Fibonacci Sequence
ROSANNE U.DIADULA
Course Instructor
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY
SECOND SEMESTER A.Y. 2024 - 2025
F IB O N A C C I S EQ U E N C E
2.
FIBONACCI SEQUENCE
DEFINITION
The FibonacciSequence is a series of numbers where each term is the sum of
the two preceding ones.
• Defined as 𝐹1 = 1, 𝐹2 = 1
• 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 3
The sequence starts at 1, 1, 2, 3, 5, 8, 13, …
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
3.
FIBONACCI SEQUENCE
DEFINITION
The FibonacciSequence is the series of numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34,…
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
The next number is found by adding up the two numbers before it:
the 2 is found by adding the two numbers before it (1 + 1),
the 3 is found by adding the two numbers before it (1 + 2),
the 5 is (2 + 3), and so on!
4.
FIBONACCI SEQUENCE
DEFINITION
RO SANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
𝒏 = 0 1 2 3 4 5 6 7 8 9 10 11 𝟏𝟐 𝟏𝟑 𝟏𝟒 …
𝐹𝑛 0 1 1 2 3 5 8 13 21 34 55 89 11 233 377 …
The rule is 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2
where 𝐹𝑛 is term number ‘n’
𝐹𝑛−1 is the previous term (𝑛 − 1)
𝐹𝑛−2 is the term before that (𝑛 − 2)
5.
FIBONACCI SEQUENCE
DEFINITION
RO SANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
𝒏 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 …
𝐹𝑛 0 1 1 2 3 5 8 13 21 34 55 89 11 233 377 …
𝑨 𝑩
𝑩
𝑨
2 3 1.5
3 5 1.6666666 …
5 8 1.6
8 13 1.625
… … …
144 233 1.618055556 …
233 377 1.618025751 …
… … …
When we take any two successive Fibonacci
numbers, their ratio is very close to the
Golden Ratio “𝜑” which is approximately
1.618034…
6.
USING THE GOLDENRATIO TO CALCULATE FIBONACCI NUMBERS
Formula
𝐹𝑛 =
𝜑𝑛 − 1 − 𝜑 𝑛
5
where 𝜑 ≈ 1.618034…
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
7.
USING BINET’S FORMULATO CALCULATE FIBONACCI NUMBERS
Formula
𝐹𝑛 =
1 + 5
𝑛
− 1 − 5
𝑛
2𝑛 5
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
8.
FIBONACCI SEQUENCE
RO SANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
EXAMPLES:
1. Find 𝐹6.
𝐹𝑛 =
𝜑𝑛
− 1 − 𝜑 𝑛
5
𝐹6 =
(1.618034)6
− 1 − 1.618034 6
5
𝐹6 = 8.00000033
9.
FIBONACCI SEQUENCE
RO SANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
EXAMPLES:
2. 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 8?
𝐼𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒 8 𝑡𝑖𝑚𝑒𝑠 𝜑.
8𝜑 = 8 × 1.618034 …
= 12.94427 …
= 13
10.
FIBONACCI SEQUENCE
RO SANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
EXAMPLES:
2. 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 8?
𝐼𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒 8 𝑡𝑖𝑚𝑒𝑠 𝜑.
8𝜑 = 8 × 1.618034 …
= 12.94427 …
= 13
11.
QUIZ
Answer completely.
1. Let𝐹𝑛 be the nth term of the Fibonacci sequence with 𝐹1 = 1, 𝐹2 = 1, 𝐹3 =
2, and so on.
a. Find 𝐹10, 𝐹23, 𝑎𝑛𝑑 𝐹30.
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E
2. If 𝐹22 = 17,711 and 𝐹24 = 46,368, what is 𝐹23?
12.
IMPORTANT NOTICE
For ClassroomUse Only
This material is intended for classroom use only. Please do not
reproduce without permission.
RO S ANNE U . DI ADUL A M110: NUMBER TH EO RY F IB O N A C C I S EQ U E N C E