The document discusses different techniques for topic modeling of documents, including TF-IDF weighting and cosine similarity. It proposes a semi-supervised approach that uses predefined topics from Prismatic to train an LDA model on Wikipedia articles. This model classifies news articles into topics. The accuracy is improved by redistributing term weights based on their relevance within topic clusters rather than just document frequency. An experiment on over 5000 news articles found that the combined weighting approach outperformed TF-IDF alone on articles with multiple topics or limited content.