The Economics of Non-Fungible Tokens
Nicola Borri Yukun Liu Aleh Tsyvinski
Luiss Rochester Simon Yale
Algorand Fintech Lab kick-off
September 15, 2022
Introduction Data & Methodology Exposures Return Predictability Conclusion
This Paper
• Understand the returns of the overall NFT market
• Construct a NFT index
• Study the properties of the index
1
Introduction Data & Methodology Exposures Return Predictability Conclusion
Results Preview
• Repeat sales regression method (RSR)
• 2.5% average weekly return, 19.2% volatility
• 0.939 Sharpe ratio
• Exposures
• Cryptocurrency market: some
• Traditional asset market: no much
• Time-series predictability
• Volatility
• Valuation ratio
• Cross-section predictability
• Size/masterpiece effect
• Reversal effect
2
Data and Methodology
Introduction Data & Methodology Exposures Return Predictability Conclusion
Data
• Major exchanges:
• CryptoKitties
• Gods Unchained
• Decentraland
• OpenSea
• Atomic
• Cross-checked with blockchain
• Aggregate to weekly data
• Trades in ETH, WETH, MANA, USD
3
Introduction Data & Methodology Exposures Return Predictability Conclusion
Repeat Sales Regression Method (I/II)
• There are T time periods and sales can occur in any of the periods from 0
to T. We denote t as the subscript for the time period (in our baseline
specification, a time period is a week).
• For a pair of sales of a given NFT i, prices and the NFT market index are
assumed to be related as in the following equation:
Pit0
Pit
=
Bt0
Bt
Uitt0
where Pit is the transaction price of NFT i at time period t.
• For a pair of sales, t is the time at the purchasing transaction and t0
is the
time at the sale transaction, and t0
> t. Bt is the general NFT market price
index at time t and Uitt0 is the multiplicative error term for the price pair as
discussed above.
4
Introduction Data & Methodology Exposures Return Predictability Conclusion
Repeat Sales Regression Method (II/II)
The model can then be converted to the logged scale, which is the basis of the
estimation:
rit0t = pit0 − pit = bt0 − bt + uitt0
5
Introduction Data & Methodology Exposures Return Predictability Conclusion
Why RSR?
• Mean/Median/floor price
• Hedonic regression
• Repeat sales regression
6
Introduction Data & Methodology Exposures Return Predictability Conclusion
Explanatory Power
Full Sample CryptoKitties CryptoPunks
R-squared 0.285 0.554 0.659
Observations 1,286,314 63,233 7,054
Bored Ape Sup Ducks Decentraland
R-squared 0.893 0.863 0.486
Observations 10,272 3,022 11,477
7
Introduction Data & Methodology Exposures Return Predictability Conclusion
NFT Market Index
8
Introduction Data & Methodology Exposures Return Predictability Conclusion
Some Collection Indices
9
Introduction Data & Methodology Exposures Return Predictability Conclusion
Summary Statistics
Panel A Mean SD Median Skewness Kurtosis 10% 90% SR (annual)
NFT 0.025 0.192 0.024 1.098 7.732 -0.195 0.237 0.939
NFTH 0.025 0.195 0.021 1.062 7.198 -0.197 0.254 0.925
CMKTRF 0.011 0.103 0.005 0.083 4.119 -0.122 0.129 0.799
MKTRF 0.003 0.025 0.007 -1.164 7.243 -0.025 0.026 0.931
Panel B NFT NFTH NFT NFTH
2018Q1 -2.69% -2.60% 2020Q1 0.01% 0.26%
2018Q2 -3.03% -2.72% 2020Q2 6.11% 6.15%
2018Q3 4.36% 4.42% 2020Q3 8.02% 8.17%
2018Q4 -1.63% -1.41% 2020Q4 2.87% 2.93%
2019Q1 1.76% 1.76% 2021Q1 12.91% 12.91%
2019Q2 1.06% 1.31% 2021Q2 -1.09% -1.19%
2019Q3 -1.97% -1.85% 2021Q3 15.38% 15.22%
2019Q4 -0.13% -0.14% 2021Q4 -2.81% -2.90%
10
Exposures of NFT Market
Introduction Data & Methodology Exposures Return Predictability Conclusion
Cryptocurrency Market
(1) (2) (3) (4)
RNFT
− Rf
RNFT
− Rf
RNFT
− Rf
RNFT
− Rf
CMKTRF 0.789*** 0.788*** 0.851*** 0.853***
(7.349) (7.314) (7.407) (7.396)
CSIZE -0.009 -0.012
(-0.477) (-0.649)
CMOM -0.024 -0.018
(-0.298) (-0.219)
CVALUE -0.275 -0.288
(-1.495) (-1.547)
α 0.012 0.013 0.017 0.018
(1.111) (1.171) (1.443) (1.519)
R-squared 0.213 0.215 0.222 0.225
11
Introduction Data & Methodology Exposures Return Predictability Conclusion
Traditional Asset Market
MKTRF 1.359** 1.368** 1.417** 1.472** 1.480**
(2.537) (2.498) (2.592) (2.565) (2.585)
SMB -0.074 0.083 -0.425 -0.146
(-0.082) (0.092) (-0.399) (-0.134)
HML 1.356** 2.142*** 1.388 2.049*
(2.212) (2.705) (1.518) (1.965)
MOM 1.037 0.912
(1.560) (1.311)
RMW -1.107 -0.675
(-0.776) (-0.462)
CMA 1.296 0.860
(0.694) (0.454)
α 0.021 0.023* 0.024* 0.024* 0.024*
(1.561) (1.722) (1.817) (1.761) (1.812)
R-squared 0.030 0.056 0.067 0.061 0.069 12
Introduction Data & Methodology Exposures Return Predictability Conclusion
Traditional Asset Market
Gold 0.906
(1.325)
BBG Commodity 1.861***
(2.895)
Dollar -1.821
(-1.077)
Carry 2.707
(1.583)
α 0.023* 0.024* 0.025* 0.025*
(1.757) (1.815) (1.869) (1.855)
R-squared 0.008 0.039 0.006 0.012
13
Introduction Data & Methodology Exposures Return Predictability Conclusion
NFT Coins
RCoins
− Rf
RCoins
− Rf
RNFT
− Rf
0.333*** 0.146**
(5.408) (2.105)
CMKTRF 0.737***
(6.250)
α 0.017 0.019*
(1.419) (1.729)
R-squared 0.125 0.263
RCoins
− Rf
+1 +2 +3 +4 +5 +6
RNFT
− Rf
0.229*** 0.330** 0.328 0.311 0.297 0.391
(3.077) (2.553) (1.585) (1.239) (1.064) (1.042)
CMKTRF -0.239 -0.012 0.144 0.406 0.743 0.810
(-1.625) (-0.053) (0.404) (1.139) (1.359) (1.200)
R-squared 0.042 0.042 0.028 0.028 0.031 0.027 14
Time-Series Return Predictability
Introduction Data & Methodology Exposures Return Predictability Conclusion
Candidates
• Volatility
• Valuation ratio: Index/Trans
• Attention
• Serial dependence: Momentum/Reversal
• Volume
15
Introduction Data & Methodology Exposures Return Predictability Conclusion
Volatility
+1 +2 +3 +4 +5 +6 +7 +8
Vol -0.045 -0.119 -0.197 -0.287 -0.368* -0.483* -0.606** -0.739**
(-0.590) (-0.875) (-1.170) (-1.510) (-1.690) (-1.906) (-2.113) (-2.346)
R-squared 0.003 0.008 0.015 0.025 0.034 0.049 0.065 0.084
• A one-standard-deviation increase in Vol → 14.8% decrease in cumulative NFT market
return at eight-week horizon
16
Introduction Data & Methodology Exposures Return Predictability Conclusion
Valuation Ratio
Panel A +1 +2 +3 +4 +5 +6 +7 +8
log (Index/Trans) -0.061*** -0.120*** -0.164*** -0.203*** -0.239*** -0.271*** -0.309*** -0.339***
(-3.698) (-3.589) (-3.272) (-3.350) (-3.591) (-3.693) (-3.846) (-3.772)
R-squared 0.071 0.124 0.152 0.177 0.206 0.228 0.255 0.269
Panel B +1 +2 +3 +4 +5 +6 +7 +8
log (Index/Trans) -0.066*** -0.122*** -0.162*** -0.196*** -0.232*** -0.262*** -0.289*** -0.307***
(-4.156) (-3.701) (-3.301) (-3.361) (-3.697) (-3.763) (-3.647) (-3.460)
Vol -0.031 -0.101 -0.176 -0.258 -0.330 -0.440 -0.561* -0.697**
(-0.435) (-0.763) (-1.043) (-1.286) (-1.385) (-1.573) (-1.771) (-2.020)
R-squared 0.084 0.138 0.168 0.198 0.234 0.263 0.285 0.297
• A one-standard-deviation increase in log (Index/Trans) → 19.1% increase in cumulative
NFT market return at five-week horizon
17
Introduction Data & Methodology Exposures Return Predictability Conclusion
Attention
Panel A +1 +2 +3 +4 +5 +6 +7 +8
GoogleNFT
0.023 0.019 0.010 0.016 0.018 0.017 0.029 0.021
(1.558) (0.688) (0.247) (0.353) (0.346) (0.288) (0.464) (0.289)
R-squared 0.010 0.003 0.001 0.001 0.001 0.001 0.002 0.001
Panel B +1 +2 +3 +4 +5 +6 +7 +8
GoogleCrypto
0.013 0.005 0.016 0.022 0.032 0.043 0.032 0.018
(0.830) (0.177) (0.380) (0.375) (0.410) (0.457) (0.305) (0.155)
R-squared 0.004 0.000 0.002 0.003 0.005 0.008 0.004 0.001
Panel C +1 +2 +3 +4 +5 +6 +7 +8
GoogleBitcoin
-0.002 0.001 0.008 0.018 0.041 0.057 0.072 0.076
(-0.139) (0.031) (0.197) (0.304) (0.581) (0.689) (0.756) (0.722)
R-squared 0.000 0.000 0.000 0.002 0.007 0.012 0.016 0.016
18
Introduction Data & Methodology Exposures Return Predictability Conclusion
Serial Dependence
+1 +2 +3 +4 +5 +6 +7 +8
RNFT
− Rf
-0.039 -0.188 -0.273 -0.346 -0.284 -0.152 -0.081 -0.122
(-0.247) (-0.614) (-0.683) (-0.718) (-0.554) (-0.287) (-0.158) (-0.240)
R-squared 0.000 0.005 0.007 0.008 0.004 0.001 0.000 0.001
19
Introduction Data & Methodology Exposures Return Predictability Conclusion
Volume
Panel A +1 +2 +3 +4 +5 +6 +7 +8
Volume 0.054*** 0.072** 0.090* 0.098 0.081 0.080 0.088 0.076
(2.901) (2.040) (1.727) (1.455) (1.019) (0.903) (0.900) (0.727)
R-squared 0.041 0.033 0.035 0.031 0.017 0.015 0.015 0.010
Panel B +1 +2 +3 +4 +5 +6 +7 +8
Volume 0.039* 0.042 0.049 0.044 0.015 0.002 -0.003 -0.025
(1.863) (1.216) (0.993) (0.734) (0.210) (0.024) (-0.038) (-0.308)
log (Index/Trans) -0.059*** -0.115*** -0.153*** -0.189*** -0.230*** -0.261*** -0.289*** -0.312***
(-3.833) (-3.579) (-3.248) (-3.333) (-3.724) (-3.823) (-3.723) (-3.540)
Vol -0.013 -0.081 -0.153 -0.237 -0.323 -0.439 -0.562* -0.708**
(-0.177) (-0.602) (-0.904) (-1.203) (-1.392) (-1.605) (-1.810) (-2.103)
R-squared 0.105 0.149 0.178 0.204 0.235 0.263 0.285 0.298
20
Cross-Sectional Return Predictability
Introduction Data & Methodology Exposures Return Predictability Conclusion
Size & Serial Dependence
• Further examine cross-sectional return predictability
• Size/masterpiece effect
• Serial dependence: Momentum/Reversal
21
Introduction Data & Methodology Exposures Return Predictability Conclusion
Size
• Size/masterpiece effect
rit0t = pit0 − pit = bt0 − bt + γ × (t0
− t) ln Pi,t + uitt0
22
Introduction Data & Methodology Exposures Return Predictability Conclusion
Size
Full Sample CryptoKitties CryptoPunks
(t0
− t) ln P -0.004*** -0.001*** -0.011**
(-10.553) (-8.904) (-2.232)
Bored Ape Sup Ducks Decentraland
(t0
− t) ln P -0.003 -0.029** -0.012***
(-0.976) (-2.415) (-21.073)
• Doubling the logged NFT purchase price is associated with a 0.4% decrease in the weekly
return (20.8% annually)
23
Introduction Data & Methodology Exposures Return Predictability Conclusion
Serial Dependence
• Testing for serial dependence
rit0t = pit0 − pit = bt0 − bt + γ (t0
− t) ri,b + uitt0
24
Introduction Data & Methodology Exposures Return Predictability Conclusion
Serial Dependence
Full Sample CryptoKitties CryptoPunks
(t0
− t) ri,t -0.014*** -0.004*** -0.108***
(-6.517) (-6.970) (-4.072)
Bored Ape Sup Ducks Decentraland
(t0
− t) ri,t -0.027*** -0.051** -0.020***
(-3.537) (-2.150) (-7.078)
• A 10% increase in average weekly return in the NFT’s previous repeat sale is associated
with an 0.14% decrease in the weekly return (7.3% annually)
25
Conclusion
Introduction Data & Methodology Exposures Return Predictability Conclusion
Conclusion
• Construct indices for the NFT market
• Overall summary statistics
• Time-series and cross-sectional predictability
26

8_borri.pdf

  • 1.
    The Economics ofNon-Fungible Tokens Nicola Borri Yukun Liu Aleh Tsyvinski Luiss Rochester Simon Yale Algorand Fintech Lab kick-off September 15, 2022
  • 2.
    Introduction Data &Methodology Exposures Return Predictability Conclusion This Paper • Understand the returns of the overall NFT market • Construct a NFT index • Study the properties of the index 1
  • 3.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Results Preview • Repeat sales regression method (RSR) • 2.5% average weekly return, 19.2% volatility • 0.939 Sharpe ratio • Exposures • Cryptocurrency market: some • Traditional asset market: no much • Time-series predictability • Volatility • Valuation ratio • Cross-section predictability • Size/masterpiece effect • Reversal effect 2
  • 4.
  • 5.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Data • Major exchanges: • CryptoKitties • Gods Unchained • Decentraland • OpenSea • Atomic • Cross-checked with blockchain • Aggregate to weekly data • Trades in ETH, WETH, MANA, USD 3
  • 6.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Repeat Sales Regression Method (I/II) • There are T time periods and sales can occur in any of the periods from 0 to T. We denote t as the subscript for the time period (in our baseline specification, a time period is a week). • For a pair of sales of a given NFT i, prices and the NFT market index are assumed to be related as in the following equation: Pit0 Pit = Bt0 Bt Uitt0 where Pit is the transaction price of NFT i at time period t. • For a pair of sales, t is the time at the purchasing transaction and t0 is the time at the sale transaction, and t0 > t. Bt is the general NFT market price index at time t and Uitt0 is the multiplicative error term for the price pair as discussed above. 4
  • 7.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Repeat Sales Regression Method (II/II) The model can then be converted to the logged scale, which is the basis of the estimation: rit0t = pit0 − pit = bt0 − bt + uitt0 5
  • 8.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Why RSR? • Mean/Median/floor price • Hedonic regression • Repeat sales regression 6
  • 9.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Explanatory Power Full Sample CryptoKitties CryptoPunks R-squared 0.285 0.554 0.659 Observations 1,286,314 63,233 7,054 Bored Ape Sup Ducks Decentraland R-squared 0.893 0.863 0.486 Observations 10,272 3,022 11,477 7
  • 10.
    Introduction Data &Methodology Exposures Return Predictability Conclusion NFT Market Index 8
  • 11.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Some Collection Indices 9
  • 12.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Summary Statistics Panel A Mean SD Median Skewness Kurtosis 10% 90% SR (annual) NFT 0.025 0.192 0.024 1.098 7.732 -0.195 0.237 0.939 NFTH 0.025 0.195 0.021 1.062 7.198 -0.197 0.254 0.925 CMKTRF 0.011 0.103 0.005 0.083 4.119 -0.122 0.129 0.799 MKTRF 0.003 0.025 0.007 -1.164 7.243 -0.025 0.026 0.931 Panel B NFT NFTH NFT NFTH 2018Q1 -2.69% -2.60% 2020Q1 0.01% 0.26% 2018Q2 -3.03% -2.72% 2020Q2 6.11% 6.15% 2018Q3 4.36% 4.42% 2020Q3 8.02% 8.17% 2018Q4 -1.63% -1.41% 2020Q4 2.87% 2.93% 2019Q1 1.76% 1.76% 2021Q1 12.91% 12.91% 2019Q2 1.06% 1.31% 2021Q2 -1.09% -1.19% 2019Q3 -1.97% -1.85% 2021Q3 15.38% 15.22% 2019Q4 -0.13% -0.14% 2021Q4 -2.81% -2.90% 10
  • 13.
  • 14.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Cryptocurrency Market (1) (2) (3) (4) RNFT − Rf RNFT − Rf RNFT − Rf RNFT − Rf CMKTRF 0.789*** 0.788*** 0.851*** 0.853*** (7.349) (7.314) (7.407) (7.396) CSIZE -0.009 -0.012 (-0.477) (-0.649) CMOM -0.024 -0.018 (-0.298) (-0.219) CVALUE -0.275 -0.288 (-1.495) (-1.547) α 0.012 0.013 0.017 0.018 (1.111) (1.171) (1.443) (1.519) R-squared 0.213 0.215 0.222 0.225 11
  • 15.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Traditional Asset Market MKTRF 1.359** 1.368** 1.417** 1.472** 1.480** (2.537) (2.498) (2.592) (2.565) (2.585) SMB -0.074 0.083 -0.425 -0.146 (-0.082) (0.092) (-0.399) (-0.134) HML 1.356** 2.142*** 1.388 2.049* (2.212) (2.705) (1.518) (1.965) MOM 1.037 0.912 (1.560) (1.311) RMW -1.107 -0.675 (-0.776) (-0.462) CMA 1.296 0.860 (0.694) (0.454) α 0.021 0.023* 0.024* 0.024* 0.024* (1.561) (1.722) (1.817) (1.761) (1.812) R-squared 0.030 0.056 0.067 0.061 0.069 12
  • 16.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Traditional Asset Market Gold 0.906 (1.325) BBG Commodity 1.861*** (2.895) Dollar -1.821 (-1.077) Carry 2.707 (1.583) α 0.023* 0.024* 0.025* 0.025* (1.757) (1.815) (1.869) (1.855) R-squared 0.008 0.039 0.006 0.012 13
  • 17.
    Introduction Data &Methodology Exposures Return Predictability Conclusion NFT Coins RCoins − Rf RCoins − Rf RNFT − Rf 0.333*** 0.146** (5.408) (2.105) CMKTRF 0.737*** (6.250) α 0.017 0.019* (1.419) (1.729) R-squared 0.125 0.263 RCoins − Rf +1 +2 +3 +4 +5 +6 RNFT − Rf 0.229*** 0.330** 0.328 0.311 0.297 0.391 (3.077) (2.553) (1.585) (1.239) (1.064) (1.042) CMKTRF -0.239 -0.012 0.144 0.406 0.743 0.810 (-1.625) (-0.053) (0.404) (1.139) (1.359) (1.200) R-squared 0.042 0.042 0.028 0.028 0.031 0.027 14
  • 18.
  • 19.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Candidates • Volatility • Valuation ratio: Index/Trans • Attention • Serial dependence: Momentum/Reversal • Volume 15
  • 20.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Volatility +1 +2 +3 +4 +5 +6 +7 +8 Vol -0.045 -0.119 -0.197 -0.287 -0.368* -0.483* -0.606** -0.739** (-0.590) (-0.875) (-1.170) (-1.510) (-1.690) (-1.906) (-2.113) (-2.346) R-squared 0.003 0.008 0.015 0.025 0.034 0.049 0.065 0.084 • A one-standard-deviation increase in Vol → 14.8% decrease in cumulative NFT market return at eight-week horizon 16
  • 21.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Valuation Ratio Panel A +1 +2 +3 +4 +5 +6 +7 +8 log (Index/Trans) -0.061*** -0.120*** -0.164*** -0.203*** -0.239*** -0.271*** -0.309*** -0.339*** (-3.698) (-3.589) (-3.272) (-3.350) (-3.591) (-3.693) (-3.846) (-3.772) R-squared 0.071 0.124 0.152 0.177 0.206 0.228 0.255 0.269 Panel B +1 +2 +3 +4 +5 +6 +7 +8 log (Index/Trans) -0.066*** -0.122*** -0.162*** -0.196*** -0.232*** -0.262*** -0.289*** -0.307*** (-4.156) (-3.701) (-3.301) (-3.361) (-3.697) (-3.763) (-3.647) (-3.460) Vol -0.031 -0.101 -0.176 -0.258 -0.330 -0.440 -0.561* -0.697** (-0.435) (-0.763) (-1.043) (-1.286) (-1.385) (-1.573) (-1.771) (-2.020) R-squared 0.084 0.138 0.168 0.198 0.234 0.263 0.285 0.297 • A one-standard-deviation increase in log (Index/Trans) → 19.1% increase in cumulative NFT market return at five-week horizon 17
  • 22.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Attention Panel A +1 +2 +3 +4 +5 +6 +7 +8 GoogleNFT 0.023 0.019 0.010 0.016 0.018 0.017 0.029 0.021 (1.558) (0.688) (0.247) (0.353) (0.346) (0.288) (0.464) (0.289) R-squared 0.010 0.003 0.001 0.001 0.001 0.001 0.002 0.001 Panel B +1 +2 +3 +4 +5 +6 +7 +8 GoogleCrypto 0.013 0.005 0.016 0.022 0.032 0.043 0.032 0.018 (0.830) (0.177) (0.380) (0.375) (0.410) (0.457) (0.305) (0.155) R-squared 0.004 0.000 0.002 0.003 0.005 0.008 0.004 0.001 Panel C +1 +2 +3 +4 +5 +6 +7 +8 GoogleBitcoin -0.002 0.001 0.008 0.018 0.041 0.057 0.072 0.076 (-0.139) (0.031) (0.197) (0.304) (0.581) (0.689) (0.756) (0.722) R-squared 0.000 0.000 0.000 0.002 0.007 0.012 0.016 0.016 18
  • 23.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Serial Dependence +1 +2 +3 +4 +5 +6 +7 +8 RNFT − Rf -0.039 -0.188 -0.273 -0.346 -0.284 -0.152 -0.081 -0.122 (-0.247) (-0.614) (-0.683) (-0.718) (-0.554) (-0.287) (-0.158) (-0.240) R-squared 0.000 0.005 0.007 0.008 0.004 0.001 0.000 0.001 19
  • 24.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Volume Panel A +1 +2 +3 +4 +5 +6 +7 +8 Volume 0.054*** 0.072** 0.090* 0.098 0.081 0.080 0.088 0.076 (2.901) (2.040) (1.727) (1.455) (1.019) (0.903) (0.900) (0.727) R-squared 0.041 0.033 0.035 0.031 0.017 0.015 0.015 0.010 Panel B +1 +2 +3 +4 +5 +6 +7 +8 Volume 0.039* 0.042 0.049 0.044 0.015 0.002 -0.003 -0.025 (1.863) (1.216) (0.993) (0.734) (0.210) (0.024) (-0.038) (-0.308) log (Index/Trans) -0.059*** -0.115*** -0.153*** -0.189*** -0.230*** -0.261*** -0.289*** -0.312*** (-3.833) (-3.579) (-3.248) (-3.333) (-3.724) (-3.823) (-3.723) (-3.540) Vol -0.013 -0.081 -0.153 -0.237 -0.323 -0.439 -0.562* -0.708** (-0.177) (-0.602) (-0.904) (-1.203) (-1.392) (-1.605) (-1.810) (-2.103) R-squared 0.105 0.149 0.178 0.204 0.235 0.263 0.285 0.298 20
  • 25.
  • 26.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Size & Serial Dependence • Further examine cross-sectional return predictability • Size/masterpiece effect • Serial dependence: Momentum/Reversal 21
  • 27.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Size • Size/masterpiece effect rit0t = pit0 − pit = bt0 − bt + γ × (t0 − t) ln Pi,t + uitt0 22
  • 28.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Size Full Sample CryptoKitties CryptoPunks (t0 − t) ln P -0.004*** -0.001*** -0.011** (-10.553) (-8.904) (-2.232) Bored Ape Sup Ducks Decentraland (t0 − t) ln P -0.003 -0.029** -0.012*** (-0.976) (-2.415) (-21.073) • Doubling the logged NFT purchase price is associated with a 0.4% decrease in the weekly return (20.8% annually) 23
  • 29.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Serial Dependence • Testing for serial dependence rit0t = pit0 − pit = bt0 − bt + γ (t0 − t) ri,b + uitt0 24
  • 30.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Serial Dependence Full Sample CryptoKitties CryptoPunks (t0 − t) ri,t -0.014*** -0.004*** -0.108*** (-6.517) (-6.970) (-4.072) Bored Ape Sup Ducks Decentraland (t0 − t) ri,t -0.027*** -0.051** -0.020*** (-3.537) (-2.150) (-7.078) • A 10% increase in average weekly return in the NFT’s previous repeat sale is associated with an 0.14% decrease in the weekly return (7.3% annually) 25
  • 31.
  • 32.
    Introduction Data &Methodology Exposures Return Predictability Conclusion Conclusion • Construct indices for the NFT market • Overall summary statistics • Time-series and cross-sectional predictability 26