Two wire-line theory
Part A
Taken from LÍNEAS DE TRANSMISIÓN by Rodolfo Neri Vela
Translated and prepared and by: Eng . Luis Carlos Gil Bernal MsC Telematics
Guided systems
Use of the main guided systems by frequency ranges 2
Two-wire line
Coaxial cable
Waveguide
microstrip line
Optical fibers
Two-wire lines theory
• One of the means of transmitting
power or information is by guided
structures.
• Guided structures serve to guide (or
direct) the propagation of energy
from the source to the load.
3
Two-wire lines theory
• Typical examples of such structures
are:
–Transmission lines,
–Waveguides and,
–Fiber optics.
• First, we will consider transmission
lines.
4
Two-wire lines theory
• Transmission lines are commonly
used in:
–power distribution (at low
frequencies) and,
–in communications (at high
frequencies).
5
Two-wire lines theory
• Various kinds of transmission lines
such as the twisted-pair and coaxial
cables (thin-net and thick-net) are
used:
–In telephony,
–in TV cable networks and,
–in computer networks.
6
Two-wire lines theory
• The source may be a hydroelectric
generator, a transmitter, or an
oscillator.
• The load may be a factory, an
antenna, or an oscilloscope,
respectively.
7
Two-wire lines theory
• Typical transmission lines include
coaxial cable, a two-wire line, a
parallel-plate or planar line, a wire
above the conducting plane, and a
microstrip line.
• Each of these lines consists of two
conductors in parallel.
8
Two-wire lines theory
9
Typical two-wire transmission lines
Two-wire lines theory
• Coaxial cables are routinely used in
electrical laboratories and in
connecting TV sets to TV antennas.
Microstrip lines are particularly
important in integrated circuits
10
General concepts
• Lines that transmit information in
Traverse Electromagnetic (TEM)
propagation mode, such as two-wire
line and coaxial, or essentially TEM,
such as microstrip, can be analyzed:
–Directly solving Maxwell's
equations (EM field theory)
–Using general circuit theory.
11
TEM propagation mode
Traverse electromagnetic propagation mode
On two-wire lines (two-wire, coaxial, microstrip, parallel
plates), the EM information is transmitted in such a way
that both E and H fields are transverse or perpendicular to
the propagation direction.
Campo
eléctrico
Campo
magnético
12
Electric
field
Magnetic
field
Propagation direction along
the line
Maxwell’s equations
Propagation of TEM mode along a two-wire line
(analysis like free space propagation).
Ez and Hz = 0
13
Conductors
Maxwell’s equations
• Depending on the region considered
between or around the conductors,
the E field can have the components
Ex and Ey, but always Ez = 0 (equal for
H), so that E and H fields can rotate,
maintaining the perpendicularity
between the two and with the
power flow P always in z direction.
14
Maxwell’s equations
• This analysis is approximate but
valid enough in practice.
• It considers conductors as perfect
and the fields as traveling only
between and around the
conductors.
15
Maxwell’s equations
• Being rigorous, it would be
necessary to calculate, according to
the f of operation, the depth of
penetration of the fields within the
conductors.
• The resulting distribution of the
waves would no longer be strictly
TEM but quasi or essentially TEM.
16
Maxwell’s equations
• With current inside the conductors,
there would be a very small
component of E in the z-direction
given by (Ohm's Law):
Causes power loss
(heat)
σ: Very large conductivity → significant current
Jz: density of current
17
General circuit theory
• Is a simpler method and leads to the
same results.
• This method is preferred in
communications engineering
because it is possible to define and
use the more familiar: voltage V,
current I, and power P variables.
18
General circuit theory
The line is represented as a network of
distributed parameters: inductance L,
capacitance C, resistance R, and conductance
G, specified per unit length.
bifilar line,
coaxial cable
or microstrip
(Telephone,
amplifier,
computer, ..)
(Telephone exchange,
Antenna, printer, ..)
19
Load
Generator Evenly spaced
Calculation of parameters
• The primary parameters of the line
(L, C, R, and G) can be calculated for
every case provided that
dimensions and operation
frequency are known.
• As neither the conductors nor the
dielectric are perfect (R is added in
series and G in parallel).
20
Calculation of parameters
• Inductance (L), is a measure of the
opposition to the changes in the
amount of current in an inductor or
coil that stores energy in the
presence of a magnetic field.
21
Calculation of parameters
• Inductance is defined as the
relationship between the magnetic
flow (Φ) and the electric current
intensity (I) circulating through the
coil for several turns (N) of the
winding:
L = NΦ/I
22
Calculation of parameters
• The inductance depends on the
physical characteristics of the electric
conductor and of its length. It appears
when an electric conductor is rolled
up.
• The more turns, the more inductance.
• It increases by adding a ferrite core.
23
Calculation of parameters
• Capacitance (C) is the property of a
capacitor to oppose to any variation of
the voltage in the electrical circuit.
• Is the ability of a system to store an
electric charge. It appears between
two isolated conductors when there is
an electric potential difference
between them.
24
Calculation of parameters
• Capacitance is calculated as the ratio
between the electric charge Q on
each conductor and the electrical
potential difference V.
C = Q/V
25
Calculation of parameters
• C only depends on the physical
dimensions and geometry of the
line, while L is a function of current
distribution.
• At low frequencies, the current
flows on the surface and inside the
conductor, at very high frequencies
it goes only on the surface.
26
Calculation of parameters
• As the conductors are not perfect, it
should be considered a resistance R
in series.
• The dielectric between the
conductors is also not perfect and
should be considered a conductance
G in parallel (allows leaks or electric
arcs).
27
Calculation of parameters
Resistance
• The resistance R of the line depends
on:
–The resistivity (1/σ) of the conductor
material.
–Its geometry
–The distribution of the current
density (a function of the
frequency). 28
Calculation of parameters
Depth of penetration
• The distribution of current is a
function of the depth of penetration
of the current at the operating f,
which is given by:
μ: Permeability σ: Conductivity
Eq. 2-2
29
Calculation of parameters
Range of conductivity values σ
(siemens/meter) for insulating materials,
semiconductors, and conductors. 30
Conductivity σ for some of the main
conductors
(mohs/meter)
The reciprocal value of conductivity is called resistivity and its units are Ω/m. 31
Calculation of parameters
Conductance
• Conductance G between conductors is
also a function of the frequency and
properties of the insulating material.
• The conductivity of the dielectric
grows with the frequency of
alternating currents and produces high
losses called dielectric hysteresis
(negligible at low frequencies).
32
Dielectric hysteresis
• At high frequencies, it becomes the
biggest cause of loss in the dielectric.
• It is a feature of all solid and liquid
insulating materials.
• This property is used in industrial
applications such as microwave ovens
(very large σ).
Mica and quartz have very low hysteresis and are used as
insulators in microwave transmissions 33
Calculation of parameters
• The effects of the dielectric hysteresis
phenomenon are considered by defining
the complex permittivity:
34
Calculation of parameters
ε = εrε0
tan δ = Tangent of loss or
dissipation factor
Complex
permittivity
Real part
35
δ = Dissipation angle
Permittivity
ε = εr ε0
• εr: Relative permittivity or dielectric
constant
• ε: Permittivity of the medium
• ε0: Permittivity of free space
= 10-9/36π = 8.854x10-12 F/m
36
Values for dielectric constant or relative permittivity and loss tangent
ω =2πf
σ can be
calculated
using:
(*)
(*): Approximate values,
because both depend on
temperature and
frequency
37
Calculation of parameters
Variation of conductivity σ with frequency,
for polystyrene and Teflon
38
Calculation of parameters
Variation of the tangent of losses (tan δ) with
frequency, for polystyrene and Teflon.
39
Two-wire lines
Low frequencies
40
Two-wire lines
High frequencies
*cosh x = (ex + e-x)/2. Si a << d, aproximadamente d/a > 10, el resultado de la
operación cosh-1 (d/2a) se puede aproximar por In (d/a). 41
Coaxial Cable
Low frequencies
42
Coaxial Cable
High frequencies
43
Parallel plates (two flat conductors)
As these lines are generally used at high
frequencies, only the formulas corresponding to
that situation are given. In these expressions b >> a
is assumed.
44
Parallel plates (two flat conductors)
High frequencies
In all expressions to calculate the inductance per
unit of length, it is necessary to include the value
of the permeability of the medium μ, where
μ = μr μ0. Unless otherwise specified, μr = 1, so
that μ = μ0 = 4π x 10-7 H/m.
45
Exercise 2-2
• A bifilar line has copper conductors with
a radius equal to 2 mm. The separation
between centers is 2 cm and the
insulating material is polyethylene.
Assume that the loss tangent is constant
with frequency and find the L, C, R and G
parameters per unit length, at operating
frequencies of 1 kHz, 10 kHz and 1 MHz
46
Solution
• If the penetration depth l (ec. 2-2) is
comparable or greater than the radius of
the conductor, low-frequency
expressions are used.
• If it is small compared to the radius, high-
frequency expressions are used. For
copper, μr = 1 y σ = 5.8 x 107 S/m (See
Table 2-1).
47
Solution
48
Formula to be used
Low frequencies
High frequencies
High frequencies
Radius a
Solution
• For polyethylene, ɛr = 2.26 and tan δ =
0.2 x 10-3.
49
approximately
Solution
• For the bifilar line considered, d/a = 10,
that is, d >> a. Therefore, applying the
corresponding formulas:
• For f = 1 kHz
50
Solution
For f = 10 kHz
51
Solution
For f = 1 MHz
52
Solution
53
Conclusions
• C is independent of f, as is L (from a
certain intermediate f).
• This is inferred by observation and
comparison of the corresponding
equations for low and high
frequencies.
54
Conclusions
• R and G increase with f.
• This is because as f is higher, the film
effect of the current on the conductors is
more marked.
• The effective area through which the
current is distributed is smaller and
therefore the resistance increases in
proportion to the square root of the
working frequency.
55
Conclusions
• The increase of G with f is directly
proportional to the increase of the σ
of the dielectric due to the
phenomenon of hysteresis (it can
also be inferred by observation of
the corresponding equations).
56
Exercise 2-3
• Consider a coaxial cable designed to
operate at very high temperatures, for
example on rockets, missiles and
satellites.
• The dielectric between both copper
conductors is Teflon and the walls that
contact such dielectric are coated in
silver.
57
Exercise 2-3
• For simplicity, consider that the Teflon is
evenly distributed and that the film
current only flows through the silver
covers.
58
Internal conductor:
silver-covered copper
External conductor: silver-
covered copper inside
(where r = b)
Exercise 2-3
• Calculate L, C, R, and G parameters for
this line at 100 MHz and 1 GHz.
Solution
• First, the depth of penetration l is
estimated to confirm the validity of the
assumption that current flows on the
silver layer only.
59
Solution
The assumption made is correct
60
silver
Solution
• For Teflon ɛr = 2.1 and tan δ = 0.3 x10-3,
then the approximate conductivity of the
dielectric at the specified frequencies is:
61
Solution
• The L, R, C, and G parameters for high
frequency are now calculated.
62
Solution
63
Solution
Results:
64
Suggested exercise
• An internal telephone line used to connect the
phone box to the outside network, consists of
two parallel copper conductors with a
diameter of 0.60 mm. The separation between
the conductor centers is 2.5 mm and the
insulating material between the two is
polyethylene. Calculate the L, C, R, and G
parameters per unit length at a frequency of 3
kHz.
[L = 942nH/m, C = 30 pF/m, R = 122 mΩ/m, G = 112 pƱ/m].
65
General equation of a
transmission line
Introduction
• Knowing the basic parameters of a
line it is possible to determine the
relationship between the voltage
and current waves that travel along
it, from the generator to the load, as
well as the speed with which they do
so.
67
A transmission line with distributed
parameters
The analysis considers that these parameters
are evenly distributed along the entire length of
the cables that make up the line.
R L
G C
R L
68
Distributed parameters
• The transmission line with
distributed parameters can be
represented by an equivalent circuit
composed of many resistors and
inductances in series and many
conductances and capacitances in
parallel.
69
Equivalent circuit for line analysis
Both the upper and the lower wires have their
own resistance and inductance, but it is more
common, for simplicity, to represent the line by
its equivalent circuit. 70
Equivalent circuit
• There are other possible
representations, such as the
equivalent T circuit or the π circuit,
depending on how C and G are
considered located in each section.
• Any of these equivalent circuits will
lead to the same mathematical
expressions.
71
Equivalent circuit of a very small
section
The numerical value of each parameter is
equal to the parameter per unit length
multiplied by the length of the section (Δz).
72
Equivalent circuit of a very small
section
• Current i and voltage v are functions of
both distance z and time t, so that at the
end of the section considered there are
increases in current and voltage.
• If Δz is made to tend to zero (Δz → 0),
the same symmetry and results are
obtained as with an equivalent T or π
circuit.
73
Expressions for i and v
• From the figure we obtain:
Simplifying ①
②
74
Expressions for i and v
Deriving with
respect to z
Deriving with
respect to t
③
④
Replacing ② and ④ in ③:
75
①
②
Expressions for i and v
• So, the differential equation that must
satisfy the voltage wave is
This equation is called the telegrapher's equation for
historical reasons.
76
Expressions for i and v
• Using the same procedure, the variable v
is eliminated and a second-degree
differential equation for the current
wave i is obtained:
77
Expressions for i and v
• If the variations of voltage and current in
relation to time are sinusoids and since
the equations are linear and of constant
coefficients, it is possible to use phasors,
replacing the voltage v(z,t) by V(z)ejwt
and current i(z,t) by I(z)ejwt.
78
Expressions for i and v
• Performing the derivatives indicated in
equations and it is obtained:
See the procedure in next two slides
79
① ②
① ②
Expressions for i and v
80
V(z)ejwt
I(z)ejwt
𝑒𝑗𝜔𝑡 𝜕𝑉 𝑧
𝜕𝑧
= − 𝑅 𝐼 𝑧 𝑒𝑗𝜔𝑡
+ 𝑗𝜔𝐿 𝐼 𝑧 𝑒𝑗𝜔𝑡
𝜕𝑉 𝑧
𝜕𝑧
= − 𝑅 𝐼 𝑧 + 𝑗𝜔𝐿 𝐼 𝑧
𝜕𝑉 𝑧
𝜕𝑧
= − 𝑅 + 𝑗𝜔𝐿 𝐼 𝑧
①
Expressions for i and v
81
V(z)ejwt
I(z)ejwt
𝑒𝑗𝜔𝑡 𝜕𝐼 𝑧
𝜕𝑧
= − 𝐺 𝑉 𝑧 𝑒𝑗𝜔𝑡
+ 𝑗𝜔𝐶 𝑉 𝑧 𝑒𝑗𝜔𝑡
𝜕𝐼 𝑧
𝜕𝑧
= − 𝐺 𝑉 𝑧 + 𝑗𝜔𝐶 𝑉 𝑧
𝜕𝐼 𝑧
𝜕𝑧
= − 𝐺 + 𝑗𝜔𝐶 𝑉 𝑧
Expressions for i and v
• Deriving the first of these equations with
respect to z and substituting from the
second, it is obtained:
82
Expressions for i and v
The general solution of that equation
is of the form:
A and B are constants to be defined and
Propagation
constant
Serial impedance
of the line (Z)
Parallel admittance
of the line (Y)
83
Expressions for i and v
• It has been seen that the parameters R,
L, G and C are not constant (they depend
on f).
• But if the line is uniform in its geometry
and composition of its materials along its
entire length (R, L, G and C independent
of z and t), they can be considered as
constant coefficients at a given
frequency. 84
Expressions for i and v
• The expressions for v(z,t) and i(z,t) from
the phasors V(z) and I(z) will be:
85
Propagation constant
• The propagation constant is a complex
number and can also be expressed as:
Attenuation
Speed of phase
change
α and β are variations that the voltage or the current
undergoes as it propagates along the line. 86
α: Attenuation constant
β : Phase constant
Propagation constant
• Units of the attenuation constant α:
nepers per meter.
• Units of the phase constant β: radians
per meter.
• However, it is more common to specify α
in decibels per meter and use the letter L
(Loss).
87
Propagation constant
• The conversion from nepers to decibels
can be done using the following ratio:
• Attenuation:
L (dB/m) = 8.686 x α (Np/m)
1 neper equal to 8.686 dB.
88
Wave attenuation
Exponential attenuation of a voltage sine
wave along a line
89
Point 1 Point 2
Expressions for i and v
• Taking the equation obtained for V(z),
, deriving it with
respect to z, and substituting it into the
phasor equation of dV/dz yields the
phasor expression for the current wave.
90
Expressions for i and v
91
𝜕𝑉 𝑧
𝜕𝑧
= −𝛾𝐴𝑒−𝛾𝑧 + 𝛾𝐵𝑒𝛾𝑧
𝜕𝑉 𝑧
𝜕𝑧
= 𝛾 −𝐴𝑒−𝛾𝑧
+ 𝐵𝑒𝛾𝑧
−>
On the other hand
Expressions for i and v
92
Replacing 𝜸 by the expression
obtained above we have:
Expressions for i and v
• Where the denominator turns out to be
an impedance which is the characteristic
impedance of the line.
Characteristic
impedance of
the line
93
Characteristic impedance Z0
• Every transmission line has its own
characteristic impedance Z0, depending
on the geometry and dimensions of the
line, as well as the operating frequency f
(ω = 2πf).
• Z0 is commonly provided by cable
manufacturers.
ω = Angular frequency 94
Characteristic impedance Z0
• There are cables with nominal
characteristic impedances such as:
–Coaxial for broadcasting and computers: 50
Ω.
–Coaxial for CATV: 75 Ω.
–Two-wire cables: 300 Ω (Rx TV or FM
antennas)
–Multipair bi-wire cables for telephony and
data: 75 Ω, 100 Ω, 150 Ω, 600 Ω, etc.
95
Characteristic impedance Z0
• So far, two new transmission line
parameters have been defined:
–Propagation constant (γ)
–Characteristic impedance (Z0).
• Z0 and γ are complex numbers and they
are a function of f and of the basic
parameters R, L, G and C.
96
Phase velocity
• It is defined as:
• In this formula, β = phase constant or
imaginary part of γ (radians/meter), and
ω is the angular frequency (rad/sec).
97
m/sec
Phase velocity
A voltage wave propagating over a lossless
transmission line from the generator to the load. 98
Phase velocity
• A line with no attenuation is assumed (α =
0), that is, the wave is not damped (γ is
purely imaginary).
• The line has a physical length given in
meters and an electrical length measured
in λs.
• λ: distance between successive points of
the wave with the same electrical phase.
99
Propagation velocity
• The value of λ depends on the frequency
(f) of oscillation and the propagation
velocity (v).
• This velocity, in turn, depends on the
characteristics of the medium through
which the wave travels (type of dielectric
between the conductors of the line).
100
Propagation velocity
• If there is air between the conductors,
the v of the wave is equal to that of the
light in free space (3x108 m/sec).
• But if the medium has a relative
dielectric constant εr > 1, then the wave
propagates with a speed less than the
light velocity.
101
Propagation velocity
• Propagation velocity:
• As the propagation velocity is reduced, λ
is also reduced, as if the wave were
compressed along the z-axis.
102
Wavelength
• This new wavelength within the lossless
propagation medium is calculated as:
• Here λ0 is the wavelength in free space
for the same frequency.
103
Phase velocity
• The above equation shows that λ and β
are inversely proportional to each other
(if one increases, the other decreases).
• So, if β = 2π/λ, by substituting it into the
equation of phase velocity:
104
Phase velocity
• vp is independent of f (if the medium is
considered lossless, α = 0) and is the
speed with which moves a point, say B,
that defines the location of a given
constant phase.
• In other words, vp is the speed at which
an imaginary point, at which the phase is
constant, moves in the direction of z.
105
Phase velocity
• For TEM propagation modes, as is the
case of the lines discussed in this chapter,
it is generally considered that α = 0 and
the propagation velocity v at which the
signal power travels is numerically equal
to vp (phase velocity).
106
Delay time
• If l is the total length of the line, the time
it takes for an arbitrary point with a given
phase to travel from the generator to
the load is equal to:
td = delay time of the line.
107
Exercise 2-4
• Find the characteristic impedance, the
attenuation constant, the phase
constant, and the phase velocity values
of the copper bifilar line from exercise 2-
2.
• If the length of the line is 1 km, how long
would it take for a signal to travel from
the generator to the opposite end?
108
Solution
The values of L, C, R and G are:
109
polyethylene
copper
Solution
• Characteristic impedance is:
• For f = 1 kHz
110
Solution
For f = 10 kHz
111
Solution
• For f = 1 MHz
112
Solution
• Propagation constant (γ):
• For f = 1 kHz
113
Solution
• For f = 10 kHz
• For f = 1 MHz
114
Solution
• The attenuation constant α, is the real
part of γ, and the phase constant, β, is
the imaginary part.
• The phase velocity can be calculated as:
For f = 1 kHz
115
Solution
• For f = 10 kHz
• For f = 1 MHz
116
Tables of results
√L/C = 183.47 Ω
f ↑ = α ↑ f ↑ = β ↑
117
Analysis of results
Characteristic impedance Z0
• As f increases, its imaginary component
tends to zero and the real part tends to
the same value as would be obtained for
a lossless line (R and G = 0), since Z0
would be equal to √L/C = 183.47 Ω.
118
Analysis of results
• Also, when increasing f, the phase
velocity vp tends to the value that the
propagation speed would have in a
medium with εr = 2.26 (polyethylene)
and without losses, since:
• Attenuation α increases with frequency.
119
Solution
• The delay time is given by:
• With l = 103 m, the following values are
obtained at the specified frequencies:
120
Lossy line
• The transmission line considered thus far
is the lossy type. In this line the
conductors comprising the line are
imperfect (σc ≠ ∞) and the dielectric in
which the conductors are embedded is
lossy (σd ≠ 0).
• We may now consider two exceptional
cases: lossless transmission line and
distortionless line.
121
Lossless transmission
line
Lossless transmission line
• In this line, conductors are considered
perfect, and it is assumed that:
σc ≈ ∞ and σd ≈ 0
• Therefore: R = G = 0 and α = 0
• Then:
σc : Conductance of conductor; σd : Conductance of dielectric 123
vp
Distortionless line
Distortionless line
• A signal normally consists of a band of
frequencies and when passing through a
dissipative line the amplitude of the
different components will be attenuated
differently, because α depends on the
frequency. This results in distortion.
125
Distortionless line
• A distortionless line is one in which the
attenuation constant α is frequency
independent while the phase constant β
is linearly dependent on frequency.
• Distortionless line results if the line
parameters are such that
126
Distortionless line
• Thus, for a distortionless line,
• Showing that α does not depend on f,
whereas β is a linear function of f.
127
Or
f: Frequency
Distortionless line
• Also,
128
or
And
vp
Distortionless line
• Note that:
• 1. The phase velocity vp is independent
of f because the phase constant β
linearly depends on f. We have shape
distortion of signals unless vp and α are
independent of f.
• 2. Formulas for vp and Z0 remain the
same as for lossless lines.
129
Distortionless line
• 3. A lossless line is also a distortionless
line, but a distortionless line is not
necessarily lossless. Although lossless
lines are desirable in power
transmission, telephone lines are
required to be distortionless.
130
Transmission Line Characteristics
131
Propagation constant Characteristic impedance
Case
General
Lossless
Distortionless
Propagation in matched
lines
Propagation in matched lines
• Consider a transmission line of infinite
length through which a voltage wave
travels, given by the first term of the
equation.
• That is to say:
133
Propagation in matched lines
The voltage wave starts from the generator
towards the load at the other end of the line
(incident voltage Vi ).
Infinite length line
134
Load at
infinity
Propagation in matched lines
• Since the line is infinite, the wave
will never reach the charge and the
conditions for a possible reflected
wave will never occur. For this
reason, the second term was omitted
from the equation:
135
Incident voltage
Reflected voltage
Propagation in matched lines
• The voltage and current of the
incident pure wave can then be
written as:
136
Propagation in matched lines
• Regardless of the attenuation α of
the line, the ratio of voltage to
current is always equal to Z0.
• This result is independent of z, so it
is the same for all points on the line.
137
Propagation in matched lines
• The progressive wave always "sees" to
the right an impedance equal to Z0.
• If at the end of a finite line of
characteristic impedance Z0, a load with
impedance also equal to Z0 is connected,
the line will behave as if it were infinite
(there will be no reflected wave).
138
Propagation in matched lines
Conclusion:
• A line of finite length terminated with
a load equal to its characteristic
impedance Z0, will deliver all available
incident power to the load.
• When this occurs, the line is said to be
matched.
139
Propagation in matched lines
Matched
line
If Z0 ≠ ZL, the line will no longer behave as
if it were infinite; it will be unmatched and
there will be a reflected wave.
Unmatched
line
140
Unmatched lines
• The total voltage wave in an unmatched
line will be given by the superposition,
for all z, of the incident wave Vi(z) and
the reflected wave, Vr(z), as expressed by
the general solution given by the
equation:
141
Unmatched lines
• Accordingly, for the total current we
will have the expression:
142
Exercise 2-5
• A signal generator is connected to a
transmission line whose characteristic
impedance is 75 Ω.
• The line is 6 meters long and the
dielectric inside it has a relative
permittivity of 2.6.
• At the end of the line is connected a load
whose input impedance is 75 Ω.
143
Exercise 2-5
• The generator has an internal resistance
of 1 Ω and an open-circuit output
voltage equal to 1.5cos(2πx108)t V.
• For this line find: a) the instantaneous
mathematical expressions for voltage
and current at any point on the line, and
b) the average power delivered to the
load.
144
Circuit
145
Iinput
Vinput
Zinput
Solution
• Since the line is matched, the impedance
seen at all points on the line is the same,
and therefore the input impedance is 75
ohms:
Zinput = 75 Ω
146
Solution
• The left side of the circuit can now be
represented as:
147
Iinput
Vinput Zin
Solution
• Where:
And considering the attenuation α negligible:
148
Solution
• Then, for any point on the line, at a
distance z to the right of the input
terminals, the voltage and current will
be:
149
Solution
• Expressions requested, as a function of
the time, for any point on the line:
150
Solution
• Thus, for example, for the specific point
where the load is, instantaneous
expressions are obtained by substituting
z = 6 m into the above equations.
• As regards the average power delivered
to the load, this must be equal to the
average input power, [considering
lossless line (α = 0)].
151
Solution
• Then, from the voltage and current
phasors:
I*(z) represents the conjugate of I(z).
152
Input impedance of a line
terminated with an
arbitrary load
Line with an arbitrary load
Line of length l terminated with an
arbitrary load at z = 0.
Load on z = 0 and generator on z = -l
154
Line with an arbitrary load
• The impedance Z seen to the right (in
the direction of the load) from any point
on the line is given by:
155
Line with an arbitrary load
• If z = ‒l, the input impedance Zi seen by
the generator to the right, will then be:
156
Line with an arbitrary load
• Now, in z = 0, where the charge ZL is
located, we have:
With:
157
Line with an arbitrary load
• The ratio B/A is called the reflection
coefficient at the point of load. It is
designated by the letter ρ and is
generally a complex quantity.
• If the numerator and denominator of the
equation for Zi are divided by Aeγl, we
get:
158
Line with an arbitrary load
• And as B/A = ρ:
• With this equation the Zi of the line is
calculated if the length, the characteristic
impedance, the propagation constant γ, and
the reflection coefficient ρ at the point
where the load is, are known.
159
Line with an arbitrary load
• Another alternative equation, depending
on the ZL instead of the reflection
coefficient, can be obtained as follows:
160
Line with an arbitrary load
• 𝑍𝑖 = 𝑍0
𝑍𝐿𝑒𝛾𝑙+𝑍0𝑒𝛾𝑙+𝑍𝐿𝑒−𝛾𝑙−𝑍0𝑒−𝛾𝑙
𝑍𝐿𝑒𝛾𝑙+𝑍0𝑒𝛾𝑙−𝑍𝐿𝑒−𝛾𝑙+𝑍0𝑒−𝛾𝑙
161
𝑍𝑖 = 𝑍0
𝑍𝐿𝑒𝛾𝑙
+ 𝑍𝐿𝑒−𝛾𝑙
+ 𝑍0𝑒𝛾𝑙
− 𝑍0𝑒−𝛾𝑙
𝑍𝐿𝑒𝛾𝑙 − 𝑍𝐿𝑒−𝛾𝑙 + 𝑍0𝑒𝛾𝑙 + 𝑍0𝑒−𝛾𝑙
Line with an arbitrary load
And dividing numerator and denominator by
2 cosh γl, we finally have:
162
Exercise 2-6
• Consider a lossless transmission line,
with paper as a dielectric (εr = 3), which
works at a frequency of 300 MHz.
• The length of the line is 10 m and its
characteristic impedance is equal to 50
Ω.
• At the end of the line is connected a load
whose impedance is 80 Ω.
163
Exercise 2-6
• Find the voltages reflection
coefficient in the load and the input
impedance of the line.
• Also calculate the impedance that
would be seen at distances of λ/2
and λ, measured from the generator
to the load.
164
Solution
The voltages reflection coefficient is
obtained by:
165
Solution
• The input impedance with l = 10 m and α
= 0, will be:
• The calculation of β will be by :
166
Solution
• Substituting the β value in the expression
for Zi:
• To calculate the impedance seen in z = ‒ l
+ λ/2 and z = ‒ l + λ, it is necessary to
know the value of λ:
167
Formula
e±jΦ = cos Φ ± j sen Φ
= 1/(cos Φ ± j sen Φ)
168
Solution
• λ0 is the λ in free space at the same
frequency of 300 MHz.
• The impedance at a distance z is given
by:
169
Solution
• Substituting the specified values of z:
170
Solution
• And
171
Solution
• Results in graphical form:
172
Solution
• The values of the three impedances are
equal due to the periodic nature of the
trigonometric functions involved in the
formulas.
• The value of Z is repeated every λ/2, instead
of every time λ is advanced, because in an
unmatched line the total wave that is formed
has a period equal to λ/2.
173
Exercise 2.18.9 (from the book)
• A lossless coaxial cable with
characteristic impedance of 75 Ω
employs a dielectric with relative
permittivity of 2.26. The cable terminates
at a resistive load of 100 Ω and works at
a frequency of 600 MHz.
174
Ejercicio 2.18.9 (Libro)
• Calculate the impedance seen at the
following points on the line: a) at the load, b)
at 10 cm before the load, c) at λ/4 before the
load, d) at λ/2 before the load, and e) at 3λ/2
before the load. [Z = 100 Ω, Z = 58.8 + j10.2
Ω, Z = 56.25 Ω, Z = 100 Ω, Z = 100 Ω].[Z = 100
Ω, Z = 58.8 + j10.2 Ω, Z = 56.25 Ω, Z = 100 Ω,
Z = 100 Ω].
175
Input impedance of a line
terminated in short
circuit.
Short-circuited line
Evaluating the equation of V(z) at the
load, where z = 0, and since the voltage
at that point is zero, we get:
V(0) = A + B = 0 → B = ‒A (ρ = ‒1)
177
Short-circuited line
• Then the expressions for V(z) and I(z) can
be rewritten as:
178
Short-circuited line
• The input impedance seen by the
generator can be obtained by
substituting z = ‒ l and taking the
traditional quotient of the two previous
relations:
179
Short-circuited line
• In practice, measuring the input
impedance of a short-circuited line
makes it possible to indirectly
measure parameters R and L of the
line.
180
Short-circuited line
• If the line is short enough, so that |γl|
<< 1, the exponentials in Zi,c.c equation
can be expanded to simplify it very
roughly:
181
Short-circuited line
• Multiplying the equations of γ and Z0 we
have:
So:
182
Input impedance of a line
terminated in open circuit.
Open-circuited line
The analysis of this case is similar to that
of a short-circuited line. At the end of the
line there will be a current equal to zero.
I(0) = (1/Z0)(A ‒ B) = 0 → A = B (ρ = 1)
184
Open-circuited line
• Then:
• The impedance seen in z = ‒l will be:
185
Open-circuited line
• Assuming again that the line has a short
length (|γl| << 1),
• Now dividing γ by Z0
186
Open-circuited line
• Therefore, the input impedance
measured at a certain angular
frequency ω for an open-circuited
short line of length l, allows to
obtain the parameters G and C of the
line.
187
Exercise 2-7
• It is desired to estimate the values of the
characteristic impedance and
propagation constant for a 1 km long
cable, at a frequency of 1 kHz.
• To this end, measurements of the input
impedance were made terminating first
the cable in open circuit and then in
short circuit.
188
Exercise 2-7
• The readings obtained were, respectively,
‒j100 Ω and j50 Ω. How much are
approximately Z0 and γ worth?
• Solution:
• At 1 kHz, in air, λ0 = 3 x 108/103 = 3x105
= 300,000 m. If α = 0 is considered, then
β0 = 2π/λ0 and:
189
Solution
• This condition is different in the cable,
because the dielectric is not air.
• However, even if β were doubled and
were worth 2β0, the condition |jβl|
would also be satisfied in the cable and
then approximations can be employed:
190
Solution
• It is concluded that R ≈ 0 and G ≈ 0, and
que:
191
Solution
• At last:
192
Obtaining Z0 from input
impedances measured on
short-circuited and open-
circuited lines.
Calculating Z0
• If the expressions for Zi c.c. and Zi c.a. are
multiplied, we obtain:
194
Calculating Z0
• This gives an expression for calculating
Z0 as a function of the measured Zi c.c.
and Zi c.a.:
195
Ejercicio 2-8
• A 20 km long telephone cable was
subjected to measurement tests with
short circuit and open circuit
terminations, at a frequency of 1.5 kHz.
• The values obtained for the input
impedance were:
Ejercicio 2-8
Assume an attenuation constant α =
247.6x10-6 Nep/m and a phase constant β
= 225 x10-6 rad/m.
From this data calculate the following:
(a) the characteristic impedance;
(b) parameters R, L, G and C of the line, at
the frequency at which the measurements
were made.
Solución
• a) Characteristic impedance:
Solución
• b) Cable parameters R, L, G, and C.
• We can use the following formulas,
which can be obtained by multiplying
and dividing the expressions for γ and Z0
successively.
Solución
• Substituting the values of Z0 and γ:
• So:
Solución
So:
Input reactance and short-
circuited and open-circuited
lossless line applications
Introduction
• In addition to being used to transmit
information, a line can also serve as
a circuit element.
• At UHF (300 MHz to 3 GHz) it is
difficult to fabricate circuit elements
with concentrated parameters, as
the λ varies between 10 cm and 1 m.
203
Introduction
• For these cases, transmission line
segments can be designed to
produce an inductive or capacitive
impedance, which can be used to
match an arbitrary load to the main
line and achieve the maximum
possible power transfer.
204
Introduction
• At these high frequencies, the losses
in a line can be considered
negligible, as far as the calculation of
Z0, γ, and of the impedance seen at
any point of the line is concerned,
since:
ωL = 2πfL >> R and ωC = 2πfC >> G
205
Z0 and γ
• Based on these considerations, the
equations of Z0 and γ reduce to:
Therefore, α ≈ 0 and Z0 is real (purely
resistive). 206
Input impedance
• As regards the input impedance seen
from the generator in the direction of
the load, the general equation reduces,
making γ = jβ, to:
General equation:
207
Input impedance
• Using the identity:
• Then, with x = 0 and y = βl:
tanh jβl = (0 + jtan βl)/(1 + 0)
= j tan βl.
208
Input impedance
• And the input impedance equation is as
follows:
where l is the total length of the line
This equation will then be used for the two special
cases in which the line ends in short circuit or open
circuit.
209
Short-circuited line
• In this case, ZL = 0 and the equation of Zi
reduces to:
210
Open-circuited line
• Now ZL = ∞ and the equation of Zi takes
the form:
211
Input reactance
• The above Zi equations show that
when a lossless line of arbitrary
length l is short-circuited or open-
circuited, the input impedance is
purely reactive (jXi).
212
Input reactance
• In either case, the reactance can be
inductive or capacitive, depending
on the value of βl, since the
functions tan(βl) and cot(βl) can take
positive or negative values.
213
Input reactance as a function of the electrical length of the
line for the two types of termination
Typical curves of the input reactance, normalized to Z0, of a line of length l terminated
in short circuit ( ) and in open circuit ( )
‒cot βl
214
Input reactance
• In practice, it is not possible to
obtain a truly open-circuited line
(infinite load impedance), since
there are radiation problems at the
open end, especially at high
frequencies, and coupling with
nearby objects.
215
Input reactance
• The input reactance of open-
circuited or short-circuited lines are
identical when their lengths differ by
an odd multiple of λ/4.
216
Input reactive impedance
Input reactive impedance of some short-circuited or open-
circuited line sections and their equivalents as components
of a circuit. 217
equivalent to
equivalent to
Input reactive impedance
218
equivalent to
equivalent to
Input reactive impedance of some short-circuited or open-
circuited line sections and their equivalents as components
of a circuit.
Exercise 2-9
• Consider a lossless line of length 0.2λ at a
certain operating frequency terminated
in short circuit.
• Its L and C parameters are 0.2 μH/m and
35 pF/m, respectively. Calculate its input
impedance.
219
Solution
• Characteristic impedance of the line:
• Input impedance:
And as λ = 2π/β:
220
Exercise 2-10
• Find the necessary length (in meters) of a
line terminated in open circuit so that at
600 MHz it presents at the input a
capacitive reactance of ‒j20 Ω.
• Consider εr = 1 and the same L and C
parameters as in the previous exercise.
221
Solution
• At 600 MHz, the wavelength is equal to
0.5 m, considering that the dielectric is
air.
• From the previous exercise, L = 0.2 μH/m
and C = 35 pF/m, so Z0 = 75.6 Ω. And
substituting:
Where (4π)l = cot-1 0.26455 → l = 10.44 cm 222
Suggested exercise
• Find the necessary length (in meters) of a
line terminated in open circuit so that at 1
GHz it presents at the input an inductive
reactance of j20 Ω. The parameters L and C
are respectively 171.5 nH/m and 35 pF/m.
Consider εr = 1 (NOTE: If the βl angle
obtained is negative, π must be added to
move it to the positive side).
223
R//8.82 cm
Unmatched lines and
standing waves
Unmatched lines and standing waves
• Formulas to calculate the input
impedance and the reflection coefficient
of an unmatched line (ZL ≠ Z0) were
previously derived as:
225
Unmatched lines and standing waves
• It was also indicated that when the
attenuation of a line is very low (few
losses) and the transmission frequency is
very high, then: ωL >> R and ωC >> G
and the expressions for Z0 and γ are
approximated as:
226
Unmatched lines and standing waves
• Henceforth, unless otherwise stated, it
will be assumed that α = 0 and that it is
transmitted at high frequencies.
• This approximation is valid in practice,
when l (length of the line) is, at most, a
few λ's and the accumulated attenuation
is very low.
227
Unmatched lines and standing waves
• With the previous considerations the
equation of the input impedance is:
This equation allows to calculate Zi and the
impedance Z(z) seen at any point of the line.
l is the distance between that point and the
load.
228
Unmatched lines and standing waves
• If ρ = 0, → matched line (ZL = Z0).
• If ρ ≠ 0, → unmatched line (ZL ≠ Z0).
• The goal of a transmission engineer is to
make ρ very small so that the power
transferred to the load is maximum.
229
Unmatched lines and standing waves
• Generally, a "coupling" is considered
acceptable if |ρ| ≤ 0.2, which delivers to
the load about 96% of the incident
power.
• We will now see what the total voltage
wave is like along an unmatched line.
230
Unmatched lines and standing waves
• The magnitude of the total voltage, for
any z can be obtained from the equation:
The reflection coefficient at load B/A = ρ is
complex and is now represented as ρv.
231
Unmatched lines and standing waves
• The reflection coefficient can then be
represented in its complex form as:
232
Unmatched lines and standing waves
• For α = 0 the magnitude of the
voltage is:
233
𝑒𝑗𝜃𝑒𝑗2𝛽𝑧 = 𝑒𝑗 2𝛽𝑧+𝜃 = cos 2𝛽𝑧 + 𝜃 + 𝑗𝑠𝑒𝑛 2𝛽𝑧 + 𝜃
Unmatched lines and standing waves
234
Real part Imaginary part
Unmatched lines and standing waves
• And finally:
• To graph this function, it is considered
that:
‒1 ≤ cos (2βz + θ) ≤ 1.
235
Unmatched lines and standing waves
• The extreme values of this function are:
• For cos (2βz + θ) = 1
• For cos (2βz + θ) = ‒1
236
Typical pattern of total voltage wave
(standing wave pattern)
Maximum
value
Minimum
value
237
Standing waves
• The total voltage wave pattern is
periodic and is called a standing
wave pattern.
• Incident and reflected wave period
= βz.
• Total wave period (superposition of
the previous two waves) = 2βz.
238
Standing waves
• If the incident wave has a wavelength λ,
the standing wave will have a
wavelength λe = λ/2.
• In the graph, points 1, 3, and 5 are of
maximum voltage, and points 2, 4, and 6
are of minimum voltage in the standing
wave.
239
Standing waves
• The location of these points depends on
θ (degree of decoupling).
• The degree of decoupling (θ) is the angle
of the reflection coefficient on the load.
240
Total current wave
• The total current wave has a similar
shape to that of voltage, but its value is
maximum when the voltage is
minimum, and vice versa.
• The expression for the standing wave of
current is:
241
Standing wave ratio
• The ratio of the maximum voltage to the
minimum voltage of the standing wave is
called the standing wave ratio (ROE or
VSWR):
VSWR: Voltage Standing Wave Ratio
242
Standing wave ratio
• The quotient of the maximum voltage
over the minimum current (both are at
the same point on the line), will be the
value of the impedance towards the
load seen at that point.
243
Standing wave ratio
• For a point where the voltage is
minimum, the current will be maximum,
and we will have:
As Z0 is real, both impedances Z|Vmax and Z|Vmin are
purely resistive. 244
Standing wave ratio
• The equation:
• allows you to calculate the magnitude of
the voltage reflection coefficient if the
VSWR is known.
• It is not required to know the absolute
value of the voltages, only their
proportion or VSWR.
245
Standing wave ratio
• The VSWR can be measured indirectly
in a laboratory with a standing wave
detector.
• It consists of a rigid coaxial line, with a
longitudinal slot at its top, through
which a small electric field (E) probe
slides.
246
Standing wave detector
The measured E is proportional to the voltage between
the line conductors. Its maximum-to-minimum ratio is
displayed on the VSWR meter. 247
Standing wave ratio
• The expression for |ρv| is:
• According to the expression:
Its phase is given by θ in the load (z = 0).
248
Reflection coefficient along the line
• It is possible to define the reflection
coefficient for other points on the line.
From the equation:
• At load (z = 0), ρv(0) = B/A = ρ and is
given by:
249
Reflection coefficient along the line
• For any value of z and with γ = jβ, ρv(z)
will be:
250
Reflection coefficient along the line
• From the above equation it follows
that the geometric place of the
voltage reflection coefficient in the
complex plane is a circle of radius
|ρv|.
• Its value is repeated every time λe =
λ/2 is advanced along the line.
251
Reflection coefficient along the line
Moving towards
the generator is
equivalent to
turning clockwise
in the complex
plane.
To rotate λe = λ/2= one round
252
Exercise 2-11
• A coaxial cable with a characteristic
impedance of 100 Ω and air as the
dielectric inside has a load of 80 + j50 Ω
connected to it .
• Obtain the reflection coefficient where
the load is, and at 25 cm measured from
the load towards the generator.
253
Exercise 2-11
• Also calculate the value of the VSWR and
the positions of the first minimum and
the first and second maximum voltages,
from the load to the generator. Indicate
these distances in centimeters.
• Consider that the operating frequency is
300 MHz.
254
Solution
• In the load, the reflection coefficient is
given by:
• The frequency is 300 MHz and λ = 1 m;
Therefore, for the standing wave, λe =
1 m/2 = 50 cm.
255
Solution
• Retroceder 25 cm, desde la carga hacia el
generador, equivale a girar media vuelta
en el plano complejo, en el sentido de las
manecillas del reloj. Por lo tanto, en este
punto, el coeficiente de reflexión sería:
256
Solution
• El VSWR está dado por:
Cálculo de la posición de los mínimos y
máximos de voltaje:
• |V(z)| es máximo cuando cos(2βz+θ) = 1,
es decir, cuando 2βz+θ = 0, -2π, …
257
Solution
• O sea:
• En donde:
(con todo en grados o en radianes)
258
Solution
• y:
• Se comprueba que entre pico y pico de
voltaje hay una distancia de 0.5λ
259
Solution
• Para calcular el primer mínimo de voltaje,
la ecuación de |V(z)| debe minimizarse.
Esto ocurre cuando 2βz + θ = ‒π, ‒3π,...
Es decir:
Donde:
260
Solution
Interpretación de los datos
261
Exercise 2-12
• Una línea de transmisión con Z0 = 100 Ω
está terminada en una carga con ZL = 120
+ j80 Ω.
• Encuentre el coeficiente de reflexión de
voltajes a lo largo de la línea en los
puntos mostrados en la figura siguiente.
262
Exercise 2-12
Solución
El punto A corresponde a la carga.
263
Solution
• El punto B se halla en z = ‒λ/4. El ángulo
del coeficiente de reflexión se obtiene:
Para el punto C: ángulo del coef. =
264
Solution
• Para el punto D:
ángulo del coef. =
• Para el punto E:
ángulo del coef. =
265
Solution
Representación en el plano complejo
Los puntos
separados λ/2
entre sí tienen el
mismo coeficiente
de reflexión y su
posición es la
misma en el plano
complejo
266
Exercise 2-13
• Determine el valor del VSWR que tendría
una línea cualquiera, sin pérdidas,
cuando al final se tuviese: a) una carga
con impedancia igual a la característica,
b) un corto circuito, y c) un circuito
abierto.
267
Solution
• Cuando ZL = Z0, la línea está acoplada y
no se refleja nada. Por lo tanto, ρv = 0.
• Cuando la línea termina en un corto
circuito, el voltaje total en ese punto vale
cero. Por lo tanto, ρv = ‒1.
• Cuando la línea termina en circuito
abierto, el voltaje total en ese punto es
máximo. Por lo tanto, ρv = +1.
268
Solution
• Sustituyendo los tres valores anteriores
de ρv en la ecuación de la ROE se
obtiene:
269
Exercise 2-14
• Grafique la forma de las ondas
estacionarias de voltaje y corriente para
una línea cualquiera sin pérdidas, cuando
ésta termina en: a) una resistencia pura
mayor que Z0, b) una resistencia pura
menor que Z0, c) un corto circuito, y d) un
circuito abierto.
270
Solution
• Partiendo de las ecuaciones para |V(z)| e
|I(z)| y tomando como referencia la
Figura en la que se representa la relación
de onda estacionaria (línea terminada en
carga compleja arbitraria) se deduce lo
siguiente:
• a) ZL = RL; Z0 = R0; RL > R0
271
Solution
• Por lo tanto, el ángulo del coeficiente de
reflexión es igual a 0° y la función de
voltaje (|V(z)|) es máxima cuando z = 0,
es decir, en la carga.
• En cambio, la corriente (|I(z)|) es mínima
en la carga.
272
Solution
• b) ZL = RL; Z0 = R0; RL < R0
• Ahora θ = ‒180° y la situación es
contraria a la del inciso a). Es decir, en la
carga se tiene corriente máxima y voltaje
mínimo.
273
Solution
• c) ZL = 0 (corto circuito)
• Aquí ρ = ‒1 = 1/180° y la situación es
similar a la del inciso b), con corriente
máxima y voltaje mínimo en la carga.
Este voltaje mínimo en la carga ahora
vale cero.
274
Solution
• d) ZL → ∞ (circuito abierto)
• Como ρ = 1 = 1 / 0° = real positivo, se
tiene algo parecido al inciso a), con
voltaje máximo y corriente mínima en la
carga.
• Esta corriente mínima vale cero.
275
Solution
Caso (a) Caso (b)
276
Solution
Caso (c) Caso (d)
277
Exercise 2-15
• Se efectuaron mediciones con una línea
rígida ranurada de Z0 = 75 Ω y terminada
en una carga compleja. El primer máximo
de voltaje se encontró a 15 cm de la
carga, y el segundo máximo se detectó al
avanzar otros 20 cm hacia el generador.
El VSWR leído fue igual a 2.5.
278
Exercise 2-15
• Encuentre: a) el valor de la impedancia
vista en el primer máximo de voltaje, b)
la posición del primer máximo de
corriente desde la carga hacia el
generador, c) la frecuencia a la que se
hicieron las mediciones, d) la magnitud
del coeficiente de reflexión de voltajes, y
e) el valor de la impedancia de la carga.
279
Solution
• a) La impedancia vista en cualquier
máximo de voltaje es real y está dada
por:
• b) En z = ‒15 cm se tiene el 1° máximo
de voltaje.
• En z = ‒15 ‒ 20 = ‒35 cm se tiene el
siguiente máximo de voltaje.
Z|Vmáx = (Z0)(VSWR) = (75)(2.5) = 187.5 Ω
280
Solution
• Centrado entre ambos máximos debe
haber un máximo de corriente, es decir,
en z = ‒15 ‒ 10 = ‒25 cm.
• Hay otro máximo de corriente hacia la
carga en z = ‒25 + 20= ‒5 cm.
• El siguiente máximo de corriente se
saldría de la línea, por lo cual la posición
pedida es z = ‒ 5 cm.
281
Solution
282
λe = λ/2
Solution
• c) La λ a la frecuencia de trabajo es el
doble de la distancia entre dos máximos
de voltaje o de corriente de la onda
estacionaria.
λ = (2)(20 cm) = 40 cm.
283
Solution
• De allí que la frecuencia a la que se
hicieron las mediciones es, considerando
aire en el interior de la línea rígida:
• d)
284
Solution
• e) La función (|V(z)|) es máxima en
z = ‒15 cm = ‒0.375λ, de modo que el
radicando también debe ser máximo. O
sea que:
• por lo tanto: ‒1.5π + θ = 0
→ θ = 270° = ‒90°.
285
Solution
286
Solution
• El coeficiente de reflexión en la carga es
entonces igual a 0.43 / ‒90°.
• La impedancia de la carga se puede
obtener:
287
Solution
La carga buscada tiene una resistencia
de 51.6 Ω y una reactancia capacitiva de
54.4 Ω.
La gráfica de la onda estacionaria de
voltaje sería como se muestra en la
gráfica izquierda de la figura. 288
Solution
• El resultado anterior puede verificarse
mediante la ecuación de ZL, prolongando
imaginariamente la gráfica de la onda
estacionaria de voltaje hasta obtener
otro máximo (gráfica derecha de la
figura), en donde la impedancia sería real
e igual a 187.5 Ω (resultado del inciso a).
289
Solution
• En la carga (z = 0) se vería una
“impedancia de entrada” dada por:
Impedancia buscada al final de la línea
real:
290
Solution
• Este resultado coincide con el hallado
anteriormente.
291
Rule
• When the load is capacitive, the
standing voltage wave is upward
where the line ends.
• This is in line with the graph and the
results obtained in the previous
exercise.
292
Rule
• On the other hand, if the load is
inductive, at the end of the line
there will be a descending voltage
wave.
293
Reflections on the generator
• El generador es la fuente original de
las ondas de voltaje y corriente que
viajan a lo largo de la línea hacia la
carga.
• El generador tiene una impedancia
interna, Zg, que se combina en serie
con la impedancia de entrada de la
línea cuando ambos se conectan.
294
Reflections on the generator
• Esta impedancia de entrada Zi será igual
a Z0 si la línea está acoplada con la carga
(ZL = Z0).
• Si no hay acoplamiento, Zi será función
de la combinación entre Z0 y ZL dada por:
295
Reflections on the generator
Línea de transmisión alimentada por un
generador Vg con impedancia interna Zg
296
Reflections on the generator
• La impedancia de entrada también se
puede calcular en función del coeficiente
de reflexión de voltajes en la carga, que
para una línea sin pérdidas toma la
forma:
297
Reflections on the generator
• En la fórmula anterior se observa que el
término ρe‒j2βl es el coeficiente de
reflexión trasladado al punto inicial de
la línea para z = ‒l.
298
Reflections on the generator
• Supóngase que una onda reflejada en la
carga (debido a que ZL ≠ Z0) se dirige de
regreso al generador.
• Si Zg (que se convierte en la nueva carga)
≠ Z0, habrá un coeficiente de reflexión en
la entrada de la línea, dando origen a una
segunda onda que se dirigirá hacia la
carga ZL, y así sucesivamente.
299
Reflections on the generator
• Este proceso podría durar
indefinidamente, y la onda estacionaria
final sería la superposición de todas las
ondas producidas.
• Este efecto se reduce en la práctica
debido a que α ≠ 0 y la amplitud de las
ondas reflejadas disminuye de acuerdo
con e‒αl en cada sentido.
300
Reflections on the generator
• Es común que el valor de Zg sea muy
cercano o igual al de Z0 (generador
acoplado con la línea).
• Esto hace que la onda reflejada en el
generador sea despreciable o casi
nula.
301
Reflections on the generator
Conclusión:
• La conexión ideal para que se le
entregue máxima potencia a la línea y no
haya reflexiones, es que Zg = Z0 = ZL.
• La potencia entregada a la línea (Pi), es
la mitad de la potencia total original, y si
α ≈ 0, la potencia entregada a la carga es
prácticamente igual a Pi.
302
La matriz de transmisión
La matriz de transmisión
• Supóngase que no hay reflexión en
el generador y que las ondas totales
de voltaje y corriente en una línea
están dadas por las ecuaciones:
304
La matriz de transmisión
• Una línea puede ser considerada
como una red de dos puertos.
305
La matriz de transmisión
• Los voltajes y corrientes evaluados
en ambos extremos serían:
306
La matriz de transmisión
• De estas cuatro ecuaciones se puede
obtener expresiones matemáticas para
las variables de entrada en función de
las variables de salida, o viceversa.
• De las primeras ecuaciones se tiene que:
307
La matriz de transmisión
• y
• Sustituyendo los valores encontrados de
A y B en las dos ecuaciones restantes:
308
La matriz de transmisión
• O sea:
• y:
Vi
309
La matriz de transmisión
• Escritas en forma matricial:
310
La matriz de transmisión
• La matriz de transmisión se simplifica
cuando α = 0, resultando:
311
𝐼𝑖 = 𝐼𝐿𝑐𝑜𝑠𝛽𝑙 + 𝑗
𝑉𝐿
𝑍0
𝑠𝑒𝑛𝛽𝑙
Identidades hiperbólicas
312
Voltajes y corrientes en función de las
variables de entrada
• También es posible obtener expresiones
para el voltaje y la corriente en cualquier
punto de la línea en función de las
variables de entrada, (Vi e Ii).
• Para esto, conviene tomar ahora z = 0 en
donde la línea comienza.
313
Voltajes y corrientes en función de las
variables de entrada
314
Voltajes y corrientes en función de las
variables de entrada
• Nuevamente, partiendo de las
ecuaciones:
Cuando z = 0 se tiene:
315
Voltajes y corrientes en función de las
variables de entrada
• Resolviendo para A y B:
• Y sustituyendo A y B:
316
Voltajes y corrientes en función de las
variables de entrada
• o usando funciones hiperbólicas:
317
Voltajes y corrientes en función de las
variables de entrada
• Para la corriente, con el mismo
procedimiento se obtiene:
318
Voltajes y corrientes en función de las
variables de entrada
• O:
319
Voltajes y corrientes en función de las
variables de entrada
• Si las pérdidas en la línea se consideran
despreciables (α = 0), entonces γ = jβ y
las ecuaciones de corriente y voltaje se
reducen a:
320
Ejercicio 2-16
• Una línea sin pérdidas con Z0 = 100 Ω
mide 1.3λ a cierta frecuencia de trabajo.
Al final se conecta una carga de 80 + j40
Ω.
• Si se sabe que el voltaje en la carga es de
3.8/‒50° V, ¿cuánto vale el voltaje al
principio de la línea?
321
Solución
donde βl = (2π/λ)(1.3λ) = 2.6π
322
Solución
• Como en la carga debe cumplirse que
VL = ILZL, entonces:
• y
323
Solución
324
Ejercicio 2.17
• Una línea sin pérdidas con Z0 = 50 Ω mide
1.2 λ a cierta frecuencia de trabajo.
• La línea es alimentada por un generador
con Vg = 15 /0° V, cuya resistencia interna
es igual a 50 Ω. Al final de la línea hay
una carga de 25 + j25 Ω.
325
Ejercicio 2.17
Encuentre:
• a) el voltaje en la entrada de la línea, b)
el voltaje en la carga, c) la relación de
onda estacionaria, d) la potencia
promedio entregada a la entrada de la
línea, y e) la potencia promedio
entregada a la carga.
326
Solución
a) La corriente de entrada es igual a:
327
Solución
• A su vez Zi puede hallarse como:
328
Solución
• Por lo tanto, el voltaje de entrada a la
línea, Vi, es:
329
Solución
• b) En la carga, el voltaje se puede
obtener (con z = 1) mediante:
330
Solución
• c) ρ y ROE:
331
Solución
• d) La potencia promedio entregada a la
entrada de la línea es igual a:
332
Solución
e) Finalmente, la potencia promedio
entregada a la carga es:
333
Solución
334
Solución
• La potencia inicial es igual a la potencia
entregada a la carga.
• Esto se obtiene aplicando el principio de
conservación de energía, ya que se
consideró que no hay pérdidas en la
línea.
• Esa potencia no es la máxima posible
porque la línea no está acoplada con la
carga.
335
Solución
• Para obtener la máxima potencia posible,
se necesitaría que ZL = 50 Ω. Bajo esta
condición, Zi sería también igual a 50 Ω y
Vi = 7.5/0° V e Ii = 0.15 /0° A.
• Por lo tanto, la potencia máxima de
entrada sería 0.5625 W, y para una línea
sin pérdidas esta potencia sería la misma
entregada en la carga.
336
Solución
• En la práctica las líneas sí tienen
pérdidas.
• De otra manera no habría que utilizar
repetidores en líneas muy largas.
• La atenuación se puede incorporar en la
solución de un problema, utilizando las
ecuaciones generales con γ = α + jβ.
337

2-Two-wire lines theory - Part A, de la teoria de trasmision de dos lineas.pdf

  • 1.
    Two wire-line theory PartA Taken from LÍNEAS DE TRANSMISIÓN by Rodolfo Neri Vela Translated and prepared and by: Eng . Luis Carlos Gil Bernal MsC Telematics
  • 2.
    Guided systems Use ofthe main guided systems by frequency ranges 2 Two-wire line Coaxial cable Waveguide microstrip line Optical fibers
  • 3.
    Two-wire lines theory •One of the means of transmitting power or information is by guided structures. • Guided structures serve to guide (or direct) the propagation of energy from the source to the load. 3
  • 4.
    Two-wire lines theory •Typical examples of such structures are: –Transmission lines, –Waveguides and, –Fiber optics. • First, we will consider transmission lines. 4
  • 5.
    Two-wire lines theory •Transmission lines are commonly used in: –power distribution (at low frequencies) and, –in communications (at high frequencies). 5
  • 6.
    Two-wire lines theory •Various kinds of transmission lines such as the twisted-pair and coaxial cables (thin-net and thick-net) are used: –In telephony, –in TV cable networks and, –in computer networks. 6
  • 7.
    Two-wire lines theory •The source may be a hydroelectric generator, a transmitter, or an oscillator. • The load may be a factory, an antenna, or an oscilloscope, respectively. 7
  • 8.
    Two-wire lines theory •Typical transmission lines include coaxial cable, a two-wire line, a parallel-plate or planar line, a wire above the conducting plane, and a microstrip line. • Each of these lines consists of two conductors in parallel. 8
  • 9.
    Two-wire lines theory 9 Typicaltwo-wire transmission lines
  • 10.
    Two-wire lines theory •Coaxial cables are routinely used in electrical laboratories and in connecting TV sets to TV antennas. Microstrip lines are particularly important in integrated circuits 10
  • 11.
    General concepts • Linesthat transmit information in Traverse Electromagnetic (TEM) propagation mode, such as two-wire line and coaxial, or essentially TEM, such as microstrip, can be analyzed: –Directly solving Maxwell's equations (EM field theory) –Using general circuit theory. 11
  • 12.
    TEM propagation mode Traverseelectromagnetic propagation mode On two-wire lines (two-wire, coaxial, microstrip, parallel plates), the EM information is transmitted in such a way that both E and H fields are transverse or perpendicular to the propagation direction. Campo eléctrico Campo magnético 12 Electric field Magnetic field Propagation direction along the line
  • 13.
    Maxwell’s equations Propagation ofTEM mode along a two-wire line (analysis like free space propagation). Ez and Hz = 0 13 Conductors
  • 14.
    Maxwell’s equations • Dependingon the region considered between or around the conductors, the E field can have the components Ex and Ey, but always Ez = 0 (equal for H), so that E and H fields can rotate, maintaining the perpendicularity between the two and with the power flow P always in z direction. 14
  • 15.
    Maxwell’s equations • Thisanalysis is approximate but valid enough in practice. • It considers conductors as perfect and the fields as traveling only between and around the conductors. 15
  • 16.
    Maxwell’s equations • Beingrigorous, it would be necessary to calculate, according to the f of operation, the depth of penetration of the fields within the conductors. • The resulting distribution of the waves would no longer be strictly TEM but quasi or essentially TEM. 16
  • 17.
    Maxwell’s equations • Withcurrent inside the conductors, there would be a very small component of E in the z-direction given by (Ohm's Law): Causes power loss (heat) σ: Very large conductivity → significant current Jz: density of current 17
  • 18.
    General circuit theory •Is a simpler method and leads to the same results. • This method is preferred in communications engineering because it is possible to define and use the more familiar: voltage V, current I, and power P variables. 18
  • 19.
    General circuit theory Theline is represented as a network of distributed parameters: inductance L, capacitance C, resistance R, and conductance G, specified per unit length. bifilar line, coaxial cable or microstrip (Telephone, amplifier, computer, ..) (Telephone exchange, Antenna, printer, ..) 19 Load Generator Evenly spaced
  • 20.
    Calculation of parameters •The primary parameters of the line (L, C, R, and G) can be calculated for every case provided that dimensions and operation frequency are known. • As neither the conductors nor the dielectric are perfect (R is added in series and G in parallel). 20
  • 21.
    Calculation of parameters •Inductance (L), is a measure of the opposition to the changes in the amount of current in an inductor or coil that stores energy in the presence of a magnetic field. 21
  • 22.
    Calculation of parameters •Inductance is defined as the relationship between the magnetic flow (Φ) and the electric current intensity (I) circulating through the coil for several turns (N) of the winding: L = NΦ/I 22
  • 23.
    Calculation of parameters •The inductance depends on the physical characteristics of the electric conductor and of its length. It appears when an electric conductor is rolled up. • The more turns, the more inductance. • It increases by adding a ferrite core. 23
  • 24.
    Calculation of parameters •Capacitance (C) is the property of a capacitor to oppose to any variation of the voltage in the electrical circuit. • Is the ability of a system to store an electric charge. It appears between two isolated conductors when there is an electric potential difference between them. 24
  • 25.
    Calculation of parameters •Capacitance is calculated as the ratio between the electric charge Q on each conductor and the electrical potential difference V. C = Q/V 25
  • 26.
    Calculation of parameters •C only depends on the physical dimensions and geometry of the line, while L is a function of current distribution. • At low frequencies, the current flows on the surface and inside the conductor, at very high frequencies it goes only on the surface. 26
  • 27.
    Calculation of parameters •As the conductors are not perfect, it should be considered a resistance R in series. • The dielectric between the conductors is also not perfect and should be considered a conductance G in parallel (allows leaks or electric arcs). 27
  • 28.
    Calculation of parameters Resistance •The resistance R of the line depends on: –The resistivity (1/σ) of the conductor material. –Its geometry –The distribution of the current density (a function of the frequency). 28
  • 29.
    Calculation of parameters Depthof penetration • The distribution of current is a function of the depth of penetration of the current at the operating f, which is given by: μ: Permeability σ: Conductivity Eq. 2-2 29
  • 30.
    Calculation of parameters Rangeof conductivity values σ (siemens/meter) for insulating materials, semiconductors, and conductors. 30
  • 31.
    Conductivity σ forsome of the main conductors (mohs/meter) The reciprocal value of conductivity is called resistivity and its units are Ω/m. 31
  • 32.
    Calculation of parameters Conductance •Conductance G between conductors is also a function of the frequency and properties of the insulating material. • The conductivity of the dielectric grows with the frequency of alternating currents and produces high losses called dielectric hysteresis (negligible at low frequencies). 32
  • 33.
    Dielectric hysteresis • Athigh frequencies, it becomes the biggest cause of loss in the dielectric. • It is a feature of all solid and liquid insulating materials. • This property is used in industrial applications such as microwave ovens (very large σ). Mica and quartz have very low hysteresis and are used as insulators in microwave transmissions 33
  • 34.
    Calculation of parameters •The effects of the dielectric hysteresis phenomenon are considered by defining the complex permittivity: 34
  • 35.
    Calculation of parameters ε= εrε0 tan δ = Tangent of loss or dissipation factor Complex permittivity Real part 35 δ = Dissipation angle
  • 36.
    Permittivity ε = εrε0 • εr: Relative permittivity or dielectric constant • ε: Permittivity of the medium • ε0: Permittivity of free space = 10-9/36π = 8.854x10-12 F/m 36
  • 37.
    Values for dielectricconstant or relative permittivity and loss tangent ω =2πf σ can be calculated using: (*) (*): Approximate values, because both depend on temperature and frequency 37
  • 38.
    Calculation of parameters Variationof conductivity σ with frequency, for polystyrene and Teflon 38
  • 39.
    Calculation of parameters Variationof the tangent of losses (tan δ) with frequency, for polystyrene and Teflon. 39
  • 40.
  • 41.
    Two-wire lines High frequencies *coshx = (ex + e-x)/2. Si a << d, aproximadamente d/a > 10, el resultado de la operación cosh-1 (d/2a) se puede aproximar por In (d/a). 41
  • 42.
  • 43.
  • 44.
    Parallel plates (twoflat conductors) As these lines are generally used at high frequencies, only the formulas corresponding to that situation are given. In these expressions b >> a is assumed. 44
  • 45.
    Parallel plates (twoflat conductors) High frequencies In all expressions to calculate the inductance per unit of length, it is necessary to include the value of the permeability of the medium μ, where μ = μr μ0. Unless otherwise specified, μr = 1, so that μ = μ0 = 4π x 10-7 H/m. 45
  • 46.
    Exercise 2-2 • Abifilar line has copper conductors with a radius equal to 2 mm. The separation between centers is 2 cm and the insulating material is polyethylene. Assume that the loss tangent is constant with frequency and find the L, C, R and G parameters per unit length, at operating frequencies of 1 kHz, 10 kHz and 1 MHz 46
  • 47.
    Solution • If thepenetration depth l (ec. 2-2) is comparable or greater than the radius of the conductor, low-frequency expressions are used. • If it is small compared to the radius, high- frequency expressions are used. For copper, μr = 1 y σ = 5.8 x 107 S/m (See Table 2-1). 47
  • 48.
    Solution 48 Formula to beused Low frequencies High frequencies High frequencies Radius a
  • 49.
    Solution • For polyethylene,ɛr = 2.26 and tan δ = 0.2 x 10-3. 49 approximately
  • 50.
    Solution • For thebifilar line considered, d/a = 10, that is, d >> a. Therefore, applying the corresponding formulas: • For f = 1 kHz 50
  • 51.
  • 52.
  • 53.
  • 54.
    Conclusions • C isindependent of f, as is L (from a certain intermediate f). • This is inferred by observation and comparison of the corresponding equations for low and high frequencies. 54
  • 55.
    Conclusions • R andG increase with f. • This is because as f is higher, the film effect of the current on the conductors is more marked. • The effective area through which the current is distributed is smaller and therefore the resistance increases in proportion to the square root of the working frequency. 55
  • 56.
    Conclusions • The increaseof G with f is directly proportional to the increase of the σ of the dielectric due to the phenomenon of hysteresis (it can also be inferred by observation of the corresponding equations). 56
  • 57.
    Exercise 2-3 • Considera coaxial cable designed to operate at very high temperatures, for example on rockets, missiles and satellites. • The dielectric between both copper conductors is Teflon and the walls that contact such dielectric are coated in silver. 57
  • 58.
    Exercise 2-3 • Forsimplicity, consider that the Teflon is evenly distributed and that the film current only flows through the silver covers. 58 Internal conductor: silver-covered copper External conductor: silver- covered copper inside (where r = b)
  • 59.
    Exercise 2-3 • CalculateL, C, R, and G parameters for this line at 100 MHz and 1 GHz. Solution • First, the depth of penetration l is estimated to confirm the validity of the assumption that current flows on the silver layer only. 59
  • 60.
    Solution The assumption madeis correct 60 silver
  • 61.
    Solution • For Teflonɛr = 2.1 and tan δ = 0.3 x10-3, then the approximate conductivity of the dielectric at the specified frequencies is: 61
  • 62.
    Solution • The L,R, C, and G parameters for high frequency are now calculated. 62
  • 63.
  • 64.
  • 65.
    Suggested exercise • Aninternal telephone line used to connect the phone box to the outside network, consists of two parallel copper conductors with a diameter of 0.60 mm. The separation between the conductor centers is 2.5 mm and the insulating material between the two is polyethylene. Calculate the L, C, R, and G parameters per unit length at a frequency of 3 kHz. [L = 942nH/m, C = 30 pF/m, R = 122 mΩ/m, G = 112 pƱ/m]. 65
  • 66.
    General equation ofa transmission line
  • 67.
    Introduction • Knowing thebasic parameters of a line it is possible to determine the relationship between the voltage and current waves that travel along it, from the generator to the load, as well as the speed with which they do so. 67
  • 68.
    A transmission linewith distributed parameters The analysis considers that these parameters are evenly distributed along the entire length of the cables that make up the line. R L G C R L 68
  • 69.
    Distributed parameters • Thetransmission line with distributed parameters can be represented by an equivalent circuit composed of many resistors and inductances in series and many conductances and capacitances in parallel. 69
  • 70.
    Equivalent circuit forline analysis Both the upper and the lower wires have their own resistance and inductance, but it is more common, for simplicity, to represent the line by its equivalent circuit. 70
  • 71.
    Equivalent circuit • Thereare other possible representations, such as the equivalent T circuit or the π circuit, depending on how C and G are considered located in each section. • Any of these equivalent circuits will lead to the same mathematical expressions. 71
  • 72.
    Equivalent circuit ofa very small section The numerical value of each parameter is equal to the parameter per unit length multiplied by the length of the section (Δz). 72
  • 73.
    Equivalent circuit ofa very small section • Current i and voltage v are functions of both distance z and time t, so that at the end of the section considered there are increases in current and voltage. • If Δz is made to tend to zero (Δz → 0), the same symmetry and results are obtained as with an equivalent T or π circuit. 73
  • 74.
    Expressions for iand v • From the figure we obtain: Simplifying ① ② 74
  • 75.
    Expressions for iand v Deriving with respect to z Deriving with respect to t ③ ④ Replacing ② and ④ in ③: 75 ① ②
  • 76.
    Expressions for iand v • So, the differential equation that must satisfy the voltage wave is This equation is called the telegrapher's equation for historical reasons. 76
  • 77.
    Expressions for iand v • Using the same procedure, the variable v is eliminated and a second-degree differential equation for the current wave i is obtained: 77
  • 78.
    Expressions for iand v • If the variations of voltage and current in relation to time are sinusoids and since the equations are linear and of constant coefficients, it is possible to use phasors, replacing the voltage v(z,t) by V(z)ejwt and current i(z,t) by I(z)ejwt. 78
  • 79.
    Expressions for iand v • Performing the derivatives indicated in equations and it is obtained: See the procedure in next two slides 79 ① ② ① ②
  • 80.
    Expressions for iand v 80 V(z)ejwt I(z)ejwt 𝑒𝑗𝜔𝑡 𝜕𝑉 𝑧 𝜕𝑧 = − 𝑅 𝐼 𝑧 𝑒𝑗𝜔𝑡 + 𝑗𝜔𝐿 𝐼 𝑧 𝑒𝑗𝜔𝑡 𝜕𝑉 𝑧 𝜕𝑧 = − 𝑅 𝐼 𝑧 + 𝑗𝜔𝐿 𝐼 𝑧 𝜕𝑉 𝑧 𝜕𝑧 = − 𝑅 + 𝑗𝜔𝐿 𝐼 𝑧 ①
  • 81.
    Expressions for iand v 81 V(z)ejwt I(z)ejwt 𝑒𝑗𝜔𝑡 𝜕𝐼 𝑧 𝜕𝑧 = − 𝐺 𝑉 𝑧 𝑒𝑗𝜔𝑡 + 𝑗𝜔𝐶 𝑉 𝑧 𝑒𝑗𝜔𝑡 𝜕𝐼 𝑧 𝜕𝑧 = − 𝐺 𝑉 𝑧 + 𝑗𝜔𝐶 𝑉 𝑧 𝜕𝐼 𝑧 𝜕𝑧 = − 𝐺 + 𝑗𝜔𝐶 𝑉 𝑧
  • 82.
    Expressions for iand v • Deriving the first of these equations with respect to z and substituting from the second, it is obtained: 82
  • 83.
    Expressions for iand v The general solution of that equation is of the form: A and B are constants to be defined and Propagation constant Serial impedance of the line (Z) Parallel admittance of the line (Y) 83
  • 84.
    Expressions for iand v • It has been seen that the parameters R, L, G and C are not constant (they depend on f). • But if the line is uniform in its geometry and composition of its materials along its entire length (R, L, G and C independent of z and t), they can be considered as constant coefficients at a given frequency. 84
  • 85.
    Expressions for iand v • The expressions for v(z,t) and i(z,t) from the phasors V(z) and I(z) will be: 85
  • 86.
    Propagation constant • Thepropagation constant is a complex number and can also be expressed as: Attenuation Speed of phase change α and β are variations that the voltage or the current undergoes as it propagates along the line. 86 α: Attenuation constant β : Phase constant
  • 87.
    Propagation constant • Unitsof the attenuation constant α: nepers per meter. • Units of the phase constant β: radians per meter. • However, it is more common to specify α in decibels per meter and use the letter L (Loss). 87
  • 88.
    Propagation constant • Theconversion from nepers to decibels can be done using the following ratio: • Attenuation: L (dB/m) = 8.686 x α (Np/m) 1 neper equal to 8.686 dB. 88
  • 89.
    Wave attenuation Exponential attenuationof a voltage sine wave along a line 89 Point 1 Point 2
  • 90.
    Expressions for iand v • Taking the equation obtained for V(z), , deriving it with respect to z, and substituting it into the phasor equation of dV/dz yields the phasor expression for the current wave. 90
  • 91.
    Expressions for iand v 91 𝜕𝑉 𝑧 𝜕𝑧 = −𝛾𝐴𝑒−𝛾𝑧 + 𝛾𝐵𝑒𝛾𝑧 𝜕𝑉 𝑧 𝜕𝑧 = 𝛾 −𝐴𝑒−𝛾𝑧 + 𝐵𝑒𝛾𝑧 −> On the other hand
  • 92.
    Expressions for iand v 92 Replacing 𝜸 by the expression obtained above we have:
  • 93.
    Expressions for iand v • Where the denominator turns out to be an impedance which is the characteristic impedance of the line. Characteristic impedance of the line 93
  • 94.
    Characteristic impedance Z0 •Every transmission line has its own characteristic impedance Z0, depending on the geometry and dimensions of the line, as well as the operating frequency f (ω = 2πf). • Z0 is commonly provided by cable manufacturers. ω = Angular frequency 94
  • 95.
    Characteristic impedance Z0 •There are cables with nominal characteristic impedances such as: –Coaxial for broadcasting and computers: 50 Ω. –Coaxial for CATV: 75 Ω. –Two-wire cables: 300 Ω (Rx TV or FM antennas) –Multipair bi-wire cables for telephony and data: 75 Ω, 100 Ω, 150 Ω, 600 Ω, etc. 95
  • 96.
    Characteristic impedance Z0 •So far, two new transmission line parameters have been defined: –Propagation constant (γ) –Characteristic impedance (Z0). • Z0 and γ are complex numbers and they are a function of f and of the basic parameters R, L, G and C. 96
  • 97.
    Phase velocity • Itis defined as: • In this formula, β = phase constant or imaginary part of γ (radians/meter), and ω is the angular frequency (rad/sec). 97 m/sec
  • 98.
    Phase velocity A voltagewave propagating over a lossless transmission line from the generator to the load. 98
  • 99.
    Phase velocity • Aline with no attenuation is assumed (α = 0), that is, the wave is not damped (γ is purely imaginary). • The line has a physical length given in meters and an electrical length measured in λs. • λ: distance between successive points of the wave with the same electrical phase. 99
  • 100.
    Propagation velocity • Thevalue of λ depends on the frequency (f) of oscillation and the propagation velocity (v). • This velocity, in turn, depends on the characteristics of the medium through which the wave travels (type of dielectric between the conductors of the line). 100
  • 101.
    Propagation velocity • Ifthere is air between the conductors, the v of the wave is equal to that of the light in free space (3x108 m/sec). • But if the medium has a relative dielectric constant εr > 1, then the wave propagates with a speed less than the light velocity. 101
  • 102.
    Propagation velocity • Propagationvelocity: • As the propagation velocity is reduced, λ is also reduced, as if the wave were compressed along the z-axis. 102
  • 103.
    Wavelength • This newwavelength within the lossless propagation medium is calculated as: • Here λ0 is the wavelength in free space for the same frequency. 103
  • 104.
    Phase velocity • Theabove equation shows that λ and β are inversely proportional to each other (if one increases, the other decreases). • So, if β = 2π/λ, by substituting it into the equation of phase velocity: 104
  • 105.
    Phase velocity • vpis independent of f (if the medium is considered lossless, α = 0) and is the speed with which moves a point, say B, that defines the location of a given constant phase. • In other words, vp is the speed at which an imaginary point, at which the phase is constant, moves in the direction of z. 105
  • 106.
    Phase velocity • ForTEM propagation modes, as is the case of the lines discussed in this chapter, it is generally considered that α = 0 and the propagation velocity v at which the signal power travels is numerically equal to vp (phase velocity). 106
  • 107.
    Delay time • Ifl is the total length of the line, the time it takes for an arbitrary point with a given phase to travel from the generator to the load is equal to: td = delay time of the line. 107
  • 108.
    Exercise 2-4 • Findthe characteristic impedance, the attenuation constant, the phase constant, and the phase velocity values of the copper bifilar line from exercise 2- 2. • If the length of the line is 1 km, how long would it take for a signal to travel from the generator to the opposite end? 108
  • 109.
    Solution The values ofL, C, R and G are: 109 polyethylene copper
  • 110.
    Solution • Characteristic impedanceis: • For f = 1 kHz 110
  • 111.
    Solution For f =10 kHz 111
  • 112.
    Solution • For f= 1 MHz 112
  • 113.
    Solution • Propagation constant(γ): • For f = 1 kHz 113
  • 114.
    Solution • For f= 10 kHz • For f = 1 MHz 114
  • 115.
    Solution • The attenuationconstant α, is the real part of γ, and the phase constant, β, is the imaginary part. • The phase velocity can be calculated as: For f = 1 kHz 115
  • 116.
    Solution • For f= 10 kHz • For f = 1 MHz 116
  • 117.
    Tables of results √L/C= 183.47 Ω f ↑ = α ↑ f ↑ = β ↑ 117
  • 118.
    Analysis of results Characteristicimpedance Z0 • As f increases, its imaginary component tends to zero and the real part tends to the same value as would be obtained for a lossless line (R and G = 0), since Z0 would be equal to √L/C = 183.47 Ω. 118
  • 119.
    Analysis of results •Also, when increasing f, the phase velocity vp tends to the value that the propagation speed would have in a medium with εr = 2.26 (polyethylene) and without losses, since: • Attenuation α increases with frequency. 119
  • 120.
    Solution • The delaytime is given by: • With l = 103 m, the following values are obtained at the specified frequencies: 120
  • 121.
    Lossy line • Thetransmission line considered thus far is the lossy type. In this line the conductors comprising the line are imperfect (σc ≠ ∞) and the dielectric in which the conductors are embedded is lossy (σd ≠ 0). • We may now consider two exceptional cases: lossless transmission line and distortionless line. 121
  • 122.
  • 123.
    Lossless transmission line •In this line, conductors are considered perfect, and it is assumed that: σc ≈ ∞ and σd ≈ 0 • Therefore: R = G = 0 and α = 0 • Then: σc : Conductance of conductor; σd : Conductance of dielectric 123 vp
  • 124.
  • 125.
    Distortionless line • Asignal normally consists of a band of frequencies and when passing through a dissipative line the amplitude of the different components will be attenuated differently, because α depends on the frequency. This results in distortion. 125
  • 126.
    Distortionless line • Adistortionless line is one in which the attenuation constant α is frequency independent while the phase constant β is linearly dependent on frequency. • Distortionless line results if the line parameters are such that 126
  • 127.
    Distortionless line • Thus,for a distortionless line, • Showing that α does not depend on f, whereas β is a linear function of f. 127 Or f: Frequency
  • 128.
  • 129.
    Distortionless line • Notethat: • 1. The phase velocity vp is independent of f because the phase constant β linearly depends on f. We have shape distortion of signals unless vp and α are independent of f. • 2. Formulas for vp and Z0 remain the same as for lossless lines. 129
  • 130.
    Distortionless line • 3.A lossless line is also a distortionless line, but a distortionless line is not necessarily lossless. Although lossless lines are desirable in power transmission, telephone lines are required to be distortionless. 130
  • 131.
    Transmission Line Characteristics 131 Propagationconstant Characteristic impedance Case General Lossless Distortionless
  • 132.
  • 133.
    Propagation in matchedlines • Consider a transmission line of infinite length through which a voltage wave travels, given by the first term of the equation. • That is to say: 133
  • 134.
    Propagation in matchedlines The voltage wave starts from the generator towards the load at the other end of the line (incident voltage Vi ). Infinite length line 134 Load at infinity
  • 135.
    Propagation in matchedlines • Since the line is infinite, the wave will never reach the charge and the conditions for a possible reflected wave will never occur. For this reason, the second term was omitted from the equation: 135 Incident voltage Reflected voltage
  • 136.
    Propagation in matchedlines • The voltage and current of the incident pure wave can then be written as: 136
  • 137.
    Propagation in matchedlines • Regardless of the attenuation α of the line, the ratio of voltage to current is always equal to Z0. • This result is independent of z, so it is the same for all points on the line. 137
  • 138.
    Propagation in matchedlines • The progressive wave always "sees" to the right an impedance equal to Z0. • If at the end of a finite line of characteristic impedance Z0, a load with impedance also equal to Z0 is connected, the line will behave as if it were infinite (there will be no reflected wave). 138
  • 139.
    Propagation in matchedlines Conclusion: • A line of finite length terminated with a load equal to its characteristic impedance Z0, will deliver all available incident power to the load. • When this occurs, the line is said to be matched. 139
  • 140.
    Propagation in matchedlines Matched line If Z0 ≠ ZL, the line will no longer behave as if it were infinite; it will be unmatched and there will be a reflected wave. Unmatched line 140
  • 141.
    Unmatched lines • Thetotal voltage wave in an unmatched line will be given by the superposition, for all z, of the incident wave Vi(z) and the reflected wave, Vr(z), as expressed by the general solution given by the equation: 141
  • 142.
    Unmatched lines • Accordingly,for the total current we will have the expression: 142
  • 143.
    Exercise 2-5 • Asignal generator is connected to a transmission line whose characteristic impedance is 75 Ω. • The line is 6 meters long and the dielectric inside it has a relative permittivity of 2.6. • At the end of the line is connected a load whose input impedance is 75 Ω. 143
  • 144.
    Exercise 2-5 • Thegenerator has an internal resistance of 1 Ω and an open-circuit output voltage equal to 1.5cos(2πx108)t V. • For this line find: a) the instantaneous mathematical expressions for voltage and current at any point on the line, and b) the average power delivered to the load. 144
  • 145.
  • 146.
    Solution • Since theline is matched, the impedance seen at all points on the line is the same, and therefore the input impedance is 75 ohms: Zinput = 75 Ω 146
  • 147.
    Solution • The leftside of the circuit can now be represented as: 147 Iinput Vinput Zin
  • 148.
    Solution • Where: And consideringthe attenuation α negligible: 148
  • 149.
    Solution • Then, forany point on the line, at a distance z to the right of the input terminals, the voltage and current will be: 149
  • 150.
    Solution • Expressions requested,as a function of the time, for any point on the line: 150
  • 151.
    Solution • Thus, forexample, for the specific point where the load is, instantaneous expressions are obtained by substituting z = 6 m into the above equations. • As regards the average power delivered to the load, this must be equal to the average input power, [considering lossless line (α = 0)]. 151
  • 152.
    Solution • Then, fromthe voltage and current phasors: I*(z) represents the conjugate of I(z). 152
  • 153.
    Input impedance ofa line terminated with an arbitrary load
  • 154.
    Line with anarbitrary load Line of length l terminated with an arbitrary load at z = 0. Load on z = 0 and generator on z = -l 154
  • 155.
    Line with anarbitrary load • The impedance Z seen to the right (in the direction of the load) from any point on the line is given by: 155
  • 156.
    Line with anarbitrary load • If z = ‒l, the input impedance Zi seen by the generator to the right, will then be: 156
  • 157.
    Line with anarbitrary load • Now, in z = 0, where the charge ZL is located, we have: With: 157
  • 158.
    Line with anarbitrary load • The ratio B/A is called the reflection coefficient at the point of load. It is designated by the letter ρ and is generally a complex quantity. • If the numerator and denominator of the equation for Zi are divided by Aeγl, we get: 158
  • 159.
    Line with anarbitrary load • And as B/A = ρ: • With this equation the Zi of the line is calculated if the length, the characteristic impedance, the propagation constant γ, and the reflection coefficient ρ at the point where the load is, are known. 159
  • 160.
    Line with anarbitrary load • Another alternative equation, depending on the ZL instead of the reflection coefficient, can be obtained as follows: 160
  • 161.
    Line with anarbitrary load • 𝑍𝑖 = 𝑍0 𝑍𝐿𝑒𝛾𝑙+𝑍0𝑒𝛾𝑙+𝑍𝐿𝑒−𝛾𝑙−𝑍0𝑒−𝛾𝑙 𝑍𝐿𝑒𝛾𝑙+𝑍0𝑒𝛾𝑙−𝑍𝐿𝑒−𝛾𝑙+𝑍0𝑒−𝛾𝑙 161 𝑍𝑖 = 𝑍0 𝑍𝐿𝑒𝛾𝑙 + 𝑍𝐿𝑒−𝛾𝑙 + 𝑍0𝑒𝛾𝑙 − 𝑍0𝑒−𝛾𝑙 𝑍𝐿𝑒𝛾𝑙 − 𝑍𝐿𝑒−𝛾𝑙 + 𝑍0𝑒𝛾𝑙 + 𝑍0𝑒−𝛾𝑙
  • 162.
    Line with anarbitrary load And dividing numerator and denominator by 2 cosh γl, we finally have: 162
  • 163.
    Exercise 2-6 • Considera lossless transmission line, with paper as a dielectric (εr = 3), which works at a frequency of 300 MHz. • The length of the line is 10 m and its characteristic impedance is equal to 50 Ω. • At the end of the line is connected a load whose impedance is 80 Ω. 163
  • 164.
    Exercise 2-6 • Findthe voltages reflection coefficient in the load and the input impedance of the line. • Also calculate the impedance that would be seen at distances of λ/2 and λ, measured from the generator to the load. 164
  • 165.
    Solution The voltages reflectioncoefficient is obtained by: 165
  • 166.
    Solution • The inputimpedance with l = 10 m and α = 0, will be: • The calculation of β will be by : 166
  • 167.
    Solution • Substituting theβ value in the expression for Zi: • To calculate the impedance seen in z = ‒ l + λ/2 and z = ‒ l + λ, it is necessary to know the value of λ: 167
  • 168.
    Formula e±jΦ = cosΦ ± j sen Φ = 1/(cos Φ ± j sen Φ) 168
  • 169.
    Solution • λ0 isthe λ in free space at the same frequency of 300 MHz. • The impedance at a distance z is given by: 169
  • 170.
    Solution • Substituting thespecified values of z: 170
  • 171.
  • 172.
    Solution • Results ingraphical form: 172
  • 173.
    Solution • The valuesof the three impedances are equal due to the periodic nature of the trigonometric functions involved in the formulas. • The value of Z is repeated every λ/2, instead of every time λ is advanced, because in an unmatched line the total wave that is formed has a period equal to λ/2. 173
  • 174.
    Exercise 2.18.9 (fromthe book) • A lossless coaxial cable with characteristic impedance of 75 Ω employs a dielectric with relative permittivity of 2.26. The cable terminates at a resistive load of 100 Ω and works at a frequency of 600 MHz. 174
  • 175.
    Ejercicio 2.18.9 (Libro) •Calculate the impedance seen at the following points on the line: a) at the load, b) at 10 cm before the load, c) at λ/4 before the load, d) at λ/2 before the load, and e) at 3λ/2 before the load. [Z = 100 Ω, Z = 58.8 + j10.2 Ω, Z = 56.25 Ω, Z = 100 Ω, Z = 100 Ω].[Z = 100 Ω, Z = 58.8 + j10.2 Ω, Z = 56.25 Ω, Z = 100 Ω, Z = 100 Ω]. 175
  • 176.
    Input impedance ofa line terminated in short circuit.
  • 177.
    Short-circuited line Evaluating theequation of V(z) at the load, where z = 0, and since the voltage at that point is zero, we get: V(0) = A + B = 0 → B = ‒A (ρ = ‒1) 177
  • 178.
    Short-circuited line • Thenthe expressions for V(z) and I(z) can be rewritten as: 178
  • 179.
    Short-circuited line • Theinput impedance seen by the generator can be obtained by substituting z = ‒ l and taking the traditional quotient of the two previous relations: 179
  • 180.
    Short-circuited line • Inpractice, measuring the input impedance of a short-circuited line makes it possible to indirectly measure parameters R and L of the line. 180
  • 181.
    Short-circuited line • Ifthe line is short enough, so that |γl| << 1, the exponentials in Zi,c.c equation can be expanded to simplify it very roughly: 181
  • 182.
    Short-circuited line • Multiplyingthe equations of γ and Z0 we have: So: 182
  • 183.
    Input impedance ofa line terminated in open circuit.
  • 184.
    Open-circuited line The analysisof this case is similar to that of a short-circuited line. At the end of the line there will be a current equal to zero. I(0) = (1/Z0)(A ‒ B) = 0 → A = B (ρ = 1) 184
  • 185.
    Open-circuited line • Then: •The impedance seen in z = ‒l will be: 185
  • 186.
    Open-circuited line • Assumingagain that the line has a short length (|γl| << 1), • Now dividing γ by Z0 186
  • 187.
    Open-circuited line • Therefore,the input impedance measured at a certain angular frequency ω for an open-circuited short line of length l, allows to obtain the parameters G and C of the line. 187
  • 188.
    Exercise 2-7 • Itis desired to estimate the values of the characteristic impedance and propagation constant for a 1 km long cable, at a frequency of 1 kHz. • To this end, measurements of the input impedance were made terminating first the cable in open circuit and then in short circuit. 188
  • 189.
    Exercise 2-7 • Thereadings obtained were, respectively, ‒j100 Ω and j50 Ω. How much are approximately Z0 and γ worth? • Solution: • At 1 kHz, in air, λ0 = 3 x 108/103 = 3x105 = 300,000 m. If α = 0 is considered, then β0 = 2π/λ0 and: 189
  • 190.
    Solution • This conditionis different in the cable, because the dielectric is not air. • However, even if β were doubled and were worth 2β0, the condition |jβl| would also be satisfied in the cable and then approximations can be employed: 190
  • 191.
    Solution • It isconcluded that R ≈ 0 and G ≈ 0, and que: 191
  • 192.
  • 193.
    Obtaining Z0 frominput impedances measured on short-circuited and open- circuited lines.
  • 194.
    Calculating Z0 • Ifthe expressions for Zi c.c. and Zi c.a. are multiplied, we obtain: 194
  • 195.
    Calculating Z0 • Thisgives an expression for calculating Z0 as a function of the measured Zi c.c. and Zi c.a.: 195
  • 196.
    Ejercicio 2-8 • A20 km long telephone cable was subjected to measurement tests with short circuit and open circuit terminations, at a frequency of 1.5 kHz. • The values obtained for the input impedance were:
  • 197.
    Ejercicio 2-8 Assume anattenuation constant α = 247.6x10-6 Nep/m and a phase constant β = 225 x10-6 rad/m. From this data calculate the following: (a) the characteristic impedance; (b) parameters R, L, G and C of the line, at the frequency at which the measurements were made.
  • 198.
  • 199.
    Solución • b) Cableparameters R, L, G, and C. • We can use the following formulas, which can be obtained by multiplying and dividing the expressions for γ and Z0 successively.
  • 200.
    Solución • Substituting thevalues of Z0 and γ: • So:
  • 201.
  • 202.
    Input reactance andshort- circuited and open-circuited lossless line applications
  • 203.
    Introduction • In additionto being used to transmit information, a line can also serve as a circuit element. • At UHF (300 MHz to 3 GHz) it is difficult to fabricate circuit elements with concentrated parameters, as the λ varies between 10 cm and 1 m. 203
  • 204.
    Introduction • For thesecases, transmission line segments can be designed to produce an inductive or capacitive impedance, which can be used to match an arbitrary load to the main line and achieve the maximum possible power transfer. 204
  • 205.
    Introduction • At thesehigh frequencies, the losses in a line can be considered negligible, as far as the calculation of Z0, γ, and of the impedance seen at any point of the line is concerned, since: ωL = 2πfL >> R and ωC = 2πfC >> G 205
  • 206.
    Z0 and γ •Based on these considerations, the equations of Z0 and γ reduce to: Therefore, α ≈ 0 and Z0 is real (purely resistive). 206
  • 207.
    Input impedance • Asregards the input impedance seen from the generator in the direction of the load, the general equation reduces, making γ = jβ, to: General equation: 207
  • 208.
    Input impedance • Usingthe identity: • Then, with x = 0 and y = βl: tanh jβl = (0 + jtan βl)/(1 + 0) = j tan βl. 208
  • 209.
    Input impedance • Andthe input impedance equation is as follows: where l is the total length of the line This equation will then be used for the two special cases in which the line ends in short circuit or open circuit. 209
  • 210.
    Short-circuited line • Inthis case, ZL = 0 and the equation of Zi reduces to: 210
  • 211.
    Open-circuited line • NowZL = ∞ and the equation of Zi takes the form: 211
  • 212.
    Input reactance • Theabove Zi equations show that when a lossless line of arbitrary length l is short-circuited or open- circuited, the input impedance is purely reactive (jXi). 212
  • 213.
    Input reactance • Ineither case, the reactance can be inductive or capacitive, depending on the value of βl, since the functions tan(βl) and cot(βl) can take positive or negative values. 213
  • 214.
    Input reactance asa function of the electrical length of the line for the two types of termination Typical curves of the input reactance, normalized to Z0, of a line of length l terminated in short circuit ( ) and in open circuit ( ) ‒cot βl 214
  • 215.
    Input reactance • Inpractice, it is not possible to obtain a truly open-circuited line (infinite load impedance), since there are radiation problems at the open end, especially at high frequencies, and coupling with nearby objects. 215
  • 216.
    Input reactance • Theinput reactance of open- circuited or short-circuited lines are identical when their lengths differ by an odd multiple of λ/4. 216
  • 217.
    Input reactive impedance Inputreactive impedance of some short-circuited or open- circuited line sections and their equivalents as components of a circuit. 217 equivalent to equivalent to
  • 218.
    Input reactive impedance 218 equivalentto equivalent to Input reactive impedance of some short-circuited or open- circuited line sections and their equivalents as components of a circuit.
  • 219.
    Exercise 2-9 • Considera lossless line of length 0.2λ at a certain operating frequency terminated in short circuit. • Its L and C parameters are 0.2 μH/m and 35 pF/m, respectively. Calculate its input impedance. 219
  • 220.
    Solution • Characteristic impedanceof the line: • Input impedance: And as λ = 2π/β: 220
  • 221.
    Exercise 2-10 • Findthe necessary length (in meters) of a line terminated in open circuit so that at 600 MHz it presents at the input a capacitive reactance of ‒j20 Ω. • Consider εr = 1 and the same L and C parameters as in the previous exercise. 221
  • 222.
    Solution • At 600MHz, the wavelength is equal to 0.5 m, considering that the dielectric is air. • From the previous exercise, L = 0.2 μH/m and C = 35 pF/m, so Z0 = 75.6 Ω. And substituting: Where (4π)l = cot-1 0.26455 → l = 10.44 cm 222
  • 223.
    Suggested exercise • Findthe necessary length (in meters) of a line terminated in open circuit so that at 1 GHz it presents at the input an inductive reactance of j20 Ω. The parameters L and C are respectively 171.5 nH/m and 35 pF/m. Consider εr = 1 (NOTE: If the βl angle obtained is negative, π must be added to move it to the positive side). 223 R//8.82 cm
  • 224.
  • 225.
    Unmatched lines andstanding waves • Formulas to calculate the input impedance and the reflection coefficient of an unmatched line (ZL ≠ Z0) were previously derived as: 225
  • 226.
    Unmatched lines andstanding waves • It was also indicated that when the attenuation of a line is very low (few losses) and the transmission frequency is very high, then: ωL >> R and ωC >> G and the expressions for Z0 and γ are approximated as: 226
  • 227.
    Unmatched lines andstanding waves • Henceforth, unless otherwise stated, it will be assumed that α = 0 and that it is transmitted at high frequencies. • This approximation is valid in practice, when l (length of the line) is, at most, a few λ's and the accumulated attenuation is very low. 227
  • 228.
    Unmatched lines andstanding waves • With the previous considerations the equation of the input impedance is: This equation allows to calculate Zi and the impedance Z(z) seen at any point of the line. l is the distance between that point and the load. 228
  • 229.
    Unmatched lines andstanding waves • If ρ = 0, → matched line (ZL = Z0). • If ρ ≠ 0, → unmatched line (ZL ≠ Z0). • The goal of a transmission engineer is to make ρ very small so that the power transferred to the load is maximum. 229
  • 230.
    Unmatched lines andstanding waves • Generally, a "coupling" is considered acceptable if |ρ| ≤ 0.2, which delivers to the load about 96% of the incident power. • We will now see what the total voltage wave is like along an unmatched line. 230
  • 231.
    Unmatched lines andstanding waves • The magnitude of the total voltage, for any z can be obtained from the equation: The reflection coefficient at load B/A = ρ is complex and is now represented as ρv. 231
  • 232.
    Unmatched lines andstanding waves • The reflection coefficient can then be represented in its complex form as: 232
  • 233.
    Unmatched lines andstanding waves • For α = 0 the magnitude of the voltage is: 233 𝑒𝑗𝜃𝑒𝑗2𝛽𝑧 = 𝑒𝑗 2𝛽𝑧+𝜃 = cos 2𝛽𝑧 + 𝜃 + 𝑗𝑠𝑒𝑛 2𝛽𝑧 + 𝜃
  • 234.
    Unmatched lines andstanding waves 234 Real part Imaginary part
  • 235.
    Unmatched lines andstanding waves • And finally: • To graph this function, it is considered that: ‒1 ≤ cos (2βz + θ) ≤ 1. 235
  • 236.
    Unmatched lines andstanding waves • The extreme values of this function are: • For cos (2βz + θ) = 1 • For cos (2βz + θ) = ‒1 236
  • 237.
    Typical pattern oftotal voltage wave (standing wave pattern) Maximum value Minimum value 237
  • 238.
    Standing waves • Thetotal voltage wave pattern is periodic and is called a standing wave pattern. • Incident and reflected wave period = βz. • Total wave period (superposition of the previous two waves) = 2βz. 238
  • 239.
    Standing waves • Ifthe incident wave has a wavelength λ, the standing wave will have a wavelength λe = λ/2. • In the graph, points 1, 3, and 5 are of maximum voltage, and points 2, 4, and 6 are of minimum voltage in the standing wave. 239
  • 240.
    Standing waves • Thelocation of these points depends on θ (degree of decoupling). • The degree of decoupling (θ) is the angle of the reflection coefficient on the load. 240
  • 241.
    Total current wave •The total current wave has a similar shape to that of voltage, but its value is maximum when the voltage is minimum, and vice versa. • The expression for the standing wave of current is: 241
  • 242.
    Standing wave ratio •The ratio of the maximum voltage to the minimum voltage of the standing wave is called the standing wave ratio (ROE or VSWR): VSWR: Voltage Standing Wave Ratio 242
  • 243.
    Standing wave ratio •The quotient of the maximum voltage over the minimum current (both are at the same point on the line), will be the value of the impedance towards the load seen at that point. 243
  • 244.
    Standing wave ratio •For a point where the voltage is minimum, the current will be maximum, and we will have: As Z0 is real, both impedances Z|Vmax and Z|Vmin are purely resistive. 244
  • 245.
    Standing wave ratio •The equation: • allows you to calculate the magnitude of the voltage reflection coefficient if the VSWR is known. • It is not required to know the absolute value of the voltages, only their proportion or VSWR. 245
  • 246.
    Standing wave ratio •The VSWR can be measured indirectly in a laboratory with a standing wave detector. • It consists of a rigid coaxial line, with a longitudinal slot at its top, through which a small electric field (E) probe slides. 246
  • 247.
    Standing wave detector Themeasured E is proportional to the voltage between the line conductors. Its maximum-to-minimum ratio is displayed on the VSWR meter. 247
  • 248.
    Standing wave ratio •The expression for |ρv| is: • According to the expression: Its phase is given by θ in the load (z = 0). 248
  • 249.
    Reflection coefficient alongthe line • It is possible to define the reflection coefficient for other points on the line. From the equation: • At load (z = 0), ρv(0) = B/A = ρ and is given by: 249
  • 250.
    Reflection coefficient alongthe line • For any value of z and with γ = jβ, ρv(z) will be: 250
  • 251.
    Reflection coefficient alongthe line • From the above equation it follows that the geometric place of the voltage reflection coefficient in the complex plane is a circle of radius |ρv|. • Its value is repeated every time λe = λ/2 is advanced along the line. 251
  • 252.
    Reflection coefficient alongthe line Moving towards the generator is equivalent to turning clockwise in the complex plane. To rotate λe = λ/2= one round 252
  • 253.
    Exercise 2-11 • Acoaxial cable with a characteristic impedance of 100 Ω and air as the dielectric inside has a load of 80 + j50 Ω connected to it . • Obtain the reflection coefficient where the load is, and at 25 cm measured from the load towards the generator. 253
  • 254.
    Exercise 2-11 • Alsocalculate the value of the VSWR and the positions of the first minimum and the first and second maximum voltages, from the load to the generator. Indicate these distances in centimeters. • Consider that the operating frequency is 300 MHz. 254
  • 255.
    Solution • In theload, the reflection coefficient is given by: • The frequency is 300 MHz and λ = 1 m; Therefore, for the standing wave, λe = 1 m/2 = 50 cm. 255
  • 256.
    Solution • Retroceder 25cm, desde la carga hacia el generador, equivale a girar media vuelta en el plano complejo, en el sentido de las manecillas del reloj. Por lo tanto, en este punto, el coeficiente de reflexión sería: 256
  • 257.
    Solution • El VSWRestá dado por: Cálculo de la posición de los mínimos y máximos de voltaje: • |V(z)| es máximo cuando cos(2βz+θ) = 1, es decir, cuando 2βz+θ = 0, -2π, … 257
  • 258.
    Solution • O sea: •En donde: (con todo en grados o en radianes) 258
  • 259.
    Solution • y: • Secomprueba que entre pico y pico de voltaje hay una distancia de 0.5λ 259
  • 260.
    Solution • Para calcularel primer mínimo de voltaje, la ecuación de |V(z)| debe minimizarse. Esto ocurre cuando 2βz + θ = ‒π, ‒3π,... Es decir: Donde: 260
  • 261.
  • 262.
    Exercise 2-12 • Unalínea de transmisión con Z0 = 100 Ω está terminada en una carga con ZL = 120 + j80 Ω. • Encuentre el coeficiente de reflexión de voltajes a lo largo de la línea en los puntos mostrados en la figura siguiente. 262
  • 263.
    Exercise 2-12 Solución El puntoA corresponde a la carga. 263
  • 264.
    Solution • El puntoB se halla en z = ‒λ/4. El ángulo del coeficiente de reflexión se obtiene: Para el punto C: ángulo del coef. = 264
  • 265.
    Solution • Para elpunto D: ángulo del coef. = • Para el punto E: ángulo del coef. = 265
  • 266.
    Solution Representación en elplano complejo Los puntos separados λ/2 entre sí tienen el mismo coeficiente de reflexión y su posición es la misma en el plano complejo 266
  • 267.
    Exercise 2-13 • Determineel valor del VSWR que tendría una línea cualquiera, sin pérdidas, cuando al final se tuviese: a) una carga con impedancia igual a la característica, b) un corto circuito, y c) un circuito abierto. 267
  • 268.
    Solution • Cuando ZL= Z0, la línea está acoplada y no se refleja nada. Por lo tanto, ρv = 0. • Cuando la línea termina en un corto circuito, el voltaje total en ese punto vale cero. Por lo tanto, ρv = ‒1. • Cuando la línea termina en circuito abierto, el voltaje total en ese punto es máximo. Por lo tanto, ρv = +1. 268
  • 269.
    Solution • Sustituyendo lostres valores anteriores de ρv en la ecuación de la ROE se obtiene: 269
  • 270.
    Exercise 2-14 • Grafiquela forma de las ondas estacionarias de voltaje y corriente para una línea cualquiera sin pérdidas, cuando ésta termina en: a) una resistencia pura mayor que Z0, b) una resistencia pura menor que Z0, c) un corto circuito, y d) un circuito abierto. 270
  • 271.
    Solution • Partiendo delas ecuaciones para |V(z)| e |I(z)| y tomando como referencia la Figura en la que se representa la relación de onda estacionaria (línea terminada en carga compleja arbitraria) se deduce lo siguiente: • a) ZL = RL; Z0 = R0; RL > R0 271
  • 272.
    Solution • Por lotanto, el ángulo del coeficiente de reflexión es igual a 0° y la función de voltaje (|V(z)|) es máxima cuando z = 0, es decir, en la carga. • En cambio, la corriente (|I(z)|) es mínima en la carga. 272
  • 273.
    Solution • b) ZL= RL; Z0 = R0; RL < R0 • Ahora θ = ‒180° y la situación es contraria a la del inciso a). Es decir, en la carga se tiene corriente máxima y voltaje mínimo. 273
  • 274.
    Solution • c) ZL= 0 (corto circuito) • Aquí ρ = ‒1 = 1/180° y la situación es similar a la del inciso b), con corriente máxima y voltaje mínimo en la carga. Este voltaje mínimo en la carga ahora vale cero. 274
  • 275.
    Solution • d) ZL→ ∞ (circuito abierto) • Como ρ = 1 = 1 / 0° = real positivo, se tiene algo parecido al inciso a), con voltaje máximo y corriente mínima en la carga. • Esta corriente mínima vale cero. 275
  • 276.
  • 277.
  • 278.
    Exercise 2-15 • Seefectuaron mediciones con una línea rígida ranurada de Z0 = 75 Ω y terminada en una carga compleja. El primer máximo de voltaje se encontró a 15 cm de la carga, y el segundo máximo se detectó al avanzar otros 20 cm hacia el generador. El VSWR leído fue igual a 2.5. 278
  • 279.
    Exercise 2-15 • Encuentre:a) el valor de la impedancia vista en el primer máximo de voltaje, b) la posición del primer máximo de corriente desde la carga hacia el generador, c) la frecuencia a la que se hicieron las mediciones, d) la magnitud del coeficiente de reflexión de voltajes, y e) el valor de la impedancia de la carga. 279
  • 280.
    Solution • a) Laimpedancia vista en cualquier máximo de voltaje es real y está dada por: • b) En z = ‒15 cm se tiene el 1° máximo de voltaje. • En z = ‒15 ‒ 20 = ‒35 cm se tiene el siguiente máximo de voltaje. Z|Vmáx = (Z0)(VSWR) = (75)(2.5) = 187.5 Ω 280
  • 281.
    Solution • Centrado entreambos máximos debe haber un máximo de corriente, es decir, en z = ‒15 ‒ 10 = ‒25 cm. • Hay otro máximo de corriente hacia la carga en z = ‒25 + 20= ‒5 cm. • El siguiente máximo de corriente se saldría de la línea, por lo cual la posición pedida es z = ‒ 5 cm. 281
  • 282.
  • 283.
    Solution • c) Laλ a la frecuencia de trabajo es el doble de la distancia entre dos máximos de voltaje o de corriente de la onda estacionaria. λ = (2)(20 cm) = 40 cm. 283
  • 284.
    Solution • De allíque la frecuencia a la que se hicieron las mediciones es, considerando aire en el interior de la línea rígida: • d) 284
  • 285.
    Solution • e) Lafunción (|V(z)|) es máxima en z = ‒15 cm = ‒0.375λ, de modo que el radicando también debe ser máximo. O sea que: • por lo tanto: ‒1.5π + θ = 0 → θ = 270° = ‒90°. 285
  • 286.
  • 287.
    Solution • El coeficientede reflexión en la carga es entonces igual a 0.43 / ‒90°. • La impedancia de la carga se puede obtener: 287
  • 288.
    Solution La carga buscadatiene una resistencia de 51.6 Ω y una reactancia capacitiva de 54.4 Ω. La gráfica de la onda estacionaria de voltaje sería como se muestra en la gráfica izquierda de la figura. 288
  • 289.
    Solution • El resultadoanterior puede verificarse mediante la ecuación de ZL, prolongando imaginariamente la gráfica de la onda estacionaria de voltaje hasta obtener otro máximo (gráfica derecha de la figura), en donde la impedancia sería real e igual a 187.5 Ω (resultado del inciso a). 289
  • 290.
    Solution • En lacarga (z = 0) se vería una “impedancia de entrada” dada por: Impedancia buscada al final de la línea real: 290
  • 291.
    Solution • Este resultadocoincide con el hallado anteriormente. 291
  • 292.
    Rule • When theload is capacitive, the standing voltage wave is upward where the line ends. • This is in line with the graph and the results obtained in the previous exercise. 292
  • 293.
    Rule • On theother hand, if the load is inductive, at the end of the line there will be a descending voltage wave. 293
  • 294.
    Reflections on thegenerator • El generador es la fuente original de las ondas de voltaje y corriente que viajan a lo largo de la línea hacia la carga. • El generador tiene una impedancia interna, Zg, que se combina en serie con la impedancia de entrada de la línea cuando ambos se conectan. 294
  • 295.
    Reflections on thegenerator • Esta impedancia de entrada Zi será igual a Z0 si la línea está acoplada con la carga (ZL = Z0). • Si no hay acoplamiento, Zi será función de la combinación entre Z0 y ZL dada por: 295
  • 296.
    Reflections on thegenerator Línea de transmisión alimentada por un generador Vg con impedancia interna Zg 296
  • 297.
    Reflections on thegenerator • La impedancia de entrada también se puede calcular en función del coeficiente de reflexión de voltajes en la carga, que para una línea sin pérdidas toma la forma: 297
  • 298.
    Reflections on thegenerator • En la fórmula anterior se observa que el término ρe‒j2βl es el coeficiente de reflexión trasladado al punto inicial de la línea para z = ‒l. 298
  • 299.
    Reflections on thegenerator • Supóngase que una onda reflejada en la carga (debido a que ZL ≠ Z0) se dirige de regreso al generador. • Si Zg (que se convierte en la nueva carga) ≠ Z0, habrá un coeficiente de reflexión en la entrada de la línea, dando origen a una segunda onda que se dirigirá hacia la carga ZL, y así sucesivamente. 299
  • 300.
    Reflections on thegenerator • Este proceso podría durar indefinidamente, y la onda estacionaria final sería la superposición de todas las ondas producidas. • Este efecto se reduce en la práctica debido a que α ≠ 0 y la amplitud de las ondas reflejadas disminuye de acuerdo con e‒αl en cada sentido. 300
  • 301.
    Reflections on thegenerator • Es común que el valor de Zg sea muy cercano o igual al de Z0 (generador acoplado con la línea). • Esto hace que la onda reflejada en el generador sea despreciable o casi nula. 301
  • 302.
    Reflections on thegenerator Conclusión: • La conexión ideal para que se le entregue máxima potencia a la línea y no haya reflexiones, es que Zg = Z0 = ZL. • La potencia entregada a la línea (Pi), es la mitad de la potencia total original, y si α ≈ 0, la potencia entregada a la carga es prácticamente igual a Pi. 302
  • 303.
    La matriz detransmisión
  • 304.
    La matriz detransmisión • Supóngase que no hay reflexión en el generador y que las ondas totales de voltaje y corriente en una línea están dadas por las ecuaciones: 304
  • 305.
    La matriz detransmisión • Una línea puede ser considerada como una red de dos puertos. 305
  • 306.
    La matriz detransmisión • Los voltajes y corrientes evaluados en ambos extremos serían: 306
  • 307.
    La matriz detransmisión • De estas cuatro ecuaciones se puede obtener expresiones matemáticas para las variables de entrada en función de las variables de salida, o viceversa. • De las primeras ecuaciones se tiene que: 307
  • 308.
    La matriz detransmisión • y • Sustituyendo los valores encontrados de A y B en las dos ecuaciones restantes: 308
  • 309.
    La matriz detransmisión • O sea: • y: Vi 309
  • 310.
    La matriz detransmisión • Escritas en forma matricial: 310
  • 311.
    La matriz detransmisión • La matriz de transmisión se simplifica cuando α = 0, resultando: 311 𝐼𝑖 = 𝐼𝐿𝑐𝑜𝑠𝛽𝑙 + 𝑗 𝑉𝐿 𝑍0 𝑠𝑒𝑛𝛽𝑙
  • 312.
  • 313.
    Voltajes y corrientesen función de las variables de entrada • También es posible obtener expresiones para el voltaje y la corriente en cualquier punto de la línea en función de las variables de entrada, (Vi e Ii). • Para esto, conviene tomar ahora z = 0 en donde la línea comienza. 313
  • 314.
    Voltajes y corrientesen función de las variables de entrada 314
  • 315.
    Voltajes y corrientesen función de las variables de entrada • Nuevamente, partiendo de las ecuaciones: Cuando z = 0 se tiene: 315
  • 316.
    Voltajes y corrientesen función de las variables de entrada • Resolviendo para A y B: • Y sustituyendo A y B: 316
  • 317.
    Voltajes y corrientesen función de las variables de entrada • o usando funciones hiperbólicas: 317
  • 318.
    Voltajes y corrientesen función de las variables de entrada • Para la corriente, con el mismo procedimiento se obtiene: 318
  • 319.
    Voltajes y corrientesen función de las variables de entrada • O: 319
  • 320.
    Voltajes y corrientesen función de las variables de entrada • Si las pérdidas en la línea se consideran despreciables (α = 0), entonces γ = jβ y las ecuaciones de corriente y voltaje se reducen a: 320
  • 321.
    Ejercicio 2-16 • Unalínea sin pérdidas con Z0 = 100 Ω mide 1.3λ a cierta frecuencia de trabajo. Al final se conecta una carga de 80 + j40 Ω. • Si se sabe que el voltaje en la carga es de 3.8/‒50° V, ¿cuánto vale el voltaje al principio de la línea? 321
  • 322.
    Solución donde βl =(2π/λ)(1.3λ) = 2.6π 322
  • 323.
    Solución • Como enla carga debe cumplirse que VL = ILZL, entonces: • y 323
  • 324.
  • 325.
    Ejercicio 2.17 • Unalínea sin pérdidas con Z0 = 50 Ω mide 1.2 λ a cierta frecuencia de trabajo. • La línea es alimentada por un generador con Vg = 15 /0° V, cuya resistencia interna es igual a 50 Ω. Al final de la línea hay una carga de 25 + j25 Ω. 325
  • 326.
    Ejercicio 2.17 Encuentre: • a)el voltaje en la entrada de la línea, b) el voltaje en la carga, c) la relación de onda estacionaria, d) la potencia promedio entregada a la entrada de la línea, y e) la potencia promedio entregada a la carga. 326
  • 327.
    Solución a) La corrientede entrada es igual a: 327
  • 328.
    Solución • A suvez Zi puede hallarse como: 328
  • 329.
    Solución • Por lotanto, el voltaje de entrada a la línea, Vi, es: 329
  • 330.
    Solución • b) Enla carga, el voltaje se puede obtener (con z = 1) mediante: 330
  • 331.
  • 332.
    Solución • d) Lapotencia promedio entregada a la entrada de la línea es igual a: 332
  • 333.
    Solución e) Finalmente, lapotencia promedio entregada a la carga es: 333
  • 334.
  • 335.
    Solución • La potenciainicial es igual a la potencia entregada a la carga. • Esto se obtiene aplicando el principio de conservación de energía, ya que se consideró que no hay pérdidas en la línea. • Esa potencia no es la máxima posible porque la línea no está acoplada con la carga. 335
  • 336.
    Solución • Para obtenerla máxima potencia posible, se necesitaría que ZL = 50 Ω. Bajo esta condición, Zi sería también igual a 50 Ω y Vi = 7.5/0° V e Ii = 0.15 /0° A. • Por lo tanto, la potencia máxima de entrada sería 0.5625 W, y para una línea sin pérdidas esta potencia sería la misma entregada en la carga. 336
  • 337.
    Solución • En lapráctica las líneas sí tienen pérdidas. • De otra manera no habría que utilizar repetidores en líneas muy largas. • La atenuación se puede incorporar en la solución de un problema, utilizando las ecuaciones generales con γ = α + jβ. 337