SlideShare a Scribd company logo
1 of 8
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 1, February 2020, pp. 140~147
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i1.13039 ๏ฒ 140
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Augmented reality using features accelerated
segment test for property catalogue
Rudy Setyadi, Indra Ranggadara
Faculty of Computer Science, Mercu Buana University, Indonesia
Article Info ABSTRACT
Article history:
Received May 5, 2019
Revised Jun 23, 2019
Accepted Jul 9, 2019
Promotional media used in the marketing of housing using catalogs that
display 2D images of houses from one side of the house make potential
customers unable to imagine the design of all parts of the house. Augmented
Reality can be used as an interactive marketing media so that it can be used to
display homes in 3D so that they appear more real from all sides so that
prospective customers can consider the type of house to be chosen.
Development of this application using the Multimedia Development Life
Cycle. Application development uses the FAST algorithm as detection of
home catalog markers to define how well images can be detected and tracked.
The FAST algorithm will calculate every pixel on the target image in
determining the corner when scanning the home catalog then it will produce a
3D object home to see the real shape design of the house.
Keywords:
Augmented reality
FAST
Property
Unity
Vuforia This is an open access article under the CC BY-SA license.
Corresponding Author:
Rudy Setyadi,
Faculty of Computer Science,
Mercu Buana University,
Raya Meruya Selatan St., Kembangan, Jakarta 11650, Indonesia.
Email: 41814120140@student.mercubuana.ac.id
1. INTRODUCTION
Housing represents the most basic of human need and it has a profound impact on the health, welfare,
and productivity of individuals [1]. Houses as shelters should be able to fulfill the space requirements for
activities of their residents [2]. The nature of housing includes not only houses from the physical side of
the building but includes all supporting facilities both inside and outside [3]. Along with the high market
demand for the property business [4], many companies offer their products using various methods.
In the business world, competition between companies is increasing, therefore every company is required to
make changes to achieve a success in doing business [5]. Promotion is one of the components that form a
marketing mix and marketing activities will focus on communicating [6]. Examples of promotional media that
are carried out is to offer homes to consumers by showing a catalog that contains information or explanations
about the appearance of 2D houses images and the design of the size of the house.
While doing property marketing, the obstacles faced by sales marketing when prospective customers
are choosing a house are still confused about the shape of the house being built. This is because the house that
is displayed from a catalog that only contains a picture of one side of the house does not yet look detailed and
real, both outside and inside the house. Consumers who want to see the location of the house directly,
sometimes do not have time due to heavy activity, coupled with the location of the house is far from the location
of consumers at this time. Figure 1 show data on prospective customers who visit the location of the house.
From the data in Figure 1 shows the number of prospective customers who visit housing locations. Prospective
consumers look directly at the housing location because they want to see the shape and size of the house in real
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi)
141
terms compared to just looking at the pictures in the catalog. Images contained in the catalog are only from
the front side of the house and the image of house plans.
Augmented reality is a technology that combines two-dimensional or three-dimensional virtual
objects into a real environment in real time [7] so there is no boundary between the real world and the virtual
world [8]. The development of augmented reality already exists in several sectors such as medic [9],
educations [10], military [11], games [12] and manufacturer [13]. The Augmented Reality system will scan
the environment which has a marker that will be imaged by a virtual object. A marker is a pattern made in
the form of images and can be recognized by optical devices or cameras in the augmented reality method [14].
In this system camera continuously snapshots the target object and process the image to estimate the position,
orientation and movement of the visualization display with respect to the target object [15] . The development
of Augmented Reality technology in the home catalog, will make consumers see the 3D display of houses
contained in the catalog so that the displayed house will look more detailed and real from all sides by using
brochures as markers.
This is confirmed by Vitono [16] has examined the use of the FAST algorithm in markerless
augmented reality to use it as an information media museum collection. Then Zuli [17] also uses the FAST
algorithm as a 3D information media at the University of Satya Negara Indonesia. Then in 2018 Setiawan [14]
also examined the use of augmented reality with the FAST algorithm in the ablution manual. Then
Adiwijaya [18] using FAST corner detection to augmented reality implementation for interactive brochure.
Also in Nainggolan [19] The implementation of augmented reality in the learning media of introduction animal
can give the visual information interactively.
From previous research, the development of this research carried out an idea to apply the FAST
algorithm to augmented reality in its use as a home catalog. The FAST algorithm is implemented in scanning
AR markers as detection of home catalog markers to define how well images can be detected and tracked.
Different from previous research, researchers will add the home tour feature as an additional multimedia
experience that surrounds the house and goes into the house to see in detail and more real. With the application
of the augmented reality, the user can more easily get the information about the home in the form of 3D models
by aiming the camera to the marker on the catalog.
Figure 1. Data on prospective customer visits to residential locations
2. RESEARCH METHOD
2.1. Multimedia development life cycle
This study uses the MDLC (Multimedia Development Life Cycle) method. This method is easier to
understand and implement, the steps are clear and easy to follow, structured and sequential logically, and can
be used by small developers. According to Luther in Nurajizah [20] the development of the multimedia method
was carried out based on six stages, arranged systematically as follows:
โˆ’ The first step of this method is Concept. It starts with determining goals, users, types of multimedia and
general specifications. The purpose of the application is tailored to the needs of organizations that need it
so that multimedia information is conveyed.
โˆ’ The second step is Design, a mature concept will then describe what will be done at this stage. The purpose
of the design phase is to make specifications regarding the style, shape, appearance and material
requirements for development. For the design of markers that will use from the existing home catalog and
for the design of 3D objects can be described with the shape of the house based on specifications on manual
data retrieval.
โˆ’ The third step is Material Collecting, namely collection in accordance with the materials needed to be
worked on, among others, images, clip art, icons and 3D forms of interior design in the house and other
objects outside the home such as trees and plants.
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147
142
โˆ’ The fourth step is Assembly, carried out making the whole multimedia material. Making an application
based on the design that has been made and the material that has been collected. At this stage use
the Blender software to create 3D objects. Unity3d and Vuforia for augmented reality. The fifth step is
Testing, the trial is done after the completion of the manufacturing phase by running the application and
testing is done to see whether there is an error or not. Tested using the FAST algorithm to test the markers
used in AR.
โˆ’ The last step is Distribution. If the testing phase has been completed without error, the system is ready to
be distributed or applied according to the purpose of this research. The application will then be operated on
an Android device for later use. The evaluation is also very much needed for product development that has
been made to be better as an input for the stage concept in the next development. The six steps of
the multimedia development life cycle method arranged systematically are shown in Figure 2. The concept
stage must indeed be the first thing done [21].
Figure 2. MDLC stage [20]
2.2. FAST (features from accelerated segment test) algorithm
Vuforia using FAST (Features from Accelerated Segment Test) Algorithm Corner Detection to define
how well images can be detected and tracked using [14]. Vuforia is an Augmented Reality Software
Development Kit (SDK) for mobile devices that allows the creation of Augmented Reality applications [17].
The advantages of using the FAST algorithm are a rapid operation and low computations compared to other
corner detectors [22] with the consequence of reducing the accuracy of angle detection [17]. In Vuforia there
are ratings displayed in the Target Manager [16] and return for each upload target via the web API. Ratings
range from 0 to 5 for each picture given. The higher the rating of the target image, the stronger the detection
and tracking capabilities it contains. Figure 3 show 1-star rating indicates that the target is hard to tracked at
all by the Augmented Reality system, while the 5-star rating shows that an image is easily tracked by an
Augmented Reality system because many of insert points or corners on an image.
Figure 3. The augmentable rating on the target manager
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi)
143
FAST Corner Detection is detection by looking for insert points or corners on an image [14].
The process of determining the angle is by changing the image to grayscale and running the algorithm.
The criterion of the corner should be more relaxed to block this broad trial. A pixel's criteria must be a corner
based on an accelerated segment test (AST) which there must exist at least S pixels that have more brilliant
circle connection or darker than a threshold. Other values of 16 pixels are disregarded. So the value of S can
be used to determine the detected corner at the maximum angle [23].
FAST Corner Detection starting with determining a pixel ๐‘ at coordinates (๐‘‹ ๐‘, ๐‘Œ๐‘) in the image and
compare the intensity pixel ๐‘ with 4 pixels from 16 pixels Bresenham circle surrounding the pixel ๐‘, whose
radius is 3 [24]. First pixel located in the coordinates (๐‘‹, ๐‘Œ๐‘โˆ’3), a second pixel located in the coordinates (๐‘‹ ๐‘+3,
๐‘Œ), a third pixel located in the coordinates (๐‘‹, ๐‘Œ๐‘+3), and a fourth pixel located in the coordinates (๐‘‹ ๐‘โˆ’3, ๐‘Œ).
As illustrated in Figure 4 in pixel number 1, 5, 9, and 13.
If the intensity pixel ๐‘ is below or above than the intensity of at least three pixels from 1, 5, 9, and 13
plus a Threshold intensity, then it can be said that pixel ๐‘ is an interest point [23]. It is defined in (1):
๐ถ ๐‘ = {
1, ๐ผ ๐‘› < ๐ผ ๐‘ โˆ’ ๐‘ก ๐‘œ๐‘Ÿ ๐ผ ๐‘› > ๐ผ ๐‘ + ๐‘ก
0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
(1)
after that pixel ๐‘ will be at the coordinates (๐‘‹ ๐‘+1, ๐‘Œ๐‘) and repeat the procedure by comparing
the intensity with the other four pixels surrounding. The same procedure can iterate for the whole
image's pixels.
Figure 4. FAST Detector [22]
In the machine learning approach, FAST algorithm comparing sixteen pixel that surrounding
the candidate interest point (corner) pixel ๐‘ โ€”as illustrated in Figure 4โ€”the corner detector define pixel ๐‘ as
a corner if there exists a set of ๐‘› contiguous pixels in the circle, which are brighter than the intensity of
the candidate corner ๐ผ ๐‘ plus a threshold ๐‘ก, or are darker than ๐ผ ๐‘ minus the ๐‘ก [25]. The ๐‘› is chosen as 12 because
it allows a high-speed test that can be used to exclude a very large number of non-corners. It defined in
this equation:
๐‘† ๐‘โ†’๐‘ฅ = {
๐‘‘, ๐ผ ๐‘โ†’๐‘ฅ โ‰ค ๐ผ ๐‘ โˆ’ ๐‘ก (darker)
๐‘ , ๐ผ ๐‘ โˆ’ ๐‘ก < ๐ผ ๐‘โ†’๐‘ฅ < ๐ผ ๐‘ + ๐‘ก (similar)
๐‘, ๐ผ ๐‘ โˆ’ ๐‘ก โ‰ค ๐ผ ๐‘โ†’๐‘ฅ (brighter)
(2)
where ๐ผ ๐‘ is the intensity of p, ๐ผ ๐‘โ†’๐‘ฅ is the intensity of the sixteen pixels that surrounding the example pixel and
๐‘ก is a threshold. If ๐‘† ๐‘โ†’๐‘ฅ is equal to d, the pixel belongs to the darker group; if ๐‘† ๐‘โ†’๐‘ฅ is equal to s, the pixel
belongs to the similar group; if ๐‘† ๐‘โ†’๐‘ฅ is equal to b, the pixel belongs to the brighter group. If there are 12
contiguous pixels that belong to the darker or brighter group, p is classified as a corner.
3. RESULTS AND ANALYSIS
3.1. Testing FAST alghoritm
The development of this augmented reality application uses a home catalog as a marker that will bring
up the virtual form of a 3D home. There are 3 markers used in accordance with the number of types of houses
being marketed. The catalog image will be targeted if appropriate the requirements of Vuforia by uploading it
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147
144
to the Vuforia website. Vuforia is able to recognize and track targets by analyzing the contrast of the features
or detected corner seen in the camera. A feature is a sharp, spiked, detailed detail in the image. The way to
determine the features used by Vuforia is the FAST corner detection algorithm. The level of ease of image
tracking that is used as a marker is given a rating by Vuforia called an augmentable rating. The higher
the rating, the easier it will be to track. The Catalog design that will be use as markers show in Figure 5. To
increase the rating to its maximum value, you can create a design that is rich in features, good contrast, smooth
distribution of features, and avoiding repetitive patterns in one image. Figure 6 shows the results of testing
the home catalog marker detection for each type of house based on the augmentable rating of Vuforia.
Figure 5. Catalog design as markers
Figure 6. Marker rating augmentable from vuforia
The augmentable rating shows a high rating of 5 stars indicating that the existing marker images are
easily tracked by the Augmented Reality system. This is because catalog images contain many features of
marker objects (complex patterns and details) with good contrast and smooth distribution of features.
The algorithm used in Vuforia is the FAST corner detection algorithm. The way it works is to determine one
by one all the pixels in the image and then determine whether the point is a corner or not. An example of an
experiment conducted is as illustrated in Figure 7.
In Figure 7 select a pixel as ๐‘ with coordinates (๐‘‹ ๐‘, ๐‘Œ๐‘) for example in the marker image, and then
compare the intensity pixel ๐‘ with 4 pixels from 16 pixels surrounding the pixel ๐‘. First pixel number 1 in
Figure 7 located in the coordinates (๐‘‹, ๐‘Œ๐‘+3), second pixel is number 5 located in the coordinates (๐‘‹ ๐‘+3, ๐‘Œ),
third pixel is number 9 located in the coordinates (๐‘‹, ๐‘Œ๐‘โˆ’3), and fourth pixel is number 13 located in
the coordinates (๐‘‹ ๐‘โˆ’3, ๐‘Œ). The next step is comparing pixel ๐‘ with pixel 1, 5, 9, and 13. If the intensity pixel ๐‘
is below or above than the intensity of at least three pixels from 1, 5, 9, and 13 plus a Threshold intensity, then
it can be said that pixel ๐‘ is an interest (corner). In this case, the intensity of pixel ๐‘ is brighter than 1, 5 and
13 which mean pixel ๐‘ is a corner according to (1).
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi)
145
Figure 7. FAST algorithm on a marker
Because of the large number of pixel points that must be tested, to facilitate testing of the FAST
algorithm, the next test is to look at the angles detected using open source MATLAB for FAST algorithm by
Edward Rosten. A pixel is defined as a corner if (in a circle surrounding the pixel), N or more contiguous pixels
are all significantly brighter then or all significantly darker than the center pixel. The ordering of questions
used to classify a pixel is learned using the ID3 algorithm. This detector has been shown to exhibit a high
degree of repeatability. Similar results are indicated by all markers. The green dots show in Figure 8 is
the Non-maximally suppressed corners. The interest points were generated with an open source MATLAB
code for the FAST algorithm by Edward Rosten.
Figure 8. Marker with interest point detected
3.2. Augmented reality implementation
The augmented reality application as a home catalog that has been made using the application of
the FAST algorithm on marker detection is operated on mobile with the Android operating system. There are
5 main menus, namely Introduction to information about the house, AR camera to detect catalogs, Home Tours
for the experience of seeing and go around the house from the outside and into the inside, Guide for information
on how to use and the latest Information about the application as shown in Figure 9. Augmented reality that
will come out when detecting home catalog markers can be seen in Figure 10. The 3D display can be enlarged
and rotated so that the appearance of the house can be seen from all sides.
Augmented reality uses marker detection using the FAST algorithm method in Vuforia. The marker
image is rich in features and spread evenly. Existing home brochures appropriate these requirements so that
there is no need for a lot of modifications. When uploaded in Vuforia, catalog design received an augmentable
rating with a score of 5. A high score provides easy Vuforia in detecting images so that it will make it easier
to display existing 3D animations. After being downloaded again from Vuforia and made in Unity3D.
The ways of Vuforia working when the application opens the camera, the task of the camera is to capture
images in real time and then tracking and detecting captured camera objects will be carried out by tracker in
๏ฒ ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147
146
Vuforia containing computer vision algorithms namely the FAST algorithm. The FAST algorithm will work
to check images by working according to (1). The image that is visible in the camera will be detected against
each pixel and determine whether it includes a corner or not. Detecting the corner that has been done makes a
pattern then it will do the matching with the database image that is on vuforia. When it finds an image match,
the results of detection will then be used to start rendering a predetermined 3D object that is the house from
the catalog scan. Then the rendering results will be displayed via mobile devices in real-time.
The added feature is that there is a home tour to feel a real experience such as walking around
the house to look inside the contents of the house can be seen in Figure 11. When choosing the home tour
menu, the house will appear according to the type you have previously chosen. Users can travel by moving
the button to walk into the house and see the contents of each existing room accompanied by examples of
interior design.
Figure 11. Display of the home tour
4. CONCLUSION
The detection of marker augmented reality with the application of the FAST corner detection
algorithm used in Vuforia SDK is useful as a trigger for augmented reality. The working method of the FAST
algorithm is to examine each pixel in an image and determine whether the pixel is an interest point (corner) or
not. The count used from the example pixel is tested compared with sixteen pixels around it then determines
four points. From these four points, if there are at least three darker or brighter ones, the example pixel that is
in the middle is an angle. In Vuforia pixels, which is an interest point, it is called features. The use of images
as markers must have many features, contrast images, and smooth distribution of features so that markers
having a high augmentable rating will make it easier for Vuforia to detect images. The FAST algorithm
performs matching features that exist in the target image with the database. Then the application will render
3D objects. If the detection of a suitable target image will render the 3D object of the house. The results of
visualizing the house in 3D are easier to explain the original appearance of the house compared to
the appearance of the photo. This application facilitates sales marketing as an explanation to prospective
customers who are confused about the original description of the house both from outside the home and inside
Figure 9. Display of the main menu Figure 10. Display of augmented reality
after marker detected
TELKOMNIKA Telecommun Comput El Control ๏ฒ
Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi)
147
the house and by using the home tour menu prospective customers can feel the experience of going around
the house in animation.
REFERENCES
[1] N. Wickramaarachchi, โ€œDeterminants of Rental Value for Residential Properties: A Land Ownerโ€™s Perspective for
Boarding Homes,โ€ Built-Environment Sri Lanka, vol. 12, no. 1, pp. 10โ€“22, 2016.
[2] L. Mauliani and W. Sudarwati, โ€œPengaruh Modul Besaran Ruang Terhadap Tata Ruang Rumah Sangat Sederhana,โ€
NALARs, vol. 17, no. 2, pp. 135โ€“144, 2018.
[3] T. H. Kusuma, โ€œAnalysis of Factors Affecting House Ownership in Indonesia,โ€ Am. Res. J. Bus. Manag., vol. 4,
no. 1, pp. 1โ€“12, 2018.
[4] F. T. Maoludyo and A. Aprianingsih, โ€œFactors Influencing Consumer Buying Intention for Housing Unit in Depok,โ€
J. Bus. Manag., vol. 4, no. 4, pp. 484โ€“493, 2015.
[5] Y. S. Sari, โ€œAnalysis and Design of Information System Cash Purchase of Jelita Sprey with Object Oriented
Methodology,โ€ vol. 7, no. 7, pp. 45โ€“57, 2018.
[6] Aswin and Syaharuddin, โ€œPengaruh Biaya Promosi Terhadap Peningkatan Penjualan Rumah Pada Perumahan Grand
Aroepala Di Makassar,โ€ J. Iqtisaduna, vol. 1, no. 2, pp. 1โ€“17, 2015.
[7] M. Ozdemir, C. Sahin, S. Arcagok, and M. K. Demir, โ€œThe Effect of Augmented Reality Applications in the Learning
Process: A MetaAnalysis Study,โ€ Eurasian J. Educ. Res., vol. 18, no. April, pp. 165โ€“186, 2018.
[8] B. Arifitama, Panduan Mudah Membuat Augmented Reality, 1st ed. Yogyakarta: Andi, 2017.
[9] V. D. Deolekar and P. M. Deshmukh, โ€œCase Study of Augmented Reality Applications in Medical Field,โ€ Int. J.
Trend Sci. Res. Dev., vol. 2, no. 4, pp. 2691โ€“2694, 2018.
[10] A. H. Safar, A. A. Al-Jafar, and Z. H. Al-Yousefi, โ€œThe Effectiveness of Using Augmented Reality Apps in Teaching
the English Alphabet to Kindergarten Children: A Case Study in the State of Kuwait,โ€ Eurasia J. Math. Sci. Technol.
Educ., vol. 13, no. 2, pp. 417โ€“440, 2017.
[11] X. You, W. Zhang, M. Ma, C. Deng, and J. Yang, โ€œSurvey on Urban Warfare Augmented Reality,โ€ ISPRS Int. J.
Geo-Information, vol. 7, no. 2, pp. 1โ€“16, 2018.
[12] Y. A. Sekhavat, โ€œKioskAR: An Augmented Reality Game as a New Business Model to Present Artworks,โ€ Int. J.
Comput. Games Technol., vol. 2016, pp. 1โ€“12, 2016.
[13] D. Sahin and A. Togay, โ€œAugmented Reality Applications in Product Design Process,โ€ New Trends Issues Proc.
Humanit. Soc. Sci., vol. 2, no. 1, pp. 115โ€“125, 2017.
[14] E. Setiawan, U. Syaripudin, and Y. A. Gerhana, โ€œImplementasi Teknologi Augmented Reality pada Buku Panduan
Wudhu Berbasis Mobile Android,โ€ J. Online Inform., vol. 1, no. 1, pp. 28โ€“33, 2018.
[15] D. Amin and S. Govilkar, โ€œComparative Study of Augmented Reality SDKโ€™s,โ€ Int. J. Comput. Sci. Appl., vol. 5,
no. 1, pp. 10โ€“26, 2015.
[16] H. Vitono, H. Nasution, and H. Anra, โ€œImplementasi Markerless Augmented Reality Sebagai Media Informasi
Koleksi Museum Berbasis Android,โ€ J. Sist. dan Teknol. Inf., vol. 2, no. 4, pp. 239โ€“245, 2016.
[17] F. Zuli, โ€œRancang Bangun Augmented Dan Virtual Reality Menggunakan Algoritma Fast Sebagai Media Informasi
3D Di Universitas Satya Negara Indonesia,โ€ J. Algoritm. Log. dan Komputasi, vol. 1, no. 2, pp. 94โ€“104, 2018.
[18] N. O. Adiwijaya, Y. Wahyu, and C. P. Antonius, โ€œImplementasi Augmented Reality Untuk Brosur Interaktif Dengan
Metode FAST Corner Detection (in bahasa: Augmented Reality Implementation for Interactive Brochures with the
FAST Corner Detection Method),โ€ in Semnastikom, pp. 598โ€“606, 2016.
[19] E. R. Nainggolan et al., โ€œThe Implementation of Augmented Reality as Learning Media in Introducing Animals for
Early Childhood Education,โ€ The 6th
International Conference on Cyber and IT Service Management
(CITSM 2018), 2018.
[20] S. Nurajizah, โ€œImplementasi Multimedia Development Life Cycle Pada Aplikasi Pengenalan Lagu Anak-Anak (in
Bahasa: Implementation of Multimedia Development Life Cycle in Children's Song Recognition Application),โ€
J. PROSISKO, vol. 3, no. 2, pp. 14โ€“19, 2016.
[21] M. Mustika, E. P. A. Sugara, and M. Pratiwi, โ€œPengembangan Media Pembelajaran Interaktif dengan Menggunakan
Metode Multimedia Development Life Cycle (in bahasa: Development of Interactive Learning Media Using the
Multimedia Development Life Cycle Method),โ€ J. Online Inform., vol. 2, no. 2, p. 121, 2018.
[22] J. Huang, G. Zhou, X. Zhou, and R. Zhang, โ€œA New FPGA Architecture of FAST and BRIEF Algorithm for
On-board Corner Detection and Matching,โ€ Sensors, vol. 18, no. 4, pp. 1โ€“17, 2018.
[23] A. A. Karim and E. F. Nasser, โ€œImprovement of Corner Detection Algorithms (Harris , FAST and SUSAN) Based
on Reduction of Features Space and Complexity Time,โ€ Engineering Technology Journal, vol. 35, no. 2,
pp. 112โ€“118, 2017.
[24] L. Yu, Z. Yu, and Y. Gong, โ€œAn Improved ORB Algorithm of Extracting and Matching Features,โ€ International
Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 8, no. 5, pp. 117โ€“126, 2015.
[25] E. Mueggler and D. Scaramuzza, โ€œFast Event-based Corner Detection,โ€ Br. Mach. Vis. Conf., vol. 1, pp. 1โ€“11, 2017.

More Related Content

Similar to Augmented reality using features accelerated segment test for property catalogue

Augmented reality in E-commerce
Augmented reality in E-commerceAugmented reality in E-commerce
Augmented reality in E-commerce
Ashwin P
ย 

Similar to Augmented reality using features accelerated segment test for property catalogue (20)

Interior Designing Mobile Application based on Markerless Augmented Reality (AR)
Interior Designing Mobile Application based on Markerless Augmented Reality (AR)Interior Designing Mobile Application based on Markerless Augmented Reality (AR)
Interior Designing Mobile Application based on Markerless Augmented Reality (AR)
ย 
Personalised Product Design Using Virtual Interactive Techniques
Personalised Product Design Using Virtual Interactive Techniques  Personalised Product Design Using Virtual Interactive Techniques
Personalised Product Design Using Virtual Interactive Techniques
ย 
Augmented Reality in Medical Education
Augmented Reality in Medical EducationAugmented Reality in Medical Education
Augmented Reality in Medical Education
ย 
Quantify Measure App Project concept presentation
Quantify Measure App Project concept presentationQuantify Measure App Project concept presentation
Quantify Measure App Project concept presentation
ย 
IRJET- Augmented Reality in Interior Design
IRJET- Augmented Reality in Interior DesignIRJET- Augmented Reality in Interior Design
IRJET- Augmented Reality in Interior Design
ย 
FASHION ANDROID APPLICATION USING AUGMENTED REALITY : A SURVEY
FASHION ANDROID APPLICATION USING  AUGMENTED REALITY : A SURVEYFASHION ANDROID APPLICATION USING  AUGMENTED REALITY : A SURVEY
FASHION ANDROID APPLICATION USING AUGMENTED REALITY : A SURVEY
ย 
Software Agents Role and Predictive Approaches for Online Auctions
Software Agents Role and Predictive Approaches for Online AuctionsSoftware Agents Role and Predictive Approaches for Online Auctions
Software Agents Role and Predictive Approaches for Online Auctions
ย 
IRJET- Campus Navigation System Based on Mobile Augmented Reality
IRJET- Campus Navigation System Based on Mobile Augmented RealityIRJET- Campus Navigation System Based on Mobile Augmented Reality
IRJET- Campus Navigation System Based on Mobile Augmented Reality
ย 
Single object detection to support requirements modeling using faster R-CNN
Single object detection to support requirements modeling using faster R-CNNSingle object detection to support requirements modeling using faster R-CNN
Single object detection to support requirements modeling using faster R-CNN
ย 
Virtual Interior Decor App
Virtual Interior Decor AppVirtual Interior Decor App
Virtual Interior Decor App
ย 
Augmented reality in E-commerce
Augmented reality in E-commerceAugmented reality in E-commerce
Augmented reality in E-commerce
ย 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
ย 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
ย 
industrial training report
industrial training reportindustrial training report
industrial training report
ย 
IRJET - Augmented Reality: Social Profile Detection by Face Recognition
IRJET - Augmented Reality: Social Profile Detection by Face RecognitionIRJET - Augmented Reality: Social Profile Detection by Face Recognition
IRJET - Augmented Reality: Social Profile Detection by Face Recognition
ย 
2D to 3D dynamic modeling of architectural plans in Augmented Reality
2D to 3D dynamic modeling of architectural plans in Augmented Reality2D to 3D dynamic modeling of architectural plans in Augmented Reality
2D to 3D dynamic modeling of architectural plans in Augmented Reality
ย 
IRJET- A System for Indoor Navigation: GuideIt - Personal Assistant
IRJET-  	  A System for Indoor Navigation: GuideIt - Personal AssistantIRJET-  	  A System for Indoor Navigation: GuideIt - Personal Assistant
IRJET- A System for Indoor Navigation: GuideIt - Personal Assistant
ย 
IRJET- A Survey on Technologies used in Mall Assistant
IRJET- A Survey on Technologies used in Mall AssistantIRJET- A Survey on Technologies used in Mall Assistant
IRJET- A Survey on Technologies used in Mall Assistant
ย 
Effort Estimation Development Model for Web-based Mobile Application Using Fu...
Effort Estimation Development Model for Web-based Mobile Application Using Fu...Effort Estimation Development Model for Web-based Mobile Application Using Fu...
Effort Estimation Development Model for Web-based Mobile Application Using Fu...
ย 
Augmented Reality Design of Indonesia Fruit Recognition
Augmented Reality Design of Indonesia Fruit Recognition Augmented Reality Design of Indonesia Fruit Recognition
Augmented Reality Design of Indonesia Fruit Recognition
ย 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
TELKOMNIKA JOURNAL
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
TELKOMNIKA JOURNAL
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
TELKOMNIKA JOURNAL
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
TELKOMNIKA JOURNAL
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
TELKOMNIKA JOURNAL
ย 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
ย 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
ย 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
ย 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
ย 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
ย 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
ย 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
ย 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
ย 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
ย 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
ย 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
ย 
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
Implementation of FinFET technology based low power 4ร—4 Wallace tree multipli...
ย 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
ย 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
ย 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
ย 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
ย 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
ย 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
ย 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
ย 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
ย 

Recently uploaded

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
ย 

Recently uploaded (20)

The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
ย 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
ย 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
ย 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
ย 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
ย 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
ย 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
ย 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
ย 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
ย 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
ย 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
ย 

Augmented reality using features accelerated segment test for property catalogue

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 1, February 2020, pp. 140~147 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i1.13039 ๏ฒ 140 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Augmented reality using features accelerated segment test for property catalogue Rudy Setyadi, Indra Ranggadara Faculty of Computer Science, Mercu Buana University, Indonesia Article Info ABSTRACT Article history: Received May 5, 2019 Revised Jun 23, 2019 Accepted Jul 9, 2019 Promotional media used in the marketing of housing using catalogs that display 2D images of houses from one side of the house make potential customers unable to imagine the design of all parts of the house. Augmented Reality can be used as an interactive marketing media so that it can be used to display homes in 3D so that they appear more real from all sides so that prospective customers can consider the type of house to be chosen. Development of this application using the Multimedia Development Life Cycle. Application development uses the FAST algorithm as detection of home catalog markers to define how well images can be detected and tracked. The FAST algorithm will calculate every pixel on the target image in determining the corner when scanning the home catalog then it will produce a 3D object home to see the real shape design of the house. Keywords: Augmented reality FAST Property Unity Vuforia This is an open access article under the CC BY-SA license. Corresponding Author: Rudy Setyadi, Faculty of Computer Science, Mercu Buana University, Raya Meruya Selatan St., Kembangan, Jakarta 11650, Indonesia. Email: 41814120140@student.mercubuana.ac.id 1. INTRODUCTION Housing represents the most basic of human need and it has a profound impact on the health, welfare, and productivity of individuals [1]. Houses as shelters should be able to fulfill the space requirements for activities of their residents [2]. The nature of housing includes not only houses from the physical side of the building but includes all supporting facilities both inside and outside [3]. Along with the high market demand for the property business [4], many companies offer their products using various methods. In the business world, competition between companies is increasing, therefore every company is required to make changes to achieve a success in doing business [5]. Promotion is one of the components that form a marketing mix and marketing activities will focus on communicating [6]. Examples of promotional media that are carried out is to offer homes to consumers by showing a catalog that contains information or explanations about the appearance of 2D houses images and the design of the size of the house. While doing property marketing, the obstacles faced by sales marketing when prospective customers are choosing a house are still confused about the shape of the house being built. This is because the house that is displayed from a catalog that only contains a picture of one side of the house does not yet look detailed and real, both outside and inside the house. Consumers who want to see the location of the house directly, sometimes do not have time due to heavy activity, coupled with the location of the house is far from the location of consumers at this time. Figure 1 show data on prospective customers who visit the location of the house. From the data in Figure 1 shows the number of prospective customers who visit housing locations. Prospective consumers look directly at the housing location because they want to see the shape and size of the house in real
  • 2. TELKOMNIKA Telecommun Comput El Control ๏ฒ Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi) 141 terms compared to just looking at the pictures in the catalog. Images contained in the catalog are only from the front side of the house and the image of house plans. Augmented reality is a technology that combines two-dimensional or three-dimensional virtual objects into a real environment in real time [7] so there is no boundary between the real world and the virtual world [8]. The development of augmented reality already exists in several sectors such as medic [9], educations [10], military [11], games [12] and manufacturer [13]. The Augmented Reality system will scan the environment which has a marker that will be imaged by a virtual object. A marker is a pattern made in the form of images and can be recognized by optical devices or cameras in the augmented reality method [14]. In this system camera continuously snapshots the target object and process the image to estimate the position, orientation and movement of the visualization display with respect to the target object [15] . The development of Augmented Reality technology in the home catalog, will make consumers see the 3D display of houses contained in the catalog so that the displayed house will look more detailed and real from all sides by using brochures as markers. This is confirmed by Vitono [16] has examined the use of the FAST algorithm in markerless augmented reality to use it as an information media museum collection. Then Zuli [17] also uses the FAST algorithm as a 3D information media at the University of Satya Negara Indonesia. Then in 2018 Setiawan [14] also examined the use of augmented reality with the FAST algorithm in the ablution manual. Then Adiwijaya [18] using FAST corner detection to augmented reality implementation for interactive brochure. Also in Nainggolan [19] The implementation of augmented reality in the learning media of introduction animal can give the visual information interactively. From previous research, the development of this research carried out an idea to apply the FAST algorithm to augmented reality in its use as a home catalog. The FAST algorithm is implemented in scanning AR markers as detection of home catalog markers to define how well images can be detected and tracked. Different from previous research, researchers will add the home tour feature as an additional multimedia experience that surrounds the house and goes into the house to see in detail and more real. With the application of the augmented reality, the user can more easily get the information about the home in the form of 3D models by aiming the camera to the marker on the catalog. Figure 1. Data on prospective customer visits to residential locations 2. RESEARCH METHOD 2.1. Multimedia development life cycle This study uses the MDLC (Multimedia Development Life Cycle) method. This method is easier to understand and implement, the steps are clear and easy to follow, structured and sequential logically, and can be used by small developers. According to Luther in Nurajizah [20] the development of the multimedia method was carried out based on six stages, arranged systematically as follows: โˆ’ The first step of this method is Concept. It starts with determining goals, users, types of multimedia and general specifications. The purpose of the application is tailored to the needs of organizations that need it so that multimedia information is conveyed. โˆ’ The second step is Design, a mature concept will then describe what will be done at this stage. The purpose of the design phase is to make specifications regarding the style, shape, appearance and material requirements for development. For the design of markers that will use from the existing home catalog and for the design of 3D objects can be described with the shape of the house based on specifications on manual data retrieval. โˆ’ The third step is Material Collecting, namely collection in accordance with the materials needed to be worked on, among others, images, clip art, icons and 3D forms of interior design in the house and other objects outside the home such as trees and plants.
  • 3. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147 142 โˆ’ The fourth step is Assembly, carried out making the whole multimedia material. Making an application based on the design that has been made and the material that has been collected. At this stage use the Blender software to create 3D objects. Unity3d and Vuforia for augmented reality. The fifth step is Testing, the trial is done after the completion of the manufacturing phase by running the application and testing is done to see whether there is an error or not. Tested using the FAST algorithm to test the markers used in AR. โˆ’ The last step is Distribution. If the testing phase has been completed without error, the system is ready to be distributed or applied according to the purpose of this research. The application will then be operated on an Android device for later use. The evaluation is also very much needed for product development that has been made to be better as an input for the stage concept in the next development. The six steps of the multimedia development life cycle method arranged systematically are shown in Figure 2. The concept stage must indeed be the first thing done [21]. Figure 2. MDLC stage [20] 2.2. FAST (features from accelerated segment test) algorithm Vuforia using FAST (Features from Accelerated Segment Test) Algorithm Corner Detection to define how well images can be detected and tracked using [14]. Vuforia is an Augmented Reality Software Development Kit (SDK) for mobile devices that allows the creation of Augmented Reality applications [17]. The advantages of using the FAST algorithm are a rapid operation and low computations compared to other corner detectors [22] with the consequence of reducing the accuracy of angle detection [17]. In Vuforia there are ratings displayed in the Target Manager [16] and return for each upload target via the web API. Ratings range from 0 to 5 for each picture given. The higher the rating of the target image, the stronger the detection and tracking capabilities it contains. Figure 3 show 1-star rating indicates that the target is hard to tracked at all by the Augmented Reality system, while the 5-star rating shows that an image is easily tracked by an Augmented Reality system because many of insert points or corners on an image. Figure 3. The augmentable rating on the target manager
  • 4. TELKOMNIKA Telecommun Comput El Control ๏ฒ Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi) 143 FAST Corner Detection is detection by looking for insert points or corners on an image [14]. The process of determining the angle is by changing the image to grayscale and running the algorithm. The criterion of the corner should be more relaxed to block this broad trial. A pixel's criteria must be a corner based on an accelerated segment test (AST) which there must exist at least S pixels that have more brilliant circle connection or darker than a threshold. Other values of 16 pixels are disregarded. So the value of S can be used to determine the detected corner at the maximum angle [23]. FAST Corner Detection starting with determining a pixel ๐‘ at coordinates (๐‘‹ ๐‘, ๐‘Œ๐‘) in the image and compare the intensity pixel ๐‘ with 4 pixels from 16 pixels Bresenham circle surrounding the pixel ๐‘, whose radius is 3 [24]. First pixel located in the coordinates (๐‘‹, ๐‘Œ๐‘โˆ’3), a second pixel located in the coordinates (๐‘‹ ๐‘+3, ๐‘Œ), a third pixel located in the coordinates (๐‘‹, ๐‘Œ๐‘+3), and a fourth pixel located in the coordinates (๐‘‹ ๐‘โˆ’3, ๐‘Œ). As illustrated in Figure 4 in pixel number 1, 5, 9, and 13. If the intensity pixel ๐‘ is below or above than the intensity of at least three pixels from 1, 5, 9, and 13 plus a Threshold intensity, then it can be said that pixel ๐‘ is an interest point [23]. It is defined in (1): ๐ถ ๐‘ = { 1, ๐ผ ๐‘› < ๐ผ ๐‘ โˆ’ ๐‘ก ๐‘œ๐‘Ÿ ๐ผ ๐‘› > ๐ผ ๐‘ + ๐‘ก 0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ (1) after that pixel ๐‘ will be at the coordinates (๐‘‹ ๐‘+1, ๐‘Œ๐‘) and repeat the procedure by comparing the intensity with the other four pixels surrounding. The same procedure can iterate for the whole image's pixels. Figure 4. FAST Detector [22] In the machine learning approach, FAST algorithm comparing sixteen pixel that surrounding the candidate interest point (corner) pixel ๐‘ โ€”as illustrated in Figure 4โ€”the corner detector define pixel ๐‘ as a corner if there exists a set of ๐‘› contiguous pixels in the circle, which are brighter than the intensity of the candidate corner ๐ผ ๐‘ plus a threshold ๐‘ก, or are darker than ๐ผ ๐‘ minus the ๐‘ก [25]. The ๐‘› is chosen as 12 because it allows a high-speed test that can be used to exclude a very large number of non-corners. It defined in this equation: ๐‘† ๐‘โ†’๐‘ฅ = { ๐‘‘, ๐ผ ๐‘โ†’๐‘ฅ โ‰ค ๐ผ ๐‘ โˆ’ ๐‘ก (darker) ๐‘ , ๐ผ ๐‘ โˆ’ ๐‘ก < ๐ผ ๐‘โ†’๐‘ฅ < ๐ผ ๐‘ + ๐‘ก (similar) ๐‘, ๐ผ ๐‘ โˆ’ ๐‘ก โ‰ค ๐ผ ๐‘โ†’๐‘ฅ (brighter) (2) where ๐ผ ๐‘ is the intensity of p, ๐ผ ๐‘โ†’๐‘ฅ is the intensity of the sixteen pixels that surrounding the example pixel and ๐‘ก is a threshold. If ๐‘† ๐‘โ†’๐‘ฅ is equal to d, the pixel belongs to the darker group; if ๐‘† ๐‘โ†’๐‘ฅ is equal to s, the pixel belongs to the similar group; if ๐‘† ๐‘โ†’๐‘ฅ is equal to b, the pixel belongs to the brighter group. If there are 12 contiguous pixels that belong to the darker or brighter group, p is classified as a corner. 3. RESULTS AND ANALYSIS 3.1. Testing FAST alghoritm The development of this augmented reality application uses a home catalog as a marker that will bring up the virtual form of a 3D home. There are 3 markers used in accordance with the number of types of houses being marketed. The catalog image will be targeted if appropriate the requirements of Vuforia by uploading it
  • 5. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147 144 to the Vuforia website. Vuforia is able to recognize and track targets by analyzing the contrast of the features or detected corner seen in the camera. A feature is a sharp, spiked, detailed detail in the image. The way to determine the features used by Vuforia is the FAST corner detection algorithm. The level of ease of image tracking that is used as a marker is given a rating by Vuforia called an augmentable rating. The higher the rating, the easier it will be to track. The Catalog design that will be use as markers show in Figure 5. To increase the rating to its maximum value, you can create a design that is rich in features, good contrast, smooth distribution of features, and avoiding repetitive patterns in one image. Figure 6 shows the results of testing the home catalog marker detection for each type of house based on the augmentable rating of Vuforia. Figure 5. Catalog design as markers Figure 6. Marker rating augmentable from vuforia The augmentable rating shows a high rating of 5 stars indicating that the existing marker images are easily tracked by the Augmented Reality system. This is because catalog images contain many features of marker objects (complex patterns and details) with good contrast and smooth distribution of features. The algorithm used in Vuforia is the FAST corner detection algorithm. The way it works is to determine one by one all the pixels in the image and then determine whether the point is a corner or not. An example of an experiment conducted is as illustrated in Figure 7. In Figure 7 select a pixel as ๐‘ with coordinates (๐‘‹ ๐‘, ๐‘Œ๐‘) for example in the marker image, and then compare the intensity pixel ๐‘ with 4 pixels from 16 pixels surrounding the pixel ๐‘. First pixel number 1 in Figure 7 located in the coordinates (๐‘‹, ๐‘Œ๐‘+3), second pixel is number 5 located in the coordinates (๐‘‹ ๐‘+3, ๐‘Œ), third pixel is number 9 located in the coordinates (๐‘‹, ๐‘Œ๐‘โˆ’3), and fourth pixel is number 13 located in the coordinates (๐‘‹ ๐‘โˆ’3, ๐‘Œ). The next step is comparing pixel ๐‘ with pixel 1, 5, 9, and 13. If the intensity pixel ๐‘ is below or above than the intensity of at least three pixels from 1, 5, 9, and 13 plus a Threshold intensity, then it can be said that pixel ๐‘ is an interest (corner). In this case, the intensity of pixel ๐‘ is brighter than 1, 5 and 13 which mean pixel ๐‘ is a corner according to (1).
  • 6. TELKOMNIKA Telecommun Comput El Control ๏ฒ Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi) 145 Figure 7. FAST algorithm on a marker Because of the large number of pixel points that must be tested, to facilitate testing of the FAST algorithm, the next test is to look at the angles detected using open source MATLAB for FAST algorithm by Edward Rosten. A pixel is defined as a corner if (in a circle surrounding the pixel), N or more contiguous pixels are all significantly brighter then or all significantly darker than the center pixel. The ordering of questions used to classify a pixel is learned using the ID3 algorithm. This detector has been shown to exhibit a high degree of repeatability. Similar results are indicated by all markers. The green dots show in Figure 8 is the Non-maximally suppressed corners. The interest points were generated with an open source MATLAB code for the FAST algorithm by Edward Rosten. Figure 8. Marker with interest point detected 3.2. Augmented reality implementation The augmented reality application as a home catalog that has been made using the application of the FAST algorithm on marker detection is operated on mobile with the Android operating system. There are 5 main menus, namely Introduction to information about the house, AR camera to detect catalogs, Home Tours for the experience of seeing and go around the house from the outside and into the inside, Guide for information on how to use and the latest Information about the application as shown in Figure 9. Augmented reality that will come out when detecting home catalog markers can be seen in Figure 10. The 3D display can be enlarged and rotated so that the appearance of the house can be seen from all sides. Augmented reality uses marker detection using the FAST algorithm method in Vuforia. The marker image is rich in features and spread evenly. Existing home brochures appropriate these requirements so that there is no need for a lot of modifications. When uploaded in Vuforia, catalog design received an augmentable rating with a score of 5. A high score provides easy Vuforia in detecting images so that it will make it easier to display existing 3D animations. After being downloaded again from Vuforia and made in Unity3D. The ways of Vuforia working when the application opens the camera, the task of the camera is to capture images in real time and then tracking and detecting captured camera objects will be carried out by tracker in
  • 7. ๏ฒ ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 140 - 147 146 Vuforia containing computer vision algorithms namely the FAST algorithm. The FAST algorithm will work to check images by working according to (1). The image that is visible in the camera will be detected against each pixel and determine whether it includes a corner or not. Detecting the corner that has been done makes a pattern then it will do the matching with the database image that is on vuforia. When it finds an image match, the results of detection will then be used to start rendering a predetermined 3D object that is the house from the catalog scan. Then the rendering results will be displayed via mobile devices in real-time. The added feature is that there is a home tour to feel a real experience such as walking around the house to look inside the contents of the house can be seen in Figure 11. When choosing the home tour menu, the house will appear according to the type you have previously chosen. Users can travel by moving the button to walk into the house and see the contents of each existing room accompanied by examples of interior design. Figure 11. Display of the home tour 4. CONCLUSION The detection of marker augmented reality with the application of the FAST corner detection algorithm used in Vuforia SDK is useful as a trigger for augmented reality. The working method of the FAST algorithm is to examine each pixel in an image and determine whether the pixel is an interest point (corner) or not. The count used from the example pixel is tested compared with sixteen pixels around it then determines four points. From these four points, if there are at least three darker or brighter ones, the example pixel that is in the middle is an angle. In Vuforia pixels, which is an interest point, it is called features. The use of images as markers must have many features, contrast images, and smooth distribution of features so that markers having a high augmentable rating will make it easier for Vuforia to detect images. The FAST algorithm performs matching features that exist in the target image with the database. Then the application will render 3D objects. If the detection of a suitable target image will render the 3D object of the house. The results of visualizing the house in 3D are easier to explain the original appearance of the house compared to the appearance of the photo. This application facilitates sales marketing as an explanation to prospective customers who are confused about the original description of the house both from outside the home and inside Figure 9. Display of the main menu Figure 10. Display of augmented reality after marker detected
  • 8. TELKOMNIKA Telecommun Comput El Control ๏ฒ Augmented reality using features accelerated segment test for property catalogue (Rudy Setyadi) 147 the house and by using the home tour menu prospective customers can feel the experience of going around the house in animation. REFERENCES [1] N. Wickramaarachchi, โ€œDeterminants of Rental Value for Residential Properties: A Land Ownerโ€™s Perspective for Boarding Homes,โ€ Built-Environment Sri Lanka, vol. 12, no. 1, pp. 10โ€“22, 2016. [2] L. Mauliani and W. Sudarwati, โ€œPengaruh Modul Besaran Ruang Terhadap Tata Ruang Rumah Sangat Sederhana,โ€ NALARs, vol. 17, no. 2, pp. 135โ€“144, 2018. [3] T. H. Kusuma, โ€œAnalysis of Factors Affecting House Ownership in Indonesia,โ€ Am. Res. J. Bus. Manag., vol. 4, no. 1, pp. 1โ€“12, 2018. [4] F. T. Maoludyo and A. Aprianingsih, โ€œFactors Influencing Consumer Buying Intention for Housing Unit in Depok,โ€ J. Bus. Manag., vol. 4, no. 4, pp. 484โ€“493, 2015. [5] Y. S. Sari, โ€œAnalysis and Design of Information System Cash Purchase of Jelita Sprey with Object Oriented Methodology,โ€ vol. 7, no. 7, pp. 45โ€“57, 2018. [6] Aswin and Syaharuddin, โ€œPengaruh Biaya Promosi Terhadap Peningkatan Penjualan Rumah Pada Perumahan Grand Aroepala Di Makassar,โ€ J. Iqtisaduna, vol. 1, no. 2, pp. 1โ€“17, 2015. [7] M. Ozdemir, C. Sahin, S. Arcagok, and M. K. Demir, โ€œThe Effect of Augmented Reality Applications in the Learning Process: A MetaAnalysis Study,โ€ Eurasian J. Educ. Res., vol. 18, no. April, pp. 165โ€“186, 2018. [8] B. Arifitama, Panduan Mudah Membuat Augmented Reality, 1st ed. Yogyakarta: Andi, 2017. [9] V. D. Deolekar and P. M. Deshmukh, โ€œCase Study of Augmented Reality Applications in Medical Field,โ€ Int. J. Trend Sci. Res. Dev., vol. 2, no. 4, pp. 2691โ€“2694, 2018. [10] A. H. Safar, A. A. Al-Jafar, and Z. H. Al-Yousefi, โ€œThe Effectiveness of Using Augmented Reality Apps in Teaching the English Alphabet to Kindergarten Children: A Case Study in the State of Kuwait,โ€ Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 417โ€“440, 2017. [11] X. You, W. Zhang, M. Ma, C. Deng, and J. Yang, โ€œSurvey on Urban Warfare Augmented Reality,โ€ ISPRS Int. J. Geo-Information, vol. 7, no. 2, pp. 1โ€“16, 2018. [12] Y. A. Sekhavat, โ€œKioskAR: An Augmented Reality Game as a New Business Model to Present Artworks,โ€ Int. J. Comput. Games Technol., vol. 2016, pp. 1โ€“12, 2016. [13] D. Sahin and A. Togay, โ€œAugmented Reality Applications in Product Design Process,โ€ New Trends Issues Proc. Humanit. Soc. Sci., vol. 2, no. 1, pp. 115โ€“125, 2017. [14] E. Setiawan, U. Syaripudin, and Y. A. Gerhana, โ€œImplementasi Teknologi Augmented Reality pada Buku Panduan Wudhu Berbasis Mobile Android,โ€ J. Online Inform., vol. 1, no. 1, pp. 28โ€“33, 2018. [15] D. Amin and S. Govilkar, โ€œComparative Study of Augmented Reality SDKโ€™s,โ€ Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 10โ€“26, 2015. [16] H. Vitono, H. Nasution, and H. Anra, โ€œImplementasi Markerless Augmented Reality Sebagai Media Informasi Koleksi Museum Berbasis Android,โ€ J. Sist. dan Teknol. Inf., vol. 2, no. 4, pp. 239โ€“245, 2016. [17] F. Zuli, โ€œRancang Bangun Augmented Dan Virtual Reality Menggunakan Algoritma Fast Sebagai Media Informasi 3D Di Universitas Satya Negara Indonesia,โ€ J. Algoritm. Log. dan Komputasi, vol. 1, no. 2, pp. 94โ€“104, 2018. [18] N. O. Adiwijaya, Y. Wahyu, and C. P. Antonius, โ€œImplementasi Augmented Reality Untuk Brosur Interaktif Dengan Metode FAST Corner Detection (in bahasa: Augmented Reality Implementation for Interactive Brochures with the FAST Corner Detection Method),โ€ in Semnastikom, pp. 598โ€“606, 2016. [19] E. R. Nainggolan et al., โ€œThe Implementation of Augmented Reality as Learning Media in Introducing Animals for Early Childhood Education,โ€ The 6th International Conference on Cyber and IT Service Management (CITSM 2018), 2018. [20] S. Nurajizah, โ€œImplementasi Multimedia Development Life Cycle Pada Aplikasi Pengenalan Lagu Anak-Anak (in Bahasa: Implementation of Multimedia Development Life Cycle in Children's Song Recognition Application),โ€ J. PROSISKO, vol. 3, no. 2, pp. 14โ€“19, 2016. [21] M. Mustika, E. P. A. Sugara, and M. Pratiwi, โ€œPengembangan Media Pembelajaran Interaktif dengan Menggunakan Metode Multimedia Development Life Cycle (in bahasa: Development of Interactive Learning Media Using the Multimedia Development Life Cycle Method),โ€ J. Online Inform., vol. 2, no. 2, p. 121, 2018. [22] J. Huang, G. Zhou, X. Zhou, and R. Zhang, โ€œA New FPGA Architecture of FAST and BRIEF Algorithm for On-board Corner Detection and Matching,โ€ Sensors, vol. 18, no. 4, pp. 1โ€“17, 2018. [23] A. A. Karim and E. F. Nasser, โ€œImprovement of Corner Detection Algorithms (Harris , FAST and SUSAN) Based on Reduction of Features Space and Complexity Time,โ€ Engineering Technology Journal, vol. 35, no. 2, pp. 112โ€“118, 2017. [24] L. Yu, Z. Yu, and Y. Gong, โ€œAn Improved ORB Algorithm of Extracting and Matching Features,โ€ International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 8, no. 5, pp. 117โ€“126, 2015. [25] E. Mueggler and D. Scaramuzza, โ€œFast Event-based Corner Detection,โ€ Br. Mach. Vis. Conf., vol. 1, pp. 1โ€“11, 2017.