MSM07G8_RESBK_Ch14_28-35.pe          2/15/06          10:48 AM   Page 29




                 Name                                                                 Date              Class


                   LESSON        Practice B
                   14-4 Subtracting Polynomials
                 Find the opposite of each polynomial.
                   1. 18xy 3                                       2. ؊9a ؉ 4                    3. 6d 2 ؊ 2d ؊ 8

                                    9a ؊ 4                                 9a ؊ 4                   ؊6d 2 ؉ 2d ؉ 8

                 Subtract.
                   4. (4n 3 ؊ 4n ؉ 4n 2) ؊ (6n ؉ 3n 2 ؊ 8)                        5. (؊2h 4 ؉ 3h ؊ 4) ؊ (2h ؊ 3h 4 ؉ 2)

                           4n 3 ؉ n 2 ؊ 10n ؉ 8                                              h4 ؉ h ؊ 6
                   6. (6m ؉ 2m 2 ؊ 7) ؊ (؊6m 2 ؊ m ؊ 7)                           7. (17x 2 – x ؉ 3) – (14x 2 ؉ 3x ؉ 5)

                                       8m 2 ؉ 7m                                          3x 2 ؊ 4x ؊ 2
                   8. w ؉ 7 ؊ (3w 4 ؉ 5w 3 ؊ 7w 2 ؉ 2w ؊ 10)

                         ؊3w 4 ؊ 5w 3 ؉ 7w 2 ؊ w ؉ 17

                   9. (9r 3s ؊ 3rs ؉ 4rs 3 ؉ 5r 2s 2) ؊ (2rs 2 ؊ 2r 2s 2 ؉ 6rs ؉ 7r 3s ؊ 9)

                         2r 3s ؉ 7r 2s 2 ؉ 4rs 3 ؊ 2rs 2 ؊ 9rs ؉ 9

                 10. (3qr 2 ؊ 2 ؉ 14q 2r 2 ؊ 9qr) ؊ (؊10qr ؉ 11 ؊ 5qr 2 ؉ 6q 2r 2)

                         8؊ 13

                 11. The volume of a rectangular prism, in cubic meters, is given by
                     the expression x 3 ؉ 7x 2 ؉ 14x ؉ 8. The volume of a smaller
                     rectangular prism is given by the expression x 3 ؉ 5x 2 ؉ 6x.
                     How much greater is the volume of the larger rectangular prism?

                         2x 2 ؉ 8x ؉ 8 cubic meters

                 12. Sarah has a table with an area, in square inches, given by the
                     expression of y 2 ؉ 30y ؉ 200. She has a tablecloth with an area,
                     in square inches, given by the expression of y 2 ؉ 18y ؉ 80.
                     She wants the tablecloth to cover the top of the table. What
                     expression represents the number of square inches of additional
                     fabric she needs to cover the top of the table?

                         1are inches of fabric
                  Copyright © by Holt, Rinehart and Winston.
                  All rights reserved.                                       29                             Holt Mathematics
MSM07G8_RESBK_Ch14_52-64.pe                                                        2/15/06                  11:10 AM                     Page 58




         LESSON Puzzles, Twisters & Teasers                                                                                                            LESSON Practice A
         14-3 It’s Amazing!                                                                                                                            14-4 Subtracting Polynomials
        Make your way through the maze by finding the sum of each                                                                                     Find the opposite of each polynomial.
        set of polynomials. You may move up, down, left, right or
                                                                                                                                                       1. xy 2                                               2. ؊8p 4q 3                          3. 5 ؊ 12a
        diagonally, but you may not enter a square more than once.
                                                                                                                                Sum                                                       2                                     4 3
                                                                                                                                                                                 ؊xy                                      8p q                               12a ؊ 5
          1. (5x 2 ؊ 4x) ؉ (3x 2 ؉ 7x ؊ 2)                                                                           8x 2 ؉ 3x ؊ 2                     4. 4k 3j ؉ 3k                                         5. 2u 2 ؊ 6u ؉ 9                     6. ؊d 4e 3 ؊ 2d 3e 4 ؊ 8de
          2. (؊6x 2 ؉ x ؊ 8) ؉ (11x 2 ؊ 5x)                                                                          5x 2 ؊ 4x ؊ 8
                                                                                                                                                                         ؊4k 3j ؊ 3k                               ؊2u 2 ؉ 6u ؊ 9                  d 4e 3 ؉ 2d 3e 4 ؉ 8de
          3. (2x 2 ؉ 12x ؊ 14) ؉ (؊8x 2 ؊ 15x) ؉ (7x ؉ 20)                                                        ؊6x 2 ؉ 4x ؉ 6
          4.    10x 2 ؊ 4x ؉ 17                                                                                                                       Subtract.
               ؉ 3x 2 ؉ 9x ؊ 20                                                                                      13x 2 ؉ 5x ؊ 3                    7. (b 2 ؉ 9) ؊ (3b 2 ؊ 5)                                                8. (2x 2 ؊ 3x) ؊ (x 2 ؉ 7)
                             3               2
          5.     6x ؊ 3x ؉ 7x ؉ 4
                                                                                                            11x 3 ؉ 8x 2 ؉ 7x ؊ 6                                            ؊2b 2 ؉ 14                                                       x 2 ؊ 3x ؊ 7
               ؉ 5x 3 ؉ 11x 2 ؊ 10
                                                                                                                                                                         2                               2
                                                                                                                                                       9. (–2x ؉ 8x ؉ 9) ؊ (9x ؉ 6x ؊ 2)                                    10. (5y ؉ 8y 2 ؉ y) ؊ (9y 3 ؉ 7y 2 ؊ 2)
                                                                                                                                                                                                                                          3



                                                                                                                                                                     ؊11x 2 ؉ 2x ؉ 11                                                 ؊4y 3 ؉ y 2 ؉ y ؉ 2
                         8x 2         ؊              3x       5x 2         ؉       4x 2      ؉       9          ؊           ؉                         11. (5q ؉ q ؉ q ؉ 2q ؊ 5q ؉ 3) ؊ (3 ؊ 2q ؉ q 2 ؊ 10q)
                                                                                                                                                                     5           4            3      2                                3



                             ؉        2x             2        17x 2        ؊       6x        ؉      3x 2         5          ؉
                                                                                                                                                             5q 5 ؉ q 4 ؉ 3q 3 ؉ q 2 ؉ 5q

                                                                                                                                                      12. ؊2f ؊ (f 4 ؉ 3f 3g ؉ 2f 2g ؊ 3fg ؊ 2f ؊ 10)
                             7x       3x ؊؊ ؊                  ؉          12x 2    4x        13      ؉          8x          6x
                                                                                                                                                             ؊f 4 ؊ 3f 3g ؊ 2f 2g ؉ 3fg ؉ 10
                          ؉           ؉          4x 2          18         12       ؊         6      11x 3       ؉          11x 3
                                                                                                                                                      13. (nm 2 ؊ 2n 3 ؉ 4n 2m 2 ؊ nm ؉ 15) ؊ (؊10nm ؉ 4n 2 ؊ 5nm 2 ؉ 6n 2m 2 ؊ 2n 3)
                         13x             2           ؊        ؊6x؊؊ 8
                                                                 2                  9        3       ؊           7         4x 2
                                                                                                                                                             ؊2n 2m 2 ؉ 6nm 2 ؊ 4n 2 ؉ 9nm ؉ 15
                         ؊5x 2 4x ؊ ؉
                                   ؊                          6x          13x 2    ؊         5x      ؊          6x 2 ؊8x 2
                                                                                                                                                      14. Suppose the number of boxes (in millions) of crayons
                                                                                                                                                          manufactured annually by the Great Crayon Company is shown
                         8x 2        4x 2            ؉؊ 6
                                                       ؊                   ؉       13        9x     6x 2        8x 2؊ ؉
                                                                                                                     ؊                                    by the expression 9x 2 ؊ 8x ؉ 7. If the rest of the crayon-
                                                                                                                                                          making companies manufacture 6x 2 ؊ 3x ؉ 4 crayons, how
                             ؊           ؊           3         ؉          5x       13x      14x      ؉          7x 2        7x                            many more crayons does The Great Crayon Company
                                                                                                                                                          manufacture each year than the rest of the crayon-making
                                                                                                                                                          companies?
                       ؊2x 2        11x 2            ؉         ؉           ؊       37       11x 3    ؊          5x 2        ؊
                                                                                                                                                             3x 2 ؊ 5x ؉ 3 crayons
                             8        5x             8x       8x 2         ؉        3       11x 2   14x 2       ؉           6

        Copyright © by Holt, Rinehart and Winston.
        All rights reserved.
                                                                                       27                                          Holt Mathematics   Copyright © by Holt, Rinehart and Winston.
                                                                                                                                                      All rights reserved.
                                                                                                                                                                                                                           28                                  Holt Mathematics



         LESSON Practice B                                                                                                                             LESSON Practice C
         14-4 Subtracting Polynomials                                                                                                                  14-4 Subtracting Polynomials
       Find the opposite of each polynomial.                                                                                                          Find the opposite of each polynomial.
                                                                                                                                                          1
         1. 18xy 3                                                  2. ؊9a ؉ 4                                   3. 6d 2 ؊ 2d ؊ 8                      1. ᎏᎏc 5d 4e
                                                                                                                                                          8
                                                                                                                                                                                                             2. ؊1.9f ؉ 4g ؊ 2.8h 4               3. mn 2 ؉ mn ؊ m 2n
                                                                                                                                                                              1
                         ؊18xy 3                                                  9a ؊ 4                               ؊6d 2 ؉ 2d ؉ 8                                        ؊ᎏᎏc 5d 4e
                                                                                                                                                                              8                                   1.9f ؊ 4g ؉ 2.8h 4                 ؊mn 2 ؊ mn ؉ m 2n

       Subtract.                                                                                                                                      Subtract.
         4. (4n 3 ؊ 4n ؉ 4n 2) ؊ (6n ؉ 3n 2 ؊ 8)                                            5. (؊2h 4 ؉ 3h ؊ 4) ؊ (2h ؊ 3h 4 ؉ 2)                            ΂
                                                                                                                                                                             1        3
                                                                                                                                                       4. k 3 ؊ ᎏᎏk ؉ ᎏᎏk 2 ؊ ᎏᎏk ؉ ᎏᎏk 2 ؊ 6
                                                                                                                                                                4     4       2     4             ͒ ͑1       3
                                                                                                                                                                                                                      ͒
                                                                                                                                                                 3
                                                                                                                                                                 3
                         3
                 4n ؉ n ؊ 10n ؉ 8    2                                                                      4
                                                                                                         h ؉h؊6                                              k ؉ ᎏᎏk ؉ 6
                                                                                                                                                                 4
         6. (6m ؉ 2m 2 ؊ 7) ؊ (؊6m 2 ؊ m ؊ 7)                                               7. (17x 2 – x ؉ 3) – (14x 2 ؉ 3x ؉ 5)
                                                                                                                                                       5. (100m 2 ؊ 25m 3 ؉ 35) ؊ (94m 2 ؉ 30m ؉ 5m 3 ؊ 25)

                              8m ؉ 7m2                                                                      2
                                                                                                      3x ؊ 4x ؊ 2                                            ؊30m 3 ؉ 6m 2 ؊ 30m ؉ 60
                                         4                3           2
         8. w ؉ 7 ؊ (3w ؉ 5w ؊ 7w ؉ 2w ؊ 10)                                                                                                           6. (17n 3p ؊ 12np ؉ 4np 3 ؉ 19) ؊ (12np 3 ؉ 6np ؉ 7n 3p ؊ 9)
               ؊3w 4 ؊ 5w 3 ؉ 7w 2 ؊ w ؉ 17                                                                                                                  10n 3p ؊ 8np 3 ؊ 18np ؉ 28

                                                                                                                                                                                  ͑1                          ͒
                     3                               3         2 2                 2         2 2                       3
         9. (9r s ؊ 3rs ؉ 4rs ؉ 5r s ) ؊ (2rs ؊ 2r s ؉ 6rs ؉ 7r s ؊ 9)                                                                                 7. 13q 5r 5 ؊ ᎏᎏq3 ؉ 2r 6 ؊ 10 ؊ 11q 5r 5
                                                                                                                                                                     25
               2r 3s ؉ 7r 2s 2 ؉ 4rs 3 ؊ 2rs 2 ؊ 9rs ؉ 9                                                                                                                             1
                                                                                                                                                             2q r ؊ ᎏᎏq 3 ؊ 2r 6 ؉ 10
                                                                                                                                                                     5 5
                                                                                                                                                                                     25
       10. (3qr 2 ؊ 2 ؉ 14q 2r 2 ؊ 9qr) ؊ (؊10qr ؉ 11 ؊ 5qr 2 ؉ 6q 2r 2)
                                                                                                                                                       8. (3st 2 ؊ 2s 3 ؉ 14s 2t 2) ؊ (؉ 4s 2 ؊ 5st 2 ؉ 6s 2t 2) ؊ (؊3s 3 ؉ 14s 2)
               8q 2r 2 ؉ 8qr 2 ؉ qr ؊ 13
                                                                                                                                                             8s 2t 2 ؉ s 3 ؉ 8st 2 ؊ 18s 2
       11. The volume of a rectangular prism, in cubic meters, is given by
           the expression x 3 ؉ 7x 2 ؉ 14x ؉ 8. The volume of a smaller                                                                                9. The area of a square, in square yards, is given by the
           rectangular prism is given by the expression x 3 ؉ 5x 2 ؉ 6x.                                                                                  expression 4u 4 ؉ 8u 3 ؉ 12u 2 ؉ 8u ؉ 4. The area of a smaller
           How much greater is the volume of the larger rectangular prism?                                                                                square is given by the expression 4u 4 ؉ 4u 3 ؉ 5u 2 ؉ 2u ؉ 1.
                                                                                                                                                          How much greater is the area of the larger square?
               2x 2 ؉ 8x ؉ 8 cubic meters
                                                                                                                                                             4u 3 ؉ 7u 2 ؉ 6u ؉ 3 square yards
       12. Sarah has a table with an area, in square inches, given by the
           expression of y 2 ؉ 30y ؉ 200. She has a tablecloth with an area,                                                                          10. The volume of a rectangular prism, in cubic meters, is given
           in square inches, given by the expression of y 2 ؉ 18y ؉ 80.                                                                                   by the expression c 3 ؉ 4c 2 ؉ 3c. The volume of a smaller
           She wants the tablecloth to cover the top of the table. What                                                                                   rectangular prism is given by the expression c 3 ؊ c 2 ؊ 2c.
           expression represents the number of square inches of additional                                                                                How much greater is the volume of the larger rectangular prism?
           fabric she needs to cover the top of the table?
                                                                                                                                                             5c 2 ؉ 5c cubic meters
               12y ؉ 120 more square inches of fabric
        Copyright © by Holt, Rinehart and Winston.
        All rights reserved.
                                                                                       29                                          Holt Mathematics   Copyright © by Holt, Rinehart and Winston.
                                                                                                                                                      All rights reserved.
                                                                                                                                                                                                                           30                                  Holt Mathematics




      Copyright © by Holt, Rinehart and Winston.
      All rights reserved.
                                                                                                                                                 58                                                                                             Holt Mathematics

14 4+practice+b+adv

  • 1.
    MSM07G8_RESBK_Ch14_28-35.pe 2/15/06 10:48 AM Page 29 Name Date Class LESSON Practice B 14-4 Subtracting Polynomials Find the opposite of each polynomial. 1. 18xy 3 2. ؊9a ؉ 4 3. 6d 2 ؊ 2d ؊ 8 9a ؊ 4 9a ؊ 4 ؊6d 2 ؉ 2d ؉ 8 Subtract. 4. (4n 3 ؊ 4n ؉ 4n 2) ؊ (6n ؉ 3n 2 ؊ 8) 5. (؊2h 4 ؉ 3h ؊ 4) ؊ (2h ؊ 3h 4 ؉ 2) 4n 3 ؉ n 2 ؊ 10n ؉ 8 h4 ؉ h ؊ 6 6. (6m ؉ 2m 2 ؊ 7) ؊ (؊6m 2 ؊ m ؊ 7) 7. (17x 2 – x ؉ 3) – (14x 2 ؉ 3x ؉ 5) 8m 2 ؉ 7m 3x 2 ؊ 4x ؊ 2 8. w ؉ 7 ؊ (3w 4 ؉ 5w 3 ؊ 7w 2 ؉ 2w ؊ 10) ؊3w 4 ؊ 5w 3 ؉ 7w 2 ؊ w ؉ 17 9. (9r 3s ؊ 3rs ؉ 4rs 3 ؉ 5r 2s 2) ؊ (2rs 2 ؊ 2r 2s 2 ؉ 6rs ؉ 7r 3s ؊ 9) 2r 3s ؉ 7r 2s 2 ؉ 4rs 3 ؊ 2rs 2 ؊ 9rs ؉ 9 10. (3qr 2 ؊ 2 ؉ 14q 2r 2 ؊ 9qr) ؊ (؊10qr ؉ 11 ؊ 5qr 2 ؉ 6q 2r 2) 8؊ 13 11. The volume of a rectangular prism, in cubic meters, is given by the expression x 3 ؉ 7x 2 ؉ 14x ؉ 8. The volume of a smaller rectangular prism is given by the expression x 3 ؉ 5x 2 ؉ 6x. How much greater is the volume of the larger rectangular prism? 2x 2 ؉ 8x ؉ 8 cubic meters 12. Sarah has a table with an area, in square inches, given by the expression of y 2 ؉ 30y ؉ 200. She has a tablecloth with an area, in square inches, given by the expression of y 2 ؉ 18y ؉ 80. She wants the tablecloth to cover the top of the table. What expression represents the number of square inches of additional fabric she needs to cover the top of the table? 1are inches of fabric Copyright © by Holt, Rinehart and Winston. All rights reserved. 29 Holt Mathematics
  • 2.
    MSM07G8_RESBK_Ch14_52-64.pe 2/15/06 11:10 AM Page 58 LESSON Puzzles, Twisters & Teasers LESSON Practice A 14-3 It’s Amazing! 14-4 Subtracting Polynomials Make your way through the maze by finding the sum of each Find the opposite of each polynomial. set of polynomials. You may move up, down, left, right or 1. xy 2 2. ؊8p 4q 3 3. 5 ؊ 12a diagonally, but you may not enter a square more than once. Sum 2 4 3 ؊xy 8p q 12a ؊ 5 1. (5x 2 ؊ 4x) ؉ (3x 2 ؉ 7x ؊ 2) 8x 2 ؉ 3x ؊ 2 4. 4k 3j ؉ 3k 5. 2u 2 ؊ 6u ؉ 9 6. ؊d 4e 3 ؊ 2d 3e 4 ؊ 8de 2. (؊6x 2 ؉ x ؊ 8) ؉ (11x 2 ؊ 5x) 5x 2 ؊ 4x ؊ 8 ؊4k 3j ؊ 3k ؊2u 2 ؉ 6u ؊ 9 d 4e 3 ؉ 2d 3e 4 ؉ 8de 3. (2x 2 ؉ 12x ؊ 14) ؉ (؊8x 2 ؊ 15x) ؉ (7x ؉ 20) ؊6x 2 ؉ 4x ؉ 6 4. 10x 2 ؊ 4x ؉ 17 Subtract. ؉ 3x 2 ؉ 9x ؊ 20 13x 2 ؉ 5x ؊ 3 7. (b 2 ؉ 9) ؊ (3b 2 ؊ 5) 8. (2x 2 ؊ 3x) ؊ (x 2 ؉ 7) 3 2 5. 6x ؊ 3x ؉ 7x ؉ 4 11x 3 ؉ 8x 2 ؉ 7x ؊ 6 ؊2b 2 ؉ 14 x 2 ؊ 3x ؊ 7 ؉ 5x 3 ؉ 11x 2 ؊ 10 2 2 9. (–2x ؉ 8x ؉ 9) ؊ (9x ؉ 6x ؊ 2) 10. (5y ؉ 8y 2 ؉ y) ؊ (9y 3 ؉ 7y 2 ؊ 2) 3 ؊11x 2 ؉ 2x ؉ 11 ؊4y 3 ؉ y 2 ؉ y ؉ 2 8x 2 ؊ 3x 5x 2 ؉ 4x 2 ؉ 9 ؊ ؉ 11. (5q ؉ q ؉ q ؉ 2q ؊ 5q ؉ 3) ؊ (3 ؊ 2q ؉ q 2 ؊ 10q) 5 4 3 2 3 ؉ 2x 2 17x 2 ؊ 6x ؉ 3x 2 5 ؉ 5q 5 ؉ q 4 ؉ 3q 3 ؉ q 2 ؉ 5q 12. ؊2f ؊ (f 4 ؉ 3f 3g ؉ 2f 2g ؊ 3fg ؊ 2f ؊ 10) 7x 3x ؊؊ ؊ ؉ 12x 2 4x 13 ؉ 8x 6x ؊f 4 ؊ 3f 3g ؊ 2f 2g ؉ 3fg ؉ 10 ؉ ؉ 4x 2 18 12 ؊ 6 11x 3 ؉ 11x 3 13. (nm 2 ؊ 2n 3 ؉ 4n 2m 2 ؊ nm ؉ 15) ؊ (؊10nm ؉ 4n 2 ؊ 5nm 2 ؉ 6n 2m 2 ؊ 2n 3) 13x 2 ؊ ؊6x؊؊ 8 2 9 3 ؊ 7 4x 2 ؊2n 2m 2 ؉ 6nm 2 ؊ 4n 2 ؉ 9nm ؉ 15 ؊5x 2 4x ؊ ؉ ؊ 6x 13x 2 ؊ 5x ؊ 6x 2 ؊8x 2 14. Suppose the number of boxes (in millions) of crayons manufactured annually by the Great Crayon Company is shown 8x 2 4x 2 ؉؊ 6 ؊ ؉ 13 9x 6x 2 8x 2؊ ؉ ؊ by the expression 9x 2 ؊ 8x ؉ 7. If the rest of the crayon- making companies manufacture 6x 2 ؊ 3x ؉ 4 crayons, how ؊ ؊ 3 ؉ 5x 13x 14x ؉ 7x 2 7x many more crayons does The Great Crayon Company manufacture each year than the rest of the crayon-making companies? ؊2x 2 11x 2 ؉ ؉ ؊ 37 11x 3 ؊ 5x 2 ؊ 3x 2 ؊ 5x ؉ 3 crayons 8 5x 8x 8x 2 ؉ 3 11x 2 14x 2 ؉ 6 Copyright © by Holt, Rinehart and Winston. All rights reserved. 27 Holt Mathematics Copyright © by Holt, Rinehart and Winston. All rights reserved. 28 Holt Mathematics LESSON Practice B LESSON Practice C 14-4 Subtracting Polynomials 14-4 Subtracting Polynomials Find the opposite of each polynomial. Find the opposite of each polynomial. 1 1. 18xy 3 2. ؊9a ؉ 4 3. 6d 2 ؊ 2d ؊ 8 1. ᎏᎏc 5d 4e 8 2. ؊1.9f ؉ 4g ؊ 2.8h 4 3. mn 2 ؉ mn ؊ m 2n 1 ؊18xy 3 9a ؊ 4 ؊6d 2 ؉ 2d ؉ 8 ؊ᎏᎏc 5d 4e 8 1.9f ؊ 4g ؉ 2.8h 4 ؊mn 2 ؊ mn ؉ m 2n Subtract. Subtract. 4. (4n 3 ؊ 4n ؉ 4n 2) ؊ (6n ؉ 3n 2 ؊ 8) 5. (؊2h 4 ؉ 3h ؊ 4) ؊ (2h ؊ 3h 4 ؉ 2) ΂ 1 3 4. k 3 ؊ ᎏᎏk ؉ ᎏᎏk 2 ؊ ᎏᎏk ؉ ᎏᎏk 2 ؊ 6 4 4 2 4 ͒ ͑1 3 ͒ 3 3 3 4n ؉ n ؊ 10n ؉ 8 2 4 h ؉h؊6 k ؉ ᎏᎏk ؉ 6 4 6. (6m ؉ 2m 2 ؊ 7) ؊ (؊6m 2 ؊ m ؊ 7) 7. (17x 2 – x ؉ 3) – (14x 2 ؉ 3x ؉ 5) 5. (100m 2 ؊ 25m 3 ؉ 35) ؊ (94m 2 ؉ 30m ؉ 5m 3 ؊ 25) 8m ؉ 7m2 2 3x ؊ 4x ؊ 2 ؊30m 3 ؉ 6m 2 ؊ 30m ؉ 60 4 3 2 8. w ؉ 7 ؊ (3w ؉ 5w ؊ 7w ؉ 2w ؊ 10) 6. (17n 3p ؊ 12np ؉ 4np 3 ؉ 19) ؊ (12np 3 ؉ 6np ؉ 7n 3p ؊ 9) ؊3w 4 ؊ 5w 3 ؉ 7w 2 ؊ w ؉ 17 10n 3p ؊ 8np 3 ؊ 18np ؉ 28 ͑1 ͒ 3 3 2 2 2 2 2 3 9. (9r s ؊ 3rs ؉ 4rs ؉ 5r s ) ؊ (2rs ؊ 2r s ؉ 6rs ؉ 7r s ؊ 9) 7. 13q 5r 5 ؊ ᎏᎏq3 ؉ 2r 6 ؊ 10 ؊ 11q 5r 5 25 2r 3s ؉ 7r 2s 2 ؉ 4rs 3 ؊ 2rs 2 ؊ 9rs ؉ 9 1 2q r ؊ ᎏᎏq 3 ؊ 2r 6 ؉ 10 5 5 25 10. (3qr 2 ؊ 2 ؉ 14q 2r 2 ؊ 9qr) ؊ (؊10qr ؉ 11 ؊ 5qr 2 ؉ 6q 2r 2) 8. (3st 2 ؊ 2s 3 ؉ 14s 2t 2) ؊ (؉ 4s 2 ؊ 5st 2 ؉ 6s 2t 2) ؊ (؊3s 3 ؉ 14s 2) 8q 2r 2 ؉ 8qr 2 ؉ qr ؊ 13 8s 2t 2 ؉ s 3 ؉ 8st 2 ؊ 18s 2 11. The volume of a rectangular prism, in cubic meters, is given by the expression x 3 ؉ 7x 2 ؉ 14x ؉ 8. The volume of a smaller 9. The area of a square, in square yards, is given by the rectangular prism is given by the expression x 3 ؉ 5x 2 ؉ 6x. expression 4u 4 ؉ 8u 3 ؉ 12u 2 ؉ 8u ؉ 4. The area of a smaller How much greater is the volume of the larger rectangular prism? square is given by the expression 4u 4 ؉ 4u 3 ؉ 5u 2 ؉ 2u ؉ 1. How much greater is the area of the larger square? 2x 2 ؉ 8x ؉ 8 cubic meters 4u 3 ؉ 7u 2 ؉ 6u ؉ 3 square yards 12. Sarah has a table with an area, in square inches, given by the expression of y 2 ؉ 30y ؉ 200. She has a tablecloth with an area, 10. The volume of a rectangular prism, in cubic meters, is given in square inches, given by the expression of y 2 ؉ 18y ؉ 80. by the expression c 3 ؉ 4c 2 ؉ 3c. The volume of a smaller She wants the tablecloth to cover the top of the table. What rectangular prism is given by the expression c 3 ؊ c 2 ؊ 2c. expression represents the number of square inches of additional How much greater is the volume of the larger rectangular prism? fabric she needs to cover the top of the table? 5c 2 ؉ 5c cubic meters 12y ؉ 120 more square inches of fabric Copyright © by Holt, Rinehart and Winston. All rights reserved. 29 Holt Mathematics Copyright © by Holt, Rinehart and Winston. All rights reserved. 30 Holt Mathematics Copyright © by Holt, Rinehart and Winston. All rights reserved. 58 Holt Mathematics