point	
  
source	
  in	
  our	
  images	
  is	
  g’	
  ~	
  25.3	
  and	
  i’	
  ~	
  24.3.	
  
FUTURE	
  WORK	
  
These	
   results	
   are	
   preliminary;	
   future	
   work	
   will	
   include:	
  	
  
performing	
  PSF	
  photometry,	
  to	
  miOgate	
  crowding	
  effects	
  near	
  
the	
   center	
   of	
   the	
   stellar	
   distribuOon;	
   deriving	
   a	
   surface	
  
brightness	
  profile	
  and	
  accurate	
  total	
  magnitude;	
  deriving	
  a	
  Tip	
  
of	
  the	
  Red	
  Giant	
  Branch	
  (TRGB)	
  distance;	
  completeness	
  tesOng	
  
to	
   quanOfy	
   the	
   depth	
   of	
   the	
   images;	
   and	
   analyzing	
   the	
  
photometric	
  metallicity	
  distribuOon	
  funcOon	
  of	
  Cas	
  III.	
  
N	
  
E	
  
5’	
  
Figure	
  2.	
  (LeP)	
  CMD	
  of	
  Cas	
  III	
  for	
  stars	
  within	
  one	
  half-­‐light	
  radius	
  of	
  the	
  galaxy	
  center.	
  
The	
  red	
  line	
  is	
  a	
  12-­‐Gyr	
  isochrone	
  with	
  [Fe/H]	
  =	
  -­‐1.7	
  and	
  m-­‐M=24.45	
  from	
  Bressan	
  et	
  al.	
  
(2012).	
  (Right)	
  CMD	
  for	
  a	
  “field”	
  region	
  near	
  the	
  edge	
  of	
  the	
  image	
  (a	
  5’	
  x	
  20’	
  rectangle,	
  
approximately	
  9’	
  from	
  the	
  galaxy	
  center).	
  	
  	
  
Figure	
  3.	
  (LeP)	
  The	
  surface	
  density	
  of	
  stars	
  vs.	
  radius	
  for	
  the	
  Cas	
  III	
  images.	
  (Right)	
  
The	
  star	
  locaUons	
  relaUve	
  to	
  the	
  center	
  of	
  Cas	
  III,	
  with	
  the	
  best-­‐fi#ng	
  ellipse	
  
shown	
  in	
  red.	
  

More Related Content

What's hot

Change Detection of Water-Body in Synthetic Aperture Radar Images
Change Detection of Water-Body in Synthetic Aperture Radar ImagesChange Detection of Water-Body in Synthetic Aperture Radar Images
Change Detection of Water-Body in Synthetic Aperture Radar Images
CSCJournals
 
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
Sérgio Sacani
 
OD_Report___Copy_
OD_Report___Copy_OD_Report___Copy_
OD_Report___Copy_
Nancy Xu
 
MATLAB for Engineers 5th Edition Moore Solutions Manual
MATLAB for Engineers 5th Edition Moore Solutions ManualMATLAB for Engineers 5th Edition Moore Solutions Manual
MATLAB for Engineers 5th Edition Moore Solutions Manual
JudithLandrys
 
Fracture prediction using low coverage seismic data in area of complicated st...
Fracture prediction using low coverage seismic data in area of complicated st...Fracture prediction using low coverage seismic data in area of complicated st...
Fracture prediction using low coverage seismic data in area of complicated st...
Mario Prince
 
Af33174179
Af33174179Af33174179
Af33174179
IJERA Editor
 
Erfani_2016_acp
Erfani_2016_acpErfani_2016_acp
Erfani_2016_acp
Ehsan Erfani
 
Forest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networksForest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networks
Aatif Sohail
 
SOM-VIS
SOM-VISSOM-VIS
OBIA on Coastal Landform Based on Structure Tensor
OBIA on Coastal Landform Based on Structure Tensor OBIA on Coastal Landform Based on Structure Tensor
OBIA on Coastal Landform Based on Structure Tensor
csandit
 
Deterministic Strong Ground Motions
Deterministic Strong Ground MotionsDeterministic Strong Ground Motions
Deterministic Strong Ground Motions
Ali Osman Öncel
 
BrownAAS2016Poster
BrownAAS2016PosterBrownAAS2016Poster
BrownAAS2016Poster
Stephanie Brown
 
POLSAR CHANGE DETECTION
POLSAR CHANGE DETECTIONPOLSAR CHANGE DETECTION
POLSAR CHANGE DETECTION
siufu
 
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
eSAT Publishing House
 
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
grssieee
 
Soundarya m.sc
Soundarya m.scSoundarya m.sc
Soundarya m.sc
sowfi
 
76201940
7620194076201940
76201940
IJRAT
 
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
Sérgio Sacani
 
Cv3210411055
Cv3210411055Cv3210411055
Cv3210411055
IJMER
 
FUTURE TRENDS OF SEISMIC ANALYSIS
FUTURE TRENDS OF SEISMIC ANALYSISFUTURE TRENDS OF SEISMIC ANALYSIS
FUTURE TRENDS OF SEISMIC ANALYSIS
Stig-Arne Kristoffersen
 

What's hot (20)

Change Detection of Water-Body in Synthetic Aperture Radar Images
Change Detection of Water-Body in Synthetic Aperture Radar ImagesChange Detection of Water-Body in Synthetic Aperture Radar Images
Change Detection of Water-Body in Synthetic Aperture Radar Images
 
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
Mapping the three_dimensional_density_of_the_galactic_bulge_with_vvv_red_clum...
 
OD_Report___Copy_
OD_Report___Copy_OD_Report___Copy_
OD_Report___Copy_
 
MATLAB for Engineers 5th Edition Moore Solutions Manual
MATLAB for Engineers 5th Edition Moore Solutions ManualMATLAB for Engineers 5th Edition Moore Solutions Manual
MATLAB for Engineers 5th Edition Moore Solutions Manual
 
Fracture prediction using low coverage seismic data in area of complicated st...
Fracture prediction using low coverage seismic data in area of complicated st...Fracture prediction using low coverage seismic data in area of complicated st...
Fracture prediction using low coverage seismic data in area of complicated st...
 
Af33174179
Af33174179Af33174179
Af33174179
 
Erfani_2016_acp
Erfani_2016_acpErfani_2016_acp
Erfani_2016_acp
 
Forest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networksForest Change Detection in incomplete satellite images with deep neural networks
Forest Change Detection in incomplete satellite images with deep neural networks
 
SOM-VIS
SOM-VISSOM-VIS
SOM-VIS
 
OBIA on Coastal Landform Based on Structure Tensor
OBIA on Coastal Landform Based on Structure Tensor OBIA on Coastal Landform Based on Structure Tensor
OBIA on Coastal Landform Based on Structure Tensor
 
Deterministic Strong Ground Motions
Deterministic Strong Ground MotionsDeterministic Strong Ground Motions
Deterministic Strong Ground Motions
 
BrownAAS2016Poster
BrownAAS2016PosterBrownAAS2016Poster
BrownAAS2016Poster
 
POLSAR CHANGE DETECTION
POLSAR CHANGE DETECTIONPOLSAR CHANGE DETECTION
POLSAR CHANGE DETECTION
 
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...Accuracy enhancement of srtm and aster dems using weight estimation regressio...
Accuracy enhancement of srtm and aster dems using weight estimation regressio...
 
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
WE2.L09 - ICESAT LIDAR AND GLOBAL DIGITAL ELEVATION MODELS: APPLICATIONS TO D...
 
Soundarya m.sc
Soundarya m.scSoundarya m.sc
Soundarya m.sc
 
76201940
7620194076201940
76201940
 
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
A smack model_of_colliding_planetesimals_and_dust_in_the_beta_pictoris_debris...
 
Cv3210411055
Cv3210411055Cv3210411055
Cv3210411055
 
FUTURE TRENDS OF SEISMIC ANALYSIS
FUTURE TRENDS OF SEISMIC ANALYSISFUTURE TRENDS OF SEISMIC ANALYSIS
FUTURE TRENDS OF SEISMIC ANALYSIS
 

Similar to casiii_poster_final

Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Sérgio Sacani
 
The second data_release_of_the_iphas
The second data_release_of_the_iphasThe second data_release_of_the_iphas
The second data_release_of_the_iphas
Sérgio Sacani
 
poster09
poster09poster09
poster09
Amanda Hood
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
EmilChristensen_aas2014
EmilChristensen_aas2014EmilChristensen_aas2014
EmilChristensen_aas2014
Emil Christensen
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Sérgio Sacani
 
Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766
Sérgio Sacani
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Sérgio Sacani
 
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Sérgio Sacani
 
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
Sérgio Sacani
 
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M DwarfLHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
Sérgio Sacani
 
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
sipij
 
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image FusionLocal Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
sipij
 
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image FusionLocal Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
sipij
 
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometryA 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
Sérgio Sacani
 
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
Sérgio Sacani
 
The Population of the Galactic Center Filaments: Position Angle Distribution ...
The Population of the Galactic Center Filaments: Position Angle Distribution ...The Population of the Galactic Center Filaments: Position Angle Distribution ...
The Population of the Galactic Center Filaments: Position Angle Distribution ...
Sérgio Sacani
 
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyrThe build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
Sérgio Sacani
 
Ic348 paper
Ic348 paperIc348 paper
Ic348 paper
MadelineBoyce1
 
Radar reflectance model for the extraction of height from shape from shading ...
Radar reflectance model for the extraction of height from shape from shading ...Radar reflectance model for the extraction of height from shape from shading ...
Radar reflectance model for the extraction of height from shape from shading ...
eSAT Journals
 

Similar to casiii_poster_final (20)

Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
Detection of a_supervoid_aligned_with_the_cold_spot_of_the_cosmic_microwave_b...
 
The second data_release_of_the_iphas
The second data_release_of_the_iphasThe second data_release_of_the_iphas
The second data_release_of_the_iphas
 
poster09
poster09poster09
poster09
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
EmilChristensen_aas2014
EmilChristensen_aas2014EmilChristensen_aas2014
EmilChristensen_aas2014
 
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_imagesStudies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
Studies of ngc_6720_with_calibrated_hst_wfc3_emission_line_filter_images
 
Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766Stellar variability in_open_clusters_new_class_in_ngc3766
Stellar variability in_open_clusters_new_class_in_ngc3766
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
 
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...Discovery of rotational modulations in the planetary mass companion 2m1207b i...
Discovery of rotational modulations in the planetary mass companion 2m1207b i...
 
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
The JWST Discovery of the Triply-imaged Type Ia “Supernova H0pe” and Observat...
 
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M DwarfLHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
LHS 475 b: A Venus-sized Planet Orbiting a Nearby M Dwarf
 
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
LOCAL DISTANCE AND DEMPSTER-DHAFER FOR MULTI-FOCUS IMAGE FUSION
 
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image FusionLocal Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
 
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image FusionLocal Distance and Dempster-Dhafer for Multi-Focus Image Fusion
Local Distance and Dempster-Dhafer for Multi-Focus Image Fusion
 
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometryA 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
A 3d extinction_map_of_the_northern_galactic_plane_based_on_iphas_photometry
 
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131–31
 
The Population of the Galactic Center Filaments: Position Angle Distribution ...
The Population of the Galactic Center Filaments: Position Angle Distribution ...The Population of the Galactic Center Filaments: Position Angle Distribution ...
The Population of the Galactic Center Filaments: Position Angle Distribution ...
 
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyrThe build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
The build up_of_the_c_d_halo_of_m87_evidence_for_accretion_in_the_last_gyr
 
Ic348 paper
Ic348 paperIc348 paper
Ic348 paper
 
Radar reflectance model for the extraction of height from shape from shading ...
Radar reflectance model for the extraction of height from shape from shading ...Radar reflectance model for the extraction of height from shape from shading ...
Radar reflectance model for the extraction of height from shape from shading ...
 

casiii_poster_final

  • 1. Ge#ng  to  Know  the  Neighbors:     Deep  Imaging  of  the  Andromeda  Satellite  Dwarf  Galaxy  Cassiopeia  III  with  WIYN  pODI   Madison  Smith  1,  Katherine  Rhode  2,  Steven  Janowiecki  2   (1)  New  College  of  Florida,  Maria  Mitchell  Observatory;  (2)  Indiana  University   OVERVIEW   We  present  results  from  WIYN  pODI  imaging  of  Cassiopeia  III  (And   XXXII),  an  Andromeda  satellite  galaxy  discovered  by  MarOn  et  al.   (2013)   in   Pan-­‐STARRS1   survey   data.   Cas   III   had   not   been   discovered  earlier  because  of  its  locaOon  near  the  GalacOc  plane,   in   an   area   that   had   not   been   systemaOcally   surveyed   unOl   Pan-­‐ STARRS1.   We   use   deep,   wide-­‐field   photometry   with   WIYN   to   study   the   stellar   populaOon   of   Cas   III   in   more   detail.   Here   we   present   a   color-­‐magnitude   diagram   (CMD)   and   preliminary   measurements  of  the  galaxy’s  structural  properOes.     SUMMARY  OF  RESULTS   A  12-­‐Gyr  isochrone  from  Bressan  et  al.  (2012)  with  [Fe/H]  =  -­‐1.7   (the  spectroscopic  metallicity  for  Cas  III  from  MarOn  et  al.  2014)   and  a  distance  modulus  of  m-­‐M  =  24.45  (from  the  PanSTARRS1   discovery  paper)  coincides  with  the  Red  Giant  Branch  locaOon  in   our  CMD.     We  selected  Red  Giant  Branch  stars  on  the  CMD  and  analyzed   the  structural  parameters  of  Cas  III,  following  the  method   described  in  MarOn  et  al.  2008  and  Sand  et  al.  (2012).   Preliminary  best-­‐fidng  values  for  Cas  III  are:                 Our  PA,  ellipOcity,  and  rh  values  are  consistent  with  those  in  the   MarOn  et  al.  2013  discovery  paper  within  the  stated  errors,  but   our  values  have  smaller  uncertainOes.   OBSERVATIONS  &  INITIAL  REDUCTIONS   Images  were  obtained  with  the  WIYN  3.5-­‐m  telescope  and  the   parOally-­‐filled   One   Degree   Imager   (pODI),   which   provided   a   24’x24’  field-­‐of-­‐view  and  a  pixel  scale  of  0.11”  pixel-­‐1.     We  used  nine  700-­‐sec  dithered  exposures  in  g’  and  seven  600-­‐ sec  dithered  exposures  in  i’,  with  FWHM  PSF  of  0.8”-­‐0.9”.       Standard  reducOons  (e.g.,  bias,  flat-­‐field  correcOons,  etc.)  were   applied  to  the  images  with  QuickReduce  (Kotulla  2014)  in  the   ODI  Portal,  Pipeline,  &  Archive  (ODI-­‐PPA).     The   images   were   illuminaOon-­‐corrected,   projected   to   a   common  pixel  scale,  and  combined  into  a  single,  deep  image  in   each   filter.     The   high-­‐noise   edges   of   the   dither   pamern   were   clipped  to  yield  a  20’  x  20’  usable  field  (Figure  1).   ACKNOWLEDGMENTS   We   are   grateful   to   Michael   West,   Gary   Walker,   Hannah   Pagel,   Bill   Janesh,   and   Dave  Sand  for  their  support  and  assistance  during  various  stages  of  this  project.   This   research   was   supported   by   the   NSF   Research   Experiences   for   Undergraduates  program  (grant  number  AST-­‐1358980).   REFERENCES   Bressan  et  al.  2012,  MNRAS  472,  127    MarOn  et  al.  2013,  ApJ  772,  15   Kotulla,  R.  2014,  in  ADASS  XXIII,  ASP  Conf.  Ser.  485,  375  Sand  et  al.  2012,  ApJ  756,  79   MarOn,  de  Jong,  &  Rix  2008,  ApJ  684,  1075         Figure  1.  (LeP)  Combined  g’-­‐band  pODI  image  of  Cas  III.  (Right)  LocaUons  of  11,310   point  sources  that  appear  in  both  the  g’  and  i’  images.    The  overdensity  of  stars  in   Cas  III  is  much  more  apparent  here  than  in  the  image.   ANALYSIS  STEPS   We  used  DAOFIND  to  detect  sources  in  the  images  with    S/N  >   3.5.    Extended  sources  were  removed.    We  calculated  aperture   correcOons   for   each   image   and   applied   these   along   with   GalacOc   exOncOon   correcOons   and   photometric   calibraOon   coefficients  to  compute  a  final  set  of  calibrated  magnitudes  for   all  the  point  sources  appearing  in  and  around  Cas  III.  Our  CMD   (Figure  2)  reaches  ~2.5  mag  deeper  than  the  CMD  shown  in  the   discovery   paper.   The   4σ   limit   on   the   brightness   of   a   point   source  in  our  images  is  g’  ~  25.3  and  i’  ~  24.3.   FUTURE  WORK   These   results   are   preliminary;   future   work   will   include:     performing  PSF  photometry,  to  miOgate  crowding  effects  near   the   center   of   the   stellar   distribuOon;   deriving   a   surface   brightness  profile  and  accurate  total  magnitude;  deriving  a  Tip   of  the  Red  Giant  Branch  (TRGB)  distance;  completeness  tesOng   to   quanOfy   the   depth   of   the   images;   and   analyzing   the   photometric  metallicity  distribuOon  funcOon  of  Cas  III.   N   E   5’   Figure  2.  (LeP)  CMD  of  Cas  III  for  stars  within  one  half-­‐light  radius  of  the  galaxy  center.   The  red  line  is  a  12-­‐Gyr  isochrone  with  [Fe/H]  =  -­‐1.7  and  m-­‐M=24.45  from  Bressan  et  al.   (2012).  (Right)  CMD  for  a  “field”  region  near  the  edge  of  the  image  (a  5’  x  20’  rectangle,   approximately  9’  from  the  galaxy  center).       Figure  3.  (LeP)  The  surface  density  of  stars  vs.  radius  for  the  Cas  III  images.  (Right)   The  star  locaUons  relaUve  to  the  center  of  Cas  III,  with  the  best-­‐fi#ng  ellipse   shown  in  red.