A TOOL FOR RANKING ARGUMENTS
THROUGH
VOTING-GAMES POWER INDEXES
Stefano Bistarelli, Francesco Faloci,
Francesco Santini and Carlo Taticchi
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
INDEX
▸ Argumentation Theory
▸ Argumentation Semantics
▸ Power Indexes
▸ Definitions
▸ SV-based semantics
▸ Description + Example
▸ Conclusion
2
ConArg
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
ABSTRACT ARGUMENTATION FRAMEWORKS1
3
a b c d e
1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2):321–357.
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
EXTENSION-BASED SEMANTICS
4
a b c d e
ADM = {{}, {a}, {c}, {d}, {a, c}, {a, d}}
CF = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
STA = {{a,d}}
COM = {{a}, {a, c}, {a, d}}
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
LABELLING-BASED SEMANTICS2
5
a b c d e
2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
LABELLING-BASED SEMANTICS2
6
a b c d e
IN if it is attacked only by OUT arguments
OUT if it is attacked by at least an IN argument
UNDEC otherwise
2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 7
a b c d e
WHICH IS THE BEST?
LABELLING-BASED SEMANTICS2
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
RANKING-BASED SEMANTICS3
▸ Transforms an Argumentation Framework into a ranking
▸ Criteria: direct attacks, lengths of the incoming paths, rewards
▸ Good properties
8
3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147.
≻a d ≻c ≻e ≻ b
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
▸ Abstraction
▸ Independence
▸ Void Precedence
▸ Self-contradiction
▸ Cardinality Precedence
RANKING-BASED SEMANTICS - PROPERTIES4
▸ Quality Precedence
▸ Counter-Transitivity
▸ Strict Counter-Transitivity
▸ Defense Precedence
▸ Non-attacked Equivalence
9
4Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, Nicolas Maudet. A Comparative Study of Ranking-Based Semantics for Abstract
Argumentation. AAAI 2016: 914-920.
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
POWER INDEXES
▸ Shapley Value
▸ Banzhaf Index
▸ Deegan-Packel
▸ Johnstone
10
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
▸ Banzhaf Index
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
βi(v) =
1
2|N|−1 ∑
S ⊆ N ∖ {i}
(v(S ∪ {i}) − v(S))
▸ Shapley Value
POWER INDEXES
11
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
vI
σ,F(S) =
{
1, if S ∈ in(Lσ)
0, if otherwise
RANKING FUNCTIONS
12
a b c d e
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
vI
σ,F(S) =
{
1, if S ∈ in(Lσ)
0, if otherwise
vO
σ,F(S) =
{
1, if S ∈ out(Lσ)
0, if otherwise
RANKING FUNCTIONS
13
a b c d e
In the event of a tie
ConArg
www.dmi.unipg.it/conarg
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
SV-BASED SEMANTICS - PROPERTIES
15
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
SV-BASED SEMANTICS - PROPERTIES
16
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
SV-BASED SEMANTICS - PROPERTIES
17
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
SV-BASED SEMANTICS - PROPERTIES
18
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
SV-BASED SEMANTICS - PROPERTIES
19
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
CONCLUSION
20
▸ Tool available at www.dmi.unipg.it/conarg
▸ Ranking-based semantics
• Shapley Value
• Banzhaf Index
• Deegan-Packel
• Johnstone
A Tool For Ranking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019
NEXTCONCLUSION
21
▸ Understand the differences
between Power Indexes
▸ Capture global properties:
• structure of the AF
• full attacking paths
▸ Tool available at www.dmi.unipg.it/conarg
▸ Ranking-based semantics
• Shapley Value
• Banzhaf Index
• Deegan-Packel
• Johnstone
A TOOL FOR RANKING ARGUMENTS
THROUGH
VOTING-GAMES POWER INDEXES
Thanks for your attention!

A Tool For Ranking Arguments Through Voting-Games Power Indexes

  • 1.
    A TOOL FORRANKING ARGUMENTS THROUGH VOTING-GAMES POWER INDEXES Stefano Bistarelli, Francesco Faloci, Francesco Santini and Carlo Taticchi
  • 2.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 INDEX ▸ Argumentation Theory ▸ Argumentation Semantics ▸ Power Indexes ▸ Definitions ▸ SV-based semantics ▸ Description + Example ▸ Conclusion 2 ConArg
  • 3.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 ABSTRACT ARGUMENTATION FRAMEWORKS1 3 a b c d e 1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357.
  • 4.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 EXTENSION-BASED SEMANTICS 4 a b c d e ADM = {{}, {a}, {c}, {d}, {a, c}, {a, d}} CF = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} STA = {{a,d}} COM = {{a}, {a, c}, {a, d}}
  • 5.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 LABELLING-BASED SEMANTICS2 5 a b c d e 2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
  • 6.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 LABELLING-BASED SEMANTICS2 6 a b c d e IN if it is attacked only by OUT arguments OUT if it is attacked by at least an IN argument UNDEC otherwise 2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
  • 7.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 7 a b c d e WHICH IS THE BEST? LABELLING-BASED SEMANTICS2
  • 8.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 RANKING-BASED SEMANTICS3 ▸ Transforms an Argumentation Framework into a ranking ▸ Criteria: direct attacks, lengths of the incoming paths, rewards ▸ Good properties 8 3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147. ≻a d ≻c ≻e ≻ b
  • 9.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 ▸ Abstraction ▸ Independence ▸ Void Precedence ▸ Self-contradiction ▸ Cardinality Precedence RANKING-BASED SEMANTICS - PROPERTIES4 ▸ Quality Precedence ▸ Counter-Transitivity ▸ Strict Counter-Transitivity ▸ Defense Precedence ▸ Non-attacked Equivalence 9 4Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, Nicolas Maudet. A Comparative Study of Ranking-Based Semantics for Abstract Argumentation. AAAI 2016: 914-920.
  • 10.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 POWER INDEXES ▸ Shapley Value ▸ Banzhaf Index ▸ Deegan-Packel ▸ Johnstone 10
  • 11.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 ▸ Banzhaf Index ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) βi(v) = 1 2|N|−1 ∑ S ⊆ N ∖ {i} (v(S ∪ {i}) − v(S)) ▸ Shapley Value POWER INDEXES 11
  • 12.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 vI σ,F(S) = { 1, if S ∈ in(Lσ) 0, if otherwise RANKING FUNCTIONS 12 a b c d e
  • 13.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 vI σ,F(S) = { 1, if S ∈ in(Lσ) 0, if otherwise vO σ,F(S) = { 1, if S ∈ out(Lσ) 0, if otherwise RANKING FUNCTIONS 13 a b c d e In the event of a tie
  • 14.
  • 15.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 SV-BASED SEMANTICS - PROPERTIES 15
  • 16.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 SV-BASED SEMANTICS - PROPERTIES 16
  • 17.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 SV-BASED SEMANTICS - PROPERTIES 17
  • 18.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 SV-BASED SEMANTICS - PROPERTIES 18
  • 19.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 SV-BASED SEMANTICS - PROPERTIES 19
  • 20.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 CONCLUSION 20 ▸ Tool available at www.dmi.unipg.it/conarg ▸ Ranking-based semantics • Shapley Value • Banzhaf Index • Deegan-Packel • Johnstone
  • 21.
    A Tool ForRanking Arguments Through Voting-Games Power IndexesCarlo Taticchi — June 20, 2019 NEXTCONCLUSION 21 ▸ Understand the differences between Power Indexes ▸ Capture global properties: • structure of the AF • full attacking paths ▸ Tool available at www.dmi.unipg.it/conarg ▸ Ranking-based semantics • Shapley Value • Banzhaf Index • Deegan-Packel • Johnstone
  • 22.
    A TOOL FORRANKING ARGUMENTS THROUGH VOTING-GAMES POWER INDEXES Thanks for your attention!