Lumped-Element System Dynamics


                                                   Joel Voldman*
                     Massachusetts Institute of Technology
                                           *(with thanks to SDS)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 1
Outline
 > Our progress so far
 > Formulating state equations
 > Quasistatic analysis
 > Large-signal analysis
 > Small-signal analysis
 > Addendum: Review of 2nd-order system dynamics




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 2
Our progress so far…
 > Our goal has been to model multi-domain systems
 > We first learned to create lumped models for each
      domain

 > Then we figured out how to move energy between
      domains

 > Now we want to see how the multi-domain system
      behaves over time (or frequency)




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 3
Our progress so far…
  > The Northeastern/ADI RF Switch
  > We first lumped the mechanical domain


                                                                                                              Fixed support
Images removed due to copyright restrictions.
Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison,
                                                                                           I           Dashpot b
and D. Potter. "Microswitches and Microrelays with a View Toward Microwave
Applications." International Journal of RF and Microwave Comput-Aided                                                   Spring k
Engineering 9, no. 4 (1999): 338-347.                                                       +                                      Mass m
                                                                                               V   g
                                                                                                                                    z
                                                                                               -
                      1 µm     Cantilever                                                                                       Fixed plate


             0.5 µm             Pull-down                                                                      Image by MIT OpenCourseWare.
   Silicon                      electrode              Anchor                         Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem
                                                                                      Design. Boston, MA: Kluwer Academic Publishers, 2001, p.
                                                                                      138. ISBN: 9780792372462.
                                   Image by MIT OpenCourseWare.
Adapted from Rebeiz, Gabriel M. RF MEMS: Theory, Design, and
Technology. Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694.



 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                        JV: 6.777J/2.372J Spring 2007, Lecture 10 - 4
Our progress so far…
 > Then we introduced a two-port capacitor to convert
      energy between domains
       • Capacitor because it stores potential energy
       • Two ports because there are two ways to store energy
          » Mechanical: Move plates (with charge on plates)
          » Electrical: Add charge (with plates apart)
       • The system is conservative: system energy only depends on
            state variables
                                                                                                       .              1/k
                                                                              I                        g

                                                     2                   +                              +
                                  Q g
                      W (Q, g ) =                                         V                             F                                m
                                  2εA
                                                                                         C
                                                                          -                             -
                                                                                                                  b

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 5
Our progress so far…
                                                                                                     ∂W (Q, g )     Q2
> We first analyzed system                                                                        F=              =
                                                                                                        ∂g      Q
                                                                                                                    2εA
    quasistatically                                                                ∂W (Q, g )     Qg
                                                                           V=                   =
> Saw that there is VERY different                                                   ∂Q       g
                                                                                                  εA
    behavior depending on whether
       • Charge is controlled                                                             dW = VdQ + Fdg
            stable behavior at all gaps
       • Voltage is controlled                                                         dW * = QdV − Fdg
            pull-in at g=2/3g0

> Use of energy or co-energy                                                   ∂W *                   εA
    depends on what is controlled                                           Q=                    =        Vin
                                                                                ∂V            g
                                                                                                      g
       • Simplifies math
                                                                                                           ∂W *    εAVin 2
                                                                                                        F=       =
                                                                                                            ∂g V    2g 2

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 6
Today’s goal
 > How to move from quasi-static to dynamic analysis
 > Specific questions:
         • How fast will RF switch close?
 > General questions:
         • How do we model the dynamics of non-linear systems?
         • How are mechanical dynamics affected by electrical domain?
 > What are the different ways to get from model to
      answer?




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 7
Outline
 > Our progress so far
 > Formulating state equations
 > Quasistatic analysis
 > Large-signal analysis
 > Small-signal analysis
 > Addendum: Review of 2nd-order system dynamics




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 8
Adding dynamics
                                                                                                                           Fixed support
> Add components to complete                                                        Resistor
                                                                                       R       I
   the system:                                                                                                 Dashpot b                 Spring k
                                                                                                                                                           Mass m

                                                                                                   +
   • Source resistor for the voltage                                           +
       source                                                            Vin                       V
                                                                                -                          g
                                                                                                   -
                                                                                                                                                       z
   •   Inertial mass, dashpot                                                                                                                       Fixed plate


> This is now our RF switch!
                                                                                                                                g    z           1/k
> System is nonlinear, so we                                                                           I

                                                                                          R        +                           +
   can’t use Laplace to get                                               +
                                                                                                                  C
                                                                                                                               F                                    m
                                                                   Vin                             V
   transfer functions                                                     -                                    W(Q,g)
                                                                                                   -                           -

> Instead, model with state                                                                                                                  b

   equations
                                                                                                                             Image by MIT OpenCourseWare.
                                                                   Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design. Boston,
                                                                   MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462.



                                                                         Electrical domain                         Mechanical domain
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                         JV: 6.777J/2.372J Spring 2007, Lecture 10 - 9
State Equations
 > Dynamic equations for general
      system (linear or nonlinear) can be
      formulated by solving equivalent
      circuit
 > In general, there is one state variable
      for each independent energy-storage
      element (port)                                                                      Goal:
 > Good choices for state variables:                                                    ⎡Q ⎤
                                                                                     d ⎢ ⎥ ⎛ functions of            ⎞
                                                                                                ⎜                    ⎟
      the charge on a capacitor                                                         ⎢ g ⎥ = ⎜ Q,g,g or constants ⎟
                                                                                        ⎢g ⎥ ⎝                       ⎠
      (displacement) and the current in an                                           dt
      inductor (momentum)                                                               ⎣ ⎦

 > For electrostatic transducer, need
      three state variables
         • Two for transducer (Q,g)
         • One for mass (dg/dt)
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 10
Formulating state equations
 > Start with Q
                                                                                                   + eR - I
 > We know that dQ/dt=I                                                                                  R        +               C
                                                                                       +
 > Find relation between I and                                                Vin                                  V
                                                                                       -                                      W(Q,g)

      state variables and constants                                                                                -

         KVL : Vin − eR − V = 0
                                                             eR = IR
                 Vin − IR − V = 0
              dQ        1
                 = I = (Vin − V )
              dt        R                                          Qg
                                                                V=
                                                                   εA
               dQ 1 ⎛      Qg ⎞
                 = ⎜ Vin −
               dt R ⎝      εA⎟⎠
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 11
Formulating state equations
 > Now we’ll do                                                                                     .
                g                                                                                          .          1/k
                                                                                                    g      z
 > We know that dg
                                                        =g                           C            +            + ek - +
                                                 dt
                                                                                                  F                           em         m
                                                                                 W(Q,g)
                                                                                                   -        - eb + -
                                                                                                                  b
 KVL :                                               ek = kz
 F − ek − em − eb = 0                                                       F − k ( g 0 − g ) + mg + bg = 0
                                                    em = mz
 F − kz − mz − bz = 0                                eb = bz                      1
                                                                             g = − [F − k ( g 0 − g ) + bg ]
                                                                                  m
                                                                             dg   1 ⎡ Q2                       ⎤
    z = g0 − g ⇒ z = − g, z = − g                                               =− ⎢      − k ( g 0 − g ) + bg ⎥
                                                                             dt   m ⎣ 2εA                      ⎦

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 12
Formulating state equations
 > State equation for g is easy:                                                 dg
                                                                                    =g
                                                                                 dt
 > Collect all three nonlinear state equations

                              ⎡         1⎛        Qg ⎞            ⎤
                              ⎢           ⎜ Vin −      ⎟          ⎥
                        ⎡Q ⎤ ⎢          R⎝        εA⎠             ⎥
                     d ⎢ ⎥ ⎢                                      ⎥
                          g⎥=                  g
                     dt ⎢     ⎢                                   ⎥
                        ⎢ g ⎥ ⎢ 1 ⎡ Q2
                        ⎣ ⎦                                     ⎤⎥
                              ⎢ − m ⎢ 2ε A − k ( g 0 − g ) + bg ⎥ ⎥
                              ⎣     ⎣                           ⎦⎦
 > Now we are ready to simulate dynamics



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 13
Outline
 > Our progress so far
 > Formulating state equations
 > Quasistatic analysis
 > Large-signal analysis
 > Small-signal analysis
 > Addendum: Review of 2nd-order system dynamics




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 14
Quasistatic analysis


                        ⎡1 ⎛    Qg ⎞                    ⎤
                        ⎢ ⎜V −     ⎟                    ⎥
              d  ⎡Q ⎤ ⎢ R ⎝ in εA ⎠                     ⎥                      Fixed-point
                 ⎢g ⎥ = ⎢g                              ⎥                      analysis
              dt ⎢ g ⎥ ⎢ 1 ⎡ Q 2
                 ⎣ ⎦                                  ⎤⎥
                          − ⎢
                        ⎢ m 2εA  − k ( g 0 − g ) + bg ⎥ ⎥
                        ⎣    ⎣                        ⎦⎦                                               Given static Vin, etc.
                                   State eqns
                                                                                                       What is deflection,
                                          (Just now)                                                   charge, etc.?
                                                      .   .       1/k
                               I                      g   z

                     R       +           C        +                                       Follow
        +                                         F                            m          causal path
Vin                          V
        -                             W(Q,g)
                                                                                          (Wed)
                              -                   -
                                                              b

                         Equivalent circuit

      Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
      OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                           JV: 6.777J/2.372J Spring 2007, Lecture 10 - 15
State equations
                                                                       For transverse
                                                                       electrostatic actuator:
   State variables                                                                                                ⎡Q ⎤
                                                                State variables:                              x = ⎢g ⎥
             Inputs                                                                                               ⎢g ⎥
                                                                                                                  ⎣ ⎦

              x = f (x, u)                                                           Inputs:                  u = [Vin ]
              y = g (x, u)
                                                                        ⎡1 ⎛        Qg ⎞                    ⎤
                                                                        ⎢ ⎜ Vin −      ⎟                    ⎥
          Outputs                                                       ⎢R ⎝        εA⎠                     ⎥
                                                              f (x,u) = ⎢ g                                 ⎥
                                                                        ⎢                                   ⎥
                                                                        ⎢ 1⎡Q      2
                                                                                                          ⎤⎥
                                                                        ⎢ − m ⎢ 2ε A − k ( g 0 − g ) + bg ⎥ ⎥
                                                                        ⎣     ⎣                           ⎦⎦
                                                                                 Outputs: y = [g ] = g (x, u)
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 16
Fixed points
 > Definition of a fixed point
         • Solution of f(x,u) = 0
         • time derivatives 0
 > Global fixed point
         • A fixed point when u = 0
         • Systems can have multiple global fixed points
         • Some might be stable, others unstable (consider a
            pendulum)

 > Operating point
         • Fixed point when u is a non-zero constant



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 17
Fixed points of the electrostatic actuator
 > This analysis is analogous to what we did last time…

                                                                                         Operating point                     stable
       1⎛      Qg ⎞




                                                                       normalized gap
    0 = ⎜Vin −    ⎟                                                                      1
       R⎝      εA ⎠
    0=g
        1 ⎡ Q2                       ⎤                                                  0.5
    0=− ⎢       − k ( g 0 − g ) + bg ⎥
        m ⎣ 2εA                      ⎦
                                                                                         0
                                                                                          0           0.5        1
                     Qg                                                                          normalized voltage
               Vin =
                     εA                                                                   Last time…
                 Q 2 Vin 2ε A                                                                            εAVin
                                                                                                             2
                     =        = k ( g0 − g )                                              g = g0 −
                2ε A    2g 2
                                                                                                          2kg 2
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                              JV: 6.777J/2.372J Spring 2007, Lecture 10 - 18
Outline
 > Our progress so far
 > Formulating state equations
 > Quasistatic analysis
 > Large-signal analysis
 > Small-signal analysis
 > Addendum: Review of 2nd-order system dynamics




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 19
Large-signal analysis


                        ⎡1 ⎛    Qg ⎞                    ⎤
                        ⎢ ⎜V −     ⎟                    ⎥
              d  ⎡Q ⎤ ⎢ R ⎝ in εA ⎠                     ⎥                      Integrate
                 ⎢g ⎥ = ⎢g                              ⎥                      state eqns
              dt ⎢ g ⎥ ⎢ 1 ⎡ Q 2
                 ⎣ ⎦                                  ⎤⎥
                          − ⎢
                        ⎢ m 2εA  − k ( g 0 − g ) + bg ⎥ ⎥
                        ⎣    ⎣                        ⎦⎦                                               Given a step input
                                   State eqns                                                          Vin(t)u(t)

                                          (Earlier)                                                    What is g(t), Q(t), etc.?
                                                      .   .       1/k
                               I                      g   z

                     R       +           C        +                                       SPICE
        +                                         F                            m
Vin                          V
        -                             W(Q,g)
                              -                   -
                                                              b

                         Equivalent circuit

      Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
      OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                           JV: 6.777J/2.372J Spring 2007, Lecture 10 - 20
Direct Integration
 > This is a brute force approach: integrate the state
      equations
       • Via MATLAB® (ODExx)
       • Via Simulink®
 > We show the SIMULINK® version here
         • Matlab® version later




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 21
Electrostatic actuator in Simulink®

     ⎡Q ⎤
 x = ⎢ g ⎥, u = [Vin ]
                                                                       (u[1]^2)/(2*e*A)            +
     ⎢ ⎥                                                                                           +         -1/m
                                                                       Electrostatic force
     ⎢g ⎥
     ⎣ ⎦
                                                                                                   +
                                                                                                             Inertia

           ⎡1 ⎛       Qg ⎞                   ⎤                                                                              1
           ⎢   ⎜Vin −    ⎟                   ⎥                                                                              s            3
           ⎢R ⎝       εA ⎠                   ⎥                          Spring       k         b   Damping             Velocity      gdot
 f(x, u) = ⎢ g                               ⎥
           ⎢                                 ⎥
           ⎢ 1   ⎡ Q2                      ⎤⎥                          Sum2
                                                                                                                        1
                                                                                                                        s                2
           ⎢− m ⎢ 2εA − k ( g 0 − g ) + bg ⎥ ⎥                                   _
                                                                                         +                                               g
           ⎣     ⎣                         ⎦⎦                                                                          Position


                                                                  At-rest gap g _ 0                          1/(e*A)        *

                                                                                                                         Qg
                                                                                                   _
                                                                                                             1/R            1
                                                                                     1             +                        s            1

                                                                                 V_in                        1/R       Charge            Q




                                                                                                              Image by MIT OpenCourseWare.
                                                          Adapted from Figure 7.8 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer
                                                          Academic Publishers, 2001, p. 174. ISBN: 9780792372462.


Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                             JV: 6.777J/2.372J Spring 2007, Lecture 10 - 22
Electrostatic actuator with contact
                                                                   <
                                                                                                         g_min
                                                              Accel > 0 ?                     >
                                                                            + +
                                                                                          g > g_min?
                         (u[1]^2)/(2*e*A)          +
                                                   +     -1/m
                         Electrostatic force       +     Inertia                                  1
                                                                                                  s
                                                                            Switch          Velocity
                                                                                                                  3
                                                                       0
                          Spring       k       b   Damping                                                       gdot
                                                                   Zero


                                                                                              1
                         Sum2                                                                 s                   2
                                   _
                                        +                                                                         g
                                                                                            Position


                    At-rest gap g _ 0                        1/(e*A)                              *

                                                                                               Qg
                                                   _
                                                             1/R                                  1                1
                                    1              +                                              s
                                                             1/R                                                   Q
                                   V_in                                                      Charge




                                                                                            Image by MIT OpenCourseWare.
                  Adapted from Figure 7.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001,
                  p. 175. ISBN: 9780792372462.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 23
Behavior through pull-in



           7 10 8                                                                  1.6

           6 10 8                           Drive (scaled)                         1.4
                                            Charge                                                                  Release
                                                                                   1.2
           5 10 8
                                                                                   1.0
           4 10 8




                                                                        Position
                                                                                             Pull-in
                                                                                   0.8
           3 10 8
                                                                                   0.6
           2 10 8
                                                                                   0.4
           1 10 8                                                                  0.2
           0 10 0                                                                  0.0
                    0    50    100    150     200    250     300                         0      50     100   150     200      250   300
                                     Time                                                                    Time

                                                                                                   Image by MIT OpenCourseWare.
                 Adapted from Figure 7.10 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001,
                 p. 176. ISBN: 9780792372462.



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                              JV: 6.777J/2.372J Spring 2007, Lecture 10 - 24
Behavior through pull-in



                  1.0
                                                                                    1.4

                  0.5                                                               1.2
                                                Release                                       Drive
                                                                                    1.0
                  0.0                                                                                         Release
       Velocity




                                                                         Position
                             Pull-in                                                0.8

                  -0.5                                                              0.6                         Discharge
                                                                                    0.4
                  -1.0
                                                                                    0.2
                                                                                                  Pull-in
                  -1.5                                                              0.0
                         0   50    100    150     200     250   300                       0      50    100   150    200     250   300
                                         Time                                                                Time
                                                                                                        Image by MIT OpenCourseWare.
Adapted from Figure 7.11 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 177. ISBN: 9780792372462.




 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                              JV: 6.777J/2.372J Spring 2007, Lecture 10 - 25
Outline
 > Our progress so far
 > Formulating state equations
 > Quasistatic analysis
 > Large-signal analysis
 > Small-signal analysis
 > Addendum: Review of 2nd-order system dynamics




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 26
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                           Ei aly                Form TFs
                                             An
                                             g e si
                                                nf s
                                                  ct                 Transfer SSS Frequency
                                                     n
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                 form TFs                       zeros
                                                                                                                          How fast
                                                                       Natural
Equivalent Linearize Linearized                                                                                           can I wiggle
                                                                       system
  circuit              circuit                                                                                            tip?
                                                                      dynamics


 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 27
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                                                                                          Vin(t)?




                                                                                                                          Given O.P.

                                                                                                                          How fast
Equivalent                                                                                                                can I wiggle
  circuit                                                                                                                 tip?



 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 28
Linearization about a fixed point
 > This is EXTREMELY common in MEMS literature
 > This is also done in many other fields, with different
      names
       • Small-signal analysis
       • Incremental analysis
       • Etc.




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 29
Linearization About an Operating Point
> Using Taylor’s theorem, a system can                                                  x = f (x, u)
    be linearized about any fixed point                                                            x (t ) = X 0 + δx (t )
                                                                                                   u(t ) = U0 + δu(t )
> We can do this in one dimension or
    many                                                                                                    Operating point
                                                                                  d (δx )
           f(x)                                                          X0 +             = f (X 0 + δx, U0 + δu)
                                             df/dx                                  dt
~ f(X0+δ x)                                                                                    Multi-dimensional Taylor
 f( X0)=Y0                                                                        ⎛ ∂f                      ⎞          ⎛                 ⎞
                                                        d (δx )                                             ⎟δx (t ) + ⎜ ∂f i
                                                   X0 +         = f (X 0 , U0 ) + ⎜ i
                                                                                  ⎜ ∂x                      ⎟          ⎜ ∂u
                                                                                                                                         ⎟δu(t )
                                                                                                                                         ⎟
                                                          dt
                                                                                  ⎝ j              X 0 ,U 0 ⎠          ⎝ j      X 0 ,U 0 ⎠
                                        δx
                                               x                                                   Cancel
                                   X0
                                                             d (δxi (t ) ) ⎛ ∂f i               ⎞          ⎛
                                                                                                ⎟δx (t ) + ⎜ ∂f i
                                                                                                                              ⎞
                                                                          =⎜
                                                                           ⎜ ∂x                 ⎟ i        ⎜ ∂u
                                                                                                                              ⎟δu (t )
                                                                                                                              ⎟ i
                                                                 dt
                                        df                                 ⎝ j         X 0 ,U 0 ⎠          ⎝ j       X 0 ,U 0 ⎠
    f ( X 0 + δx ) ≈ f ( X 0 ) +                  δx                                                              J2
                                        dx   X0
                                                                                      J1
 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 30
Linearization About an Operating Point
> The resulting set of                                                                    δx (t ) = J1δx + J2δu(t)
    equations are linear, and                                                              ⎡ ∂f1                                       ⎤
                                                                                                           ∂f1            ∂f1
    have dynamics described                                                                ⎢                                           ⎥
                                                                                           ⎢ ∂Q O.P.       ∂g     O. P.
                                                                                                                          ∂g     O. P. ⎥
    by the Jacobians of f(x,u)                                                             ⎢ ∂f            ∂f 2           ∂f 2         ⎥
                                                                                      J1 = ⎢ 2                                         ⎥
    evaluted at the fixed point.                                                           ⎢ ∂Q O.P.       ∂g     O. P.
                                                                                                                          ∂g     O. P. ⎥
                                                                                           ⎢ ∂f 3          ∂f 3           ∂f 3         ⎥
> These describe how much                                                                  ⎢                                           ⎥
                                                                                           ⎢ ∂Q O.P.
                                                                                           ⎣               ∂g     O.P.
                                                                                                                          ∂g     O. P. ⎥
                                                                                                                                       ⎦
    a small change in one state
                                          ⎛                                                                    ⎞
    variable affects itself or            ⎜ g0ˆ                                                  Q0            ⎟
                                          ⎜ −                                                −              0 ⎟
    another state variable                ⎜ RεA                                                  RεA           ⎟       ⎛1⎞
                                  ⎛ δQ ⎞ ⎜                                                                     ⎟⎛ δQ ⎞ ⎜ ⎟
    The O.P. must be evaluated d ⎜ δg ⎟ = ⎜ 0                                                      0        1 ⎟⎜ ⎟ ⎜ R ⎟
>                                 ⎜ ⎟                                                                             δg +
                                                                                                               ⎟⎜ ⎟ ⎜ 0 ⎟ in
                                                                                                                             (δV )
    to use the Jacobian        dt ⎜ ⎟ ⎜                                                                         ⎜ ⎟ ⎜ ⎟
                                  ⎝ δg ⎠ ⎜ Q0                                                      k         b ⎟⎝ δg ⎠ ⎜ 0 ⎟
                                          ⎜−                                                   −           − ⎟         ⎝ ⎠
>   Example – linearization of            ⎜ mεA                                                    m         m⎟
    the voltage-controlled                ⎜                                                                    ⎟        J2
                                          ⎝                                                      J1            ⎠
    electrostatic actuator
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 31
State Equations for Linear Systems
 > Normally expressed with:
         •   x: a vector of state variables
         •   u: a vector of inputs                                                         x = Ax + Bu
         •   y: a vector of outputs
                                                                                           y = Cx + Du
         •   Four matrices, A,B,C, D

 > For us, Jacobian matrices take the place of A and B
 > C and D depend on what outputs are desired
         • Often C is identity and D is zero
 > Can use to simulate time responses to arbitrary
      SMALL inputs
       • Remember, this is only valid for small deviations from O.P.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 32
Direct Integration in Time
                                                                                                             Impulse Response

> Can integrate via Simulink®                                             1000
   model (as before) or




                                                                     Charge
                                                             Charge (Q)
                                                                              500
   MATLAB®

> First define system in                                                                     0
   MATLAB®                                                                                   2
      • using ss(J1,J2,C,D) or




                                                                              Displacement
          alternate method                                                                   0
> Can use MATLAB®                                                                            -2
   commands step, initial,
   impulse etc.                                                                              -4
                                                                                              4
                                                                                              2
> Response of electrostatic
                                                                                              0
                                                                              Velocity


   actuator to impulse of voltage
                                                                                             -2
      • Parameters from text (pg                                                             -4
          167)
                                                                                             -6
                                                                                               0    5         10          15         20         25
                                                                                                                 Time (sec)
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                                   JV: 6.777J/2.372J Spring 2007, Lecture 10 - 33
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                                                 Form TFs

                                                                     Transfer SSS Frequency
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                                                zeros
                                                                                                                          How fast
Equivalent                                                                                                                can I wiggle
  circuit                                                                                                                 tip?



 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 34
Solve via Laplace transform
 > Use Laplace Transforms
      to solve in frequency                                                                   x = Ax + Bu
      domain                                                                              ⇓ Unilateral Laplace
       • Transform DE to algebraic                                            sX ( s ) − x (0) = AX( s ) + BU( s )
            equations
                                                                             sIX ( s ) − x (0) = AX( s ) + BU( s )
         • Use unilateral Laplace to
            allow for non-zero IC’s                                            (sI − A )X( s) = x(0) + BU( s)




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 35
Transfer Functions
 > Transfer functions H(s) are useful for obtaining
      compact expression of input-output relation
         • What is the tip displacement as a function of voltage
 > Most easily obtained from equivalent circuit
 > But can also be obtained from linearized state eqns
         • Depends on A, B, C (or J1, J2, C) matrices
         • Can do this for fun analytically (see attachment at
            end)
         • Matlab can automatically convert from s.s to t.f.                                                     ⎡ Q( s ) ⎤
            formulations                                                                                         ⎢           ⎥
                                                                                                                 ⎢ Vin ( s ) ⎥
 > For our actuator, we would get three transfer                                                                 ⎢ g( s) ⎥
                                                                                                          H(s) = ⎢           ⎥
      functions                                                                                                  ⎢ Vin ( s ) ⎥
                                                                                                                 ⎢ g( s) ⎥
                                                                                                                 ⎢           ⎥
                                                                                                                 ⎣ Vin ( s ) ⎦
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 36
Sinusoidal Steady State
 > When a LTI system is
      driven with a sinusoid, the                                      u (t ) = U 0 cos(ωt )
      steady-state response is a
      sinusoid at the same                                                               Y ( jω ) = H ( jω )U ( jω )
      frequency
 > The amplitude of the                                          y sss (t ) = Y0 cos(ωt + θ )
      response is |H(jω)|
 > The phase of the response
      relative to the drive is the
      angle of H(jω)                                                            Y0 = H ( jω ) U 0
 > A plot of log magnitude vs                                                     Im{H ( jω )}
                                                                           tanθ =
                                                                                  Re{H ( jω )}
      log frequency and angle
      vs log frequency is called
      a Bode plot

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 37
Bode plot of electrostatic actuator
                                                                                                              Bode Diagram
 > Use           Matlab®
                  command                                                                40
                                                                                         20
      bode with previously                                                                 0




                                                                     Magnitude (dB)
                                                                                         -20
      defined system sys
                                                                                         -40
                                                                                         -60
 > Evaluate only one of TFs                                                              -80
                                                                                        -100
                              g( s)
                      H(s) =                                                            -120
                             Vin ( s )                                                  -140
                                                                                         180
 > This tells us how quickly                                                            135

      we can wiggle tip!                                                                 90


                                                                          Phase (deg)
       • At a certain OP!                                                                45

                                                                                           0

                                                                                         -45

                                                                                         -90
                                                                                             -2       -1        0          1         2             3
                                                                                           10       10        10        10         10         10
                                                                                                           Frequency (rad/sec)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                                  JV: 6.777J/2.372J Spring 2007, Lecture 10 - 38
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                                                 Form TFs

                                                                     Transfer SSS Frequency
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                                                zeros
                                                                                                                          How fast
                                                                       Natural
Equivalent                                                                                                                can I wiggle
                                                                       system
  circuit                                                                                                                 tip?
                                                                      dynamics


 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 39
Poles and Zeros
 > For our models, system function is a ratio of polynomials in s
 > Roots of denominator are called poles
         • They describe the natural (unforced) response of the system
 > Roots of the numerator are called zeros
         • They describe particular frequencies that fail to excite any output
 > System functions with the same poles and zeros have the
      same dynamics
                                            −Q0
            g( s)                          ε ARm
    H(s) =           =
           Vin ( s )    3 ⎛ 1   b⎞ 2 ⎛ 1 b k⎞ ⎛ 1 k       Q02 1 ⎞
                       s +⎜    + ⎟s +⎜        + ⎟s+⎜    − 2 2   ⎟
                          ⎝ RC0 m ⎠  ⎝ RC0 m m ⎠ ⎝ RC0 m ε A Rm ⎠
                                                                             εA
                                                     where C0 =
                                                                              ˆ
                                                                              g0
 > MATLAB solution for poles is VERY long
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 40
Pole-zero diagram
 > Displays information                                                                 1
                                                                                                              Pole-Zero Map

                                                                                             tip velocity
      about dynamics of                                                               0.5
                                                                                                                            pole
                                                                                                                                                 ωd




                                                               Imaginary Axis
                                                                                                                            zero
      system function                                                                   0

       • Matlab command                                                               -0.5
            pzmap
                                                                                       -1
                                                                                        -9     -8   -7   -6     -5    -4      -3   -2   -1   0

 > Useful for examining                                                                                       Real A i
                                                                                                               R l axis


      dynamics, stability,                                                              1
                                                                                                              Pole-Zero Map

                                                                                             gap
      etc.                                                                            0.5
                                                                     Imaginary Axis
                                                                                        0


                                                                                      -0.5


                                                                                       -1
                                                                                        -9     -8   -7   -6     -5    -4      -3   -2   -1   0
                                                                                                                Real Axis
                                                                                                              Real axis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 41
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                           Ei aly                Form TFs
                                             An
                                             g e si
                                                nf s
                                                  ct                 Transfer SSS Frequency
                                                     n
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                                                zeros
                                                                                                                          How fast
                                                                       Natural
Equivalent                                                                                                                can I wiggle
                                                                       system
  circuit                                                                                                                 tip?
                                                                      dynamics


 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 42
Eigenfunction Analysis
 > For an LTI system, we can find the eigenvalues and
      eigenvectors of the J1 (or A) matrix describing the internal
      dynamics


   For scalar 1st-order system:                                                         If we try solution:
     dx
        = λx           ⇒ x(t ) = K 0 e λt + K1                                                   x (t ) = Ke λt
     dt
                                                                                        Plug into DE:

                                                                                                  λx = Ax
   Our linear (or linearized)
   homogeneous systems look like:
                                                                                        •This is an eigenvalue
                               δx (t ) = J1δx + J2δu(t)                                    equation
       dx                               d (δx )                                         •If we find λ we can find
          = Ax                                  = J1δx                                  natural frequencies of
       dt                                 dt                                            system


Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 43
Eigenfunction Analysis
 > These λ are the same as the poles si of the system
 > Can solve analytically
         • Find λ from det(A-λI)=0
 > Or numerically eig(sys)

                                      -8.9904
                                      -0.2627 + 0.8455i
                                      -0.2627 - 0.8455i




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 44
Linearized system poles
 > We can use either λi or si to
      determine natural frequencies
      of system

 > As we increase applied
      voltage
         • Stable damped resonant
            frequency decreases                                                            Increasing voltage




                                                                            jω
 > Plotting poles as system
      changes is a root-locus plot




                                                                                                              σ

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 45
Spring softening
  > Plot damped resonant frequency versus applied voltage
  > Resonant frequency is changing because net spring constant
       k changes with frequency
  > This is an electrically tuned mechanical resonator
                                                                                                            1.00




                                                                                Damped resonant frequency
                                                                                                            0.90
                                                                                                            0.80

                                   ε AV 2                                                                   0.70

                    k'=k−                  3
                                                                                                            0.60
                                       g                                                                    0.50

                                                                                                            0.40

                This is called                                                                              0.30
                                                                                                                   0   0.01 0.02 0.03 0.04 0.05 0.06
               spring softening                                                                                               Voltage
                                                                                                          Image by MIT OpenCourseWare.
                                                                      Adapted from Figure 7.5 in Senturia, Stephen D. Microsystem Design.
                                                                    Boston, MA: Kluwer Academic Publishers, 2001, p. 169. ISBN: 9780792372462.




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                                            JV: 6.777J/2.372J Spring 2007, Lecture 10 - 46
Small-signal analysis

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                           Ei aly                Form TFs
                                             An
                                             g e si
                                                nf s
                                                  ct                 Transfer SSS Frequency
                                                     n
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                 form TFs                       zeros
                                                                                                                          How fast
                                                                       Natural
Equivalent Linearize Linearized                                                                                           can I wiggle
                                                                       system
  circuit              circuit                                                                                            tip?
                                                                      dynamics


 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 47
Linearized Transducers
 > Can we directly linearize
      our equivalent circuit?                                                               I
                                                                                                                      1/k       U
                                                                                    R
      YES!                                                                                  +
                                                                                                       C
                                                                                                                 +           +
 > This is perhaps the most                                       Vin(t) +                                       F          Fout           m
                                                                         -                 V
      common analysis in the                                                                -
                                                                                                       W         -           -
                                                                                                                                    b
      literature
                                                                        Source                     Transducer                       Load
 > First, choose what is load                                                                                 Find OP
      and what is transducer
                                                                                                              Linearize
         • Here we include spring
                                                                                            δI                              δU
            with transducer                                                         R
                                                                                            +                               +
                                                                            +                      Linearized
                                                                 δVin(t)                    δV                              δFout          m
                                                                            -                      Transducer
                                                                                            -                               -
                                                                                                                                    b

                                                                           Source                                                   Load
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 48
Linearized Transducer Model
 > First, find O.P.
                            ˆ
                       V0 , g 0 , Q0                                     > Recast in terms of port variables
                                                                                               δI
 > Next, generate matrix to                                                          ⎡δ Q⎤ ⎡ s ⎤
                                                                                              ⎢    ⎥
      relate incremental port                                                        ⎢δ g ⎥ = ⎢δ U ⎥
                                                                                     ⎣ ⎦
      variables to each other                                                                                 ⎣       s⎦
         • Start from energy and force                                   > Define intermediate variables
            relations                                                                  εA        Q0
                                                                                 C0 =     , V0 =
                      V=
                            Qg
                                                                                        ˆ
                                                                                       g0        C0
                            εA
                             Q2
                   Fout   =      − k ( g0 − g )                          > Final expression
                            2ε A
         • Linearize (take partials…)                                                   ⎡ 1                          V0 ⎤
                        ˆ
                      ⎡ g0           Q0 ⎤                                     ⎡δ V ⎤ ⎢ sC0                           sg 0 ⎥ ⎡δ I ⎤
                                                                                                                      ˆ
             ⎡δ V ⎤ ⎢ ε A            ε A ⎥ ⎡δ Q ⎤                             ⎢δ F ⎥ = ⎢ V                                ⎥⎢ ⎥
                                                                                                                      k ⎥ ⎣δ U ⎦
             ⎢δ F ⎥ = ⎢ Q                ⎥⎢ ⎥                                 ⎣ out ⎦ ⎢ 0
             ⎣ out ⎦ ⎢ 0              k ⎥⎣ ⎦
                                            δg                                          ⎢ sg                          s ⎥
                      ⎢ε A
                      ⎣                  ⎥
                                         ⎦                                              ⎣ ˆ0                              ⎦
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 49
Linearized Transducers
 > Now we want to convert this relation into a circuit
 > Many circuit topologies are consistent with this matrix relation
 > THIS IS NOT UNIQUE!
        i           i'                   u'                            u               i                 1:Γ/κ2                   u
                          1:Γ
    +                +               +                                     +       +                                                  +
                                              -1/k'      1/k                                     ∗
                                                                                                Co




                                     {
                                                      1/k*
   υ               υ'             F'                                       F       υ                                                  F
        Co                                                                                                          1/k
   _                _                _                                     _       _                                                  _


             i                                                 u                   i                                                      u
                                                1:Γ
        +                                                          +           +                                                              +
                             Γ2/κ∗                                                               Co                         1
                                                                                                1_Γ                       k_Γ/C   o
        υ                                                          F           υ                              Co                              F
                     Co
        _                                                                                                     Γ
                                                                   _           _                                                              _



                                                                                                                   Image by MIT OpenCourseWare.
             Adapted from Figure 5 on p. 163 in Tilmans, Harrie A. C. "Equivalent Circuit Representations of Electromechanical
             Transducers: I. Lumped-parameter Systems." Journal of Micromechanics and Microengineering 6, no. 1 (1996): 157-176.

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                           JV: 6.777J/2.372J Spring 2007, Lecture 10 - 50
Linearized Transducers
 > This is the one used in the text
    ⎡ δ V ⎤ ⎡ Z EB ϕ Z EB ⎤ ⎡ δ I ⎤
    ⎢δ F ⎥ = ⎢ϕ Z   Z MO ⎥ ⎢δ U ⎥
    ⎣ out ⎦ ⎣ EB          ⎦⎣ ⎦
                           ⎛ ϕ 2 Z EB ⎞
           Z MS     = Z MO ⎜1 −       ⎟
                           ⎝    Z MO ⎠
 > Uses a transformer
         • Transforms port variables
         • Doesn’t store energy
 > What we want to do now is
      identify ZEB, ZMS and ϕ, and
      figure out what they mean…
                                                                                                       ⎛ e2 ⎞ ⎛ ϕ        0 ⎞⎛ e1 ⎞
                                                                                                       ⎜ ⎟=⎜
                                                                                                       ⎜ f ⎟ ⎜0
                                                                                                                            ⎟
                                                                                                                       − 1 ⎟⎜ f ⎟
                                                                                                                             ⎜ ⎟
                                                                                                       ⎝ 2⎠ ⎝             ϕ ⎠⎝ 1 ⎠

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 51
Linearized Transducers
    ⎡ δ V ⎤ ⎡ Z EB ϕ Z EB ⎤ ⎡ δ I ⎤
    ⎢δ F ⎥ = ⎢ϕ Z        Z MO ⎥ ⎢δ U ⎥
    ⎣ out ⎦ ⎣ EB              ⎦⎣ ⎦
                    ⎛ ϕ 2 Z EB ⎞
        Z MS = Z MO ⎜1 −         ⎟
                    ⎝     Z MO ⎠
                    ⎡ 1                 V0 ⎤
            ⎡δV ⎤ ⎢ sC0                 sg 0 ⎥ ⎡δI ⎤
                                         ˆ
            ⎢δF ⎥ = ⎢ V                      ⎥
                                         k ⎥ ⎢δU ⎥
            ⎣ ⎦ ⎢ 0                            ⎣ ⎦
                    ⎢ sg 0
                    ⎣ ˆ                  s ⎥ ⎦
              ⎛         2 1   ⎞
            k ⎜ ⎛ Q0 ⎞ sC0 ⎟ k ⎛ ⎛ Q0 ⎞ 1 ⎞
                                          2
                                ⎜              ⎟
    Z MS          ⎜ g ⎟ k ⎟ = s ⎜1 − ⎜ g ⎟ C k ⎟
           = ⎜1 − ⎜ ⎟
            s ⎜ ⎝ ˆ0 ⎠               ⎜ˆ ⎟
              ⎝             s ⎟
                              ⎠ ⎝ ⎝ 0⎠ 0 ⎠                                                                C0V0
                                                                                                   ϕ=
            k⎛      Q02 ⎞                  Q02                                                             ˆ
                                                                                                           g0
           = ⎜1 −        ⎟      k'= k −
            s ⎜ εAkg 0 ⎟
              ⎝        ˆ ⎠               εAg ˆ                        0


Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 52
Linearized Transducers

> C0 represents the
   capacitance of the
   structure seen from the
   electrical port
> It is simply the capacitance
                                                                                                            εA
   at the gap given by the                                                                        C0 =
                                                                                                             ˆ
                                                                                                             g0
   operating point
> As Vin increases, C0 will
   increase until the structure
   pulls in
> This is a tunable capacitor
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 53
Linearized Transducers
 > k’ represents the effective
      spring
 > A combination of the
      mechanical spring k and
      the electrical spring
 > This is an electrically                                                                            Q02
                                                                                             k'= k −
      tunable spring!                                                                                εAg 0
                                                                                                        ˆ
       • Spring softening shows up
            in k’

 > As Vin increases, k’ will
      decrease from k (at Vin=0)
      to 0 (at Vin=Vpi)
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 54
Linearized Transducers
 > ϕ represents the
      electromechanical
      coupling

 > Represents how much the
      capacitance changes with                                                                ϕ=
                                                                                                     C0V0 Q0
                                                                                                         =
                                                                                                      ˆ
                                                                                                      g0   ˆ
                                                                                                           g0
      gap

 > A measure of sensitivity                                                                 ∂C                     ∂ εA
                                                                               ϕ = −V0                    = −V0
                                                                                            ∂g    O. P.
                                                                                                                  ∂g g O. P.
                                                                                         εA
                                                                                  = V0
                                                                                          ˆ2
                                                                                          g0
                                                                                      C0V0
                                                                                  =
                                                                                       ˆ
                                                                                       g0

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 55
Transfer Functions
 > Can use linearized
                                                                              R                        1:ϕ            1/k’    δU
      circuit to construct H(s)
                                                                                                                                   m
      using complex                                       δVin     +
      impedances                                                   -                    C0                                                   b


 >    Usually helpful to
      “eliminate” transformer
                                                                                                              ϕ2/k’      δU
                                                                                    R
 > Transformer changes                                                                                                         m/ϕ2
                                                                 δVin
      impedances                                                          +                    C0
                            Z1                                            -                                                         b/ϕ
                                                                                                                                         2

                    Z2 =
                                 ϕ2
                 1:ϕ

                                                                              Can now get any transfer
                           Z1                   Z2                            function using standard
                                                                              circuit analysis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 56
Linearized Transducer Models
    > Now we can understand Nguyen’s filter!




Image removed due to copyright restrictions.                                    Image removed due to copyright restrictions.

Figure 9 on p. 17 in Nguyen, C. T.-C. "Vibrating RF MEMS                        Figure 12 on p. 62 in: Nguyen, C. T.-C. "Micromechanical

Overview: Applications to Wireless Communications."                             Filters for Miniaturized Low-power Communications."
Proceedings of SPIE Int Soc Opt Eng 5715 (January 2005): 11-25.                 Proceedings of SPIE Int Soc Opt Eng 3673 (July 1999): 55-66.




  Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
  OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                       JV: 6.777J/2.372J Spring 2007, Lecture 10 - 57
Small-signal analysis summary

                                                                                                                          Given O.P.

                                          Linearized                                     Time                             What is g(t)
                       Linearize                                  Integrate
State eqns                                state eqns                                   response                           due to small
                                         (Jacobians)                                                                      changes in
                                                       Take LT                                                            Vin(t)?

                                           Ei aly                Form TFs
                                             An
                                             g e si
                                                nf s
                                                  ct                 Transfer SSS Frequency
                                                     n
                                                                     functions     response
                                                                                poles &                                   Given O.P.
                                                 form TFs                       zeros
                                                                                                                          How fast
                                                                       Natural
Equivalent Linearize Linearized                                                                                           can I wiggle
                                                                       system
  circuit              circuit                                                                                            tip?
                                                                      dynamics


 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
 OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                      JV: 6.777J/2.372J Spring 2007, Lecture 10 - 58
Conclusions
 > We can now analyze and design both quasistatic and
      dynamic behavior of our multi-domain MEMS

 > We have much more powerful tools to analyze linear
      systems than nonlinear systems

 > But most systems we encounter are nonlinear
 > Linearization permits the study of small-signal inputs
 > Next up: special topics in structures, heat transfer,
      fluids




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 59
Review: analysis of a 2nd-order linear system
 > Spring-mass-dashpot

                                                   .            1/k
                                                   x

                                                           + ek - +
                                     F
                                                +                 em                     m
                                                -
                                                            - eb + -
                                                                    b


            d ⎡ x⎤ ⎡ x                   ⎤                 State                      x = Ax + Bu
               ⎢ x ⎥ = ⎢ 1 (F − kx − bx )⎥
            dt ⎣ ⎦ ⎢ m ⎣                 ⎥
                                         ⎦
                                                           eqns                       y = Cx + Du


Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 60
Direct Integration in Time
 > Example: Spring-mass-dashpot step response
         • k=m=1;b=0.5;


                                                                                                 Step Response
                                                                                1.5




                                                                     Position
                                                                                  1
   >> A=[0 1;-1 -0.5]; B=[0;1];
   >> C=[1 0;0 1]; D=[0;0];                                                     0.5
   >> sys=ss(A,B,C,D);                                Amplitude
   >> step(sys)                                                                   0
                                                                                  1

                                                                                0.5
                                                                  Velocity




                                                                                  0

                                                                                -0.5
                                                                                    0   5          10        15            20            25
                                                                                                    Tim e (sec)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                            JV: 6.777J/2.372J Spring 2007, Lecture 10 - 61
Transfer Functions
 > Can get TFs from A,B,C matrices




                                         Y ( s ) = CX ( s ) + DU( s )
                                [
               Y ( s ) = C (sI − A ) x (0) + (sI − A ) BU( s ) + DU( s )
                                              −1                           −1
                                                                                          ]
                                                               Assume transient has died out (XZIR=0)
                                                               No feed-through (D=0)

                                    Y( s) = ⎡C ( sI − A )−1 B ⎤ U( s )
                                            ⎣                   ⎦
                                          Y( s ) = H ( s )U( s )


                                       H ( s ) = ⎡C ( sI − A ) B ⎤
                                                              −1
                                                 ⎣               ⎦
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 62
Transfer Functions
 > Let’s do analytically & via MATLAB                                                   ⎡ X( s ) ⎤ ⎡       1       ⎤
                                                                                        ⎢ F( s) ⎥ ⎢ 2
                      ⎡ s 0⎤ ⎡ 0            1 ⎤
                                                                                        ⎢
                                                                                                                   ⎥
                                                                                                 ⎥ = ⎢ ms + sb + k ⎥
           sI − A = ⎢       ⎥ − ⎢− k
                        0 s ⎦ ⎢ m − b m⎥
                                               ⎥                                H( s) =
                                                                                        ⎢ X( s ) ⎥ ⎢
                      ⎣         ⎣              ⎦                                                           s       ⎥
                                                                                        ⎢        ⎥ ⎢ ms 2 + sb + k ⎥
                        ⎡ s       −1 ⎤                                                  ⎣ F( s) ⎦ ⎣                ⎦
                      = ⎢k
                        ⎢ m    s+b ⎥                                                                ⎡        1      ⎤
                        ⎣            m⎥⎦                                                            ⎢ s 2 + 0.5s + 1⎥
                                                                                            H( s) = ⎢               ⎥
                             1 ⎡ s + b m 1⎤
                (sI − A ) = ⎢ k
                         −1
                                            ⎥                                                       ⎢        s      ⎥
                             Δ⎢−           s⎥                                                       ⎢ s + 0.5s + 1⎥
                                                                                                    ⎣   2
                                                                                                                    ⎦
                               ⎣      m     ⎦
        Δ = s ( s + b m) + k m = s 2 + s b m + k m                                >> [n,d]=ss2tf(A,B,C,D)

                     ⎡1 0⎤ 1 ⎡ s + b m 1⎤ ⎡0 ⎤                                    n=        s2    s1     s0
      C(sI − A ) B = ⎢
                −1
                           ⎥Δ⎢ k        ⎥⎢ ⎥
                                           1                                                0 -0.0000 1.0000
                     ⎣0 1 ⎦ ⎢ − m s ⎥ ⎢ m ⎥
                              ⎣         ⎦⎣ ⎦                                                0 1.0000 -0.0000
                           ⎡1 ⎤
                         1 ⎢ m⎥
                       =                                                          d=
                         Δ ⎢s ⎥                                                    1.0000              0.5000          1.0000
                           ⎣ m⎦
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 63
Transfer Functions
 > Can also construct H(s) directly
                                                                                     X( s )               1
      using complex impedances and                                                          = H2 ( s ) =
                                                                                     F( s )              Z( s )
      circuit model
              .
              x     1/k                                                                           1
                                                                                        =
                                                                                            b + ms + k s
                             + ek - +                                                   =
                                                                                                  s

        F
                  +                 em                    m
                                                                                            ms 2 + bs + k
                  -
                              - eb + -                                                     X( s ) sX( s )
                                                                                                 =
                                      b                                                    F( s ) F( s )
                      F − ek − em − eb = 0
                                                                               X( s )                    1
                              k                                                       = H1 ( s ) =
                     ek = kx = x                                               F( s )              ms 2 + bs + k
                              s
                     eb = bx
                     em = mx = msx
Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 64
Poles and Zeros
 > For 2nd-order system, easy to get
      poles and zeros from TFs


                   ⎡             1          ⎤
                 1 ⎢s + sb m + k m⎥
                       2

          H(s) = ⎢                          ⎥
                 m⎢              s          ⎥                                  where
                   ⎢ s2 + s b m + k m ⎥
                   ⎣                        ⎦
                   ⎡          1           ⎤                                              b   ⎛ b ⎞    k
                                                                                                                   2

                   ⎢                      ⎥
                 1 ⎢ ( s − s1 )( s − s2 ) ⎥                                    s1,2 = −    ± ⎜    ⎟ −
               =                                                                        2m   ⎝ 2m ⎠ m
                 m⎢            s          ⎥
                   ⎢ ( s − s )( s − s ) ⎥                                      these are the poles
                   ⎣        1         2 ⎦




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 65
Spring-mass-dashpot system
 > It is a second order system, with
      two poles                                                                 s2 + b         s+k          = s 2 + 2αs + ω 0
                                                                                                                            2
                                                                                           m            m
 > We conventionally define                                                                                  k
                                                                                                      ω0 =
         •   Undamped resonant frequency                                                                    m
         •                                                                                                 b
             Damping constant                                                                          α=
                                                                                                          2m
         •   Damped resonant frequency
                                                                                             s1, 2 = −α ± α 2 − ω 0
                                                                                                                  2
         •   Quality factor
                                                                                   For underdamped systems (α < ω 0 )
                                                                                                  s1, 2 = −α ± jω d
                                                                                                        where
                                                                                                  ω d = ω 02−α 2
                                                                                                  Quality factor :
                                                                                                        ω 0 mω 0
                                                                                                 Q=        =
                                                                                                        2α   b


Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 66
Pole-zero diagram
 > Displays information about dynamics of system
      function                                                          s
                                                         H2 ( s ) = 2
                                                                   s + 0.5s + 1
                                                     s1, 2 = −0.25 ± j 1 − 1 = −0.25 ± j 0.97
                                                                            16
                                                                     Pole-Zero Map
                                                    2

                                                  1.5
                                                         pole
                                                    1
                                 Imaginary Axis




                                                  0.5
                                                          zero              ωd
                                                    0

                                                  -0.5

                                                   -1

                                                  -1.5

                                                   -2
                                                    -2          -1         0              1                2
                                                                       Real Axis

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 67
SMD-position frequency response

                                                                                                     Bode Diagram
          1          1                                                               10
H( jω ) =
          m − ω 2 + 2αjω + ω 0
                             2                                                        0




                                                                   Magnitude (dB)
          1           1                                                             -10
H( jω ) =
          m (ω 0 − ω 2 ) 2 + 4α 2ω 2
               2                                                                    -20

                                                                                    -30
                 ⎛ 2αω ⎞
∠H( jω ) = − atan⎜ 2
                 ⎜ ω −ω 2 ⎟
                          ⎟                                                         -40
                 ⎝ 0      ⎠                                                         360

                                                                                    315

                                                                 Phase (deg)        270

                                                                                    225

                                                                                    180
                                                                                         -1                    0                          1
                                                                                      10                10                           10
                                                                                                 Frequency (rad/sec)

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                              JV: 6.777J/2.372J Spring 2007, Lecture 10 - 68
Eigenfunction Analysis
 > Find eigenvalues numerically using MATLAB and A matrix


                                                               ⎡0      1 ⎤
                                                        A=⎢
                                                               ⎣ 0 − 0.5⎥ ⎦
                                                        [ V , Λ ] = eig( A)
                             ⎡λ1 0 ⎤ ⎡− 0.25 + 0.97 j             0        ⎤
                          Λ=⎢          =⎢
                             ⎣ 0 λ2 ⎥ ⎣
                                     ⎦           0         − 0.25 − 0.97 j ⎥
                                                                           ⎦
                                         ⎡    0.707            0.707      ⎤
                          V = [v1 v2 ] = ⎢                                ⎥
                                         ⎣− 0.18 − 0.68 j − 0.18 − 0.68 j ⎦




Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

                                                                                     JV: 6.777J/2.372J Spring 2007, Lecture 10 - 69

07lecture10

  • 1.
    Lumped-Element System Dynamics Joel Voldman* Massachusetts Institute of Technology *(with thanks to SDS) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 1
  • 2.
    Outline > Ourprogress so far > Formulating state equations > Quasistatic analysis > Large-signal analysis > Small-signal analysis > Addendum: Review of 2nd-order system dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 2
  • 3.
    Our progress sofar… > Our goal has been to model multi-domain systems > We first learned to create lumped models for each domain > Then we figured out how to move energy between domains > Now we want to see how the multi-domain system behaves over time (or frequency) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 3
  • 4.
    Our progress sofar… > The Northeastern/ADI RF Switch > We first lumped the mechanical domain Fixed support Images removed due to copyright restrictions. Figure 11 on p. 342 in: Zavracky, P. M., N. E. McGruer, R. H. Morrison, I Dashpot b and D. Potter. "Microswitches and Microrelays with a View Toward Microwave Applications." International Journal of RF and Microwave Comput-Aided Spring k Engineering 9, no. 4 (1999): 338-347. + Mass m V g z - 1 µm Cantilever Fixed plate 0.5 µm Pull-down Image by MIT OpenCourseWare. Silicon electrode Anchor Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462. Image by MIT OpenCourseWare. Adapted from Rebeiz, Gabriel M. RF MEMS: Theory, Design, and Technology. Hoboken, NJ: John Wiley, 2003. ISBN: 9780471201694. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 4
  • 5.
    Our progress sofar… > Then we introduced a two-port capacitor to convert energy between domains • Capacitor because it stores potential energy • Two ports because there are two ways to store energy » Mechanical: Move plates (with charge on plates) » Electrical: Add charge (with plates apart) • The system is conservative: system energy only depends on state variables . 1/k I g 2 + + Q g W (Q, g ) = V F m 2εA C - - b Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 5
  • 6.
    Our progress sofar… ∂W (Q, g ) Q2 > We first analyzed system F= = ∂g Q 2εA quasistatically ∂W (Q, g ) Qg V= = > Saw that there is VERY different ∂Q g εA behavior depending on whether • Charge is controlled dW = VdQ + Fdg stable behavior at all gaps • Voltage is controlled dW * = QdV − Fdg pull-in at g=2/3g0 > Use of energy or co-energy ∂W * εA depends on what is controlled Q= = Vin ∂V g g • Simplifies math ∂W * εAVin 2 F= = ∂g V 2g 2 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 6
  • 7.
    Today’s goal >How to move from quasi-static to dynamic analysis > Specific questions: • How fast will RF switch close? > General questions: • How do we model the dynamics of non-linear systems? • How are mechanical dynamics affected by electrical domain? > What are the different ways to get from model to answer? Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 7
  • 8.
    Outline > Ourprogress so far > Formulating state equations > Quasistatic analysis > Large-signal analysis > Small-signal analysis > Addendum: Review of 2nd-order system dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 8
  • 9.
    Adding dynamics Fixed support > Add components to complete Resistor R I the system: Dashpot b Spring k Mass m + • Source resistor for the voltage + source Vin V - g - z • Inertial mass, dashpot Fixed plate > This is now our RF switch! g z 1/k > System is nonlinear, so we I R + + can’t use Laplace to get + C F m Vin V transfer functions - W(Q,g) - - > Instead, model with state b equations Image by MIT OpenCourseWare. Adapted from Figure 6.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 138. ISBN: 9780792372462. Electrical domain Mechanical domain Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 9
  • 10.
    State Equations >Dynamic equations for general system (linear or nonlinear) can be formulated by solving equivalent circuit > In general, there is one state variable for each independent energy-storage element (port) Goal: > Good choices for state variables: ⎡Q ⎤ d ⎢ ⎥ ⎛ functions of ⎞ ⎜ ⎟ the charge on a capacitor ⎢ g ⎥ = ⎜ Q,g,g or constants ⎟ ⎢g ⎥ ⎝ ⎠ (displacement) and the current in an dt inductor (momentum) ⎣ ⎦ > For electrostatic transducer, need three state variables • Two for transducer (Q,g) • One for mass (dg/dt) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 10
  • 11.
    Formulating state equations > Start with Q + eR - I > We know that dQ/dt=I R + C + > Find relation between I and Vin V - W(Q,g) state variables and constants - KVL : Vin − eR − V = 0 eR = IR Vin − IR − V = 0 dQ 1 = I = (Vin − V ) dt R Qg V= εA dQ 1 ⎛ Qg ⎞ = ⎜ Vin − dt R ⎝ εA⎟⎠ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 11
  • 12.
    Formulating state equations > Now we’ll do . g . 1/k g z > We know that dg =g C + + ek - + dt F em m W(Q,g) - - eb + - b KVL : ek = kz F − ek − em − eb = 0 F − k ( g 0 − g ) + mg + bg = 0 em = mz F − kz − mz − bz = 0 eb = bz 1 g = − [F − k ( g 0 − g ) + bg ] m dg 1 ⎡ Q2 ⎤ z = g0 − g ⇒ z = − g, z = − g =− ⎢ − k ( g 0 − g ) + bg ⎥ dt m ⎣ 2εA ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 12
  • 13.
    Formulating state equations > State equation for g is easy: dg =g dt > Collect all three nonlinear state equations ⎡ 1⎛ Qg ⎞ ⎤ ⎢ ⎜ Vin − ⎟ ⎥ ⎡Q ⎤ ⎢ R⎝ εA⎠ ⎥ d ⎢ ⎥ ⎢ ⎥ g⎥= g dt ⎢ ⎢ ⎥ ⎢ g ⎥ ⎢ 1 ⎡ Q2 ⎣ ⎦ ⎤⎥ ⎢ − m ⎢ 2ε A − k ( g 0 − g ) + bg ⎥ ⎥ ⎣ ⎣ ⎦⎦ > Now we are ready to simulate dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 13
  • 14.
    Outline > Ourprogress so far > Formulating state equations > Quasistatic analysis > Large-signal analysis > Small-signal analysis > Addendum: Review of 2nd-order system dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 14
  • 15.
    Quasistatic analysis ⎡1 ⎛ Qg ⎞ ⎤ ⎢ ⎜V − ⎟ ⎥ d ⎡Q ⎤ ⎢ R ⎝ in εA ⎠ ⎥ Fixed-point ⎢g ⎥ = ⎢g ⎥ analysis dt ⎢ g ⎥ ⎢ 1 ⎡ Q 2 ⎣ ⎦ ⎤⎥ − ⎢ ⎢ m 2εA − k ( g 0 − g ) + bg ⎥ ⎥ ⎣ ⎣ ⎦⎦ Given static Vin, etc. State eqns What is deflection, (Just now) charge, etc.? . . 1/k I g z R + C + Follow + F m causal path Vin V - W(Q,g) (Wed) - - b Equivalent circuit Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 15
  • 16.
    State equations For transverse electrostatic actuator: State variables ⎡Q ⎤ State variables: x = ⎢g ⎥ Inputs ⎢g ⎥ ⎣ ⎦ x = f (x, u) Inputs: u = [Vin ] y = g (x, u) ⎡1 ⎛ Qg ⎞ ⎤ ⎢ ⎜ Vin − ⎟ ⎥ Outputs ⎢R ⎝ εA⎠ ⎥ f (x,u) = ⎢ g ⎥ ⎢ ⎥ ⎢ 1⎡Q 2 ⎤⎥ ⎢ − m ⎢ 2ε A − k ( g 0 − g ) + bg ⎥ ⎥ ⎣ ⎣ ⎦⎦ Outputs: y = [g ] = g (x, u) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 16
  • 17.
    Fixed points >Definition of a fixed point • Solution of f(x,u) = 0 • time derivatives 0 > Global fixed point • A fixed point when u = 0 • Systems can have multiple global fixed points • Some might be stable, others unstable (consider a pendulum) > Operating point • Fixed point when u is a non-zero constant Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 17
  • 18.
    Fixed points ofthe electrostatic actuator > This analysis is analogous to what we did last time… Operating point stable 1⎛ Qg ⎞ normalized gap 0 = ⎜Vin − ⎟ 1 R⎝ εA ⎠ 0=g 1 ⎡ Q2 ⎤ 0.5 0=− ⎢ − k ( g 0 − g ) + bg ⎥ m ⎣ 2εA ⎦ 0 0 0.5 1 Qg normalized voltage Vin = εA Last time… Q 2 Vin 2ε A εAVin 2 = = k ( g0 − g ) g = g0 − 2ε A 2g 2 2kg 2 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 18
  • 19.
    Outline > Ourprogress so far > Formulating state equations > Quasistatic analysis > Large-signal analysis > Small-signal analysis > Addendum: Review of 2nd-order system dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 19
  • 20.
    Large-signal analysis ⎡1 ⎛ Qg ⎞ ⎤ ⎢ ⎜V − ⎟ ⎥ d ⎡Q ⎤ ⎢ R ⎝ in εA ⎠ ⎥ Integrate ⎢g ⎥ = ⎢g ⎥ state eqns dt ⎢ g ⎥ ⎢ 1 ⎡ Q 2 ⎣ ⎦ ⎤⎥ − ⎢ ⎢ m 2εA − k ( g 0 − g ) + bg ⎥ ⎥ ⎣ ⎣ ⎦⎦ Given a step input State eqns Vin(t)u(t) (Earlier) What is g(t), Q(t), etc.? . . 1/k I g z R + C + SPICE + F m Vin V - W(Q,g) - - b Equivalent circuit Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 20
  • 21.
    Direct Integration >This is a brute force approach: integrate the state equations • Via MATLAB® (ODExx) • Via Simulink® > We show the SIMULINK® version here • Matlab® version later Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 21
  • 22.
    Electrostatic actuator inSimulink® ⎡Q ⎤ x = ⎢ g ⎥, u = [Vin ] (u[1]^2)/(2*e*A) + ⎢ ⎥ + -1/m Electrostatic force ⎢g ⎥ ⎣ ⎦ + Inertia ⎡1 ⎛ Qg ⎞ ⎤ 1 ⎢ ⎜Vin − ⎟ ⎥ s 3 ⎢R ⎝ εA ⎠ ⎥ Spring k b Damping Velocity gdot f(x, u) = ⎢ g ⎥ ⎢ ⎥ ⎢ 1 ⎡ Q2 ⎤⎥ Sum2 1 s 2 ⎢− m ⎢ 2εA − k ( g 0 − g ) + bg ⎥ ⎥ _ + g ⎣ ⎣ ⎦⎦ Position At-rest gap g _ 0 1/(e*A) * Qg _ 1/R 1 1 + s 1 V_in 1/R Charge Q Image by MIT OpenCourseWare. Adapted from Figure 7.8 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 174. ISBN: 9780792372462. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 22
  • 23.
    Electrostatic actuator withcontact < g_min Accel > 0 ? > + + g > g_min? (u[1]^2)/(2*e*A) + + -1/m Electrostatic force + Inertia 1 s Switch Velocity 3 0 Spring k b Damping gdot Zero 1 Sum2 s 2 _ + g Position At-rest gap g _ 0 1/(e*A) * Qg _ 1/R 1 1 1 + s 1/R Q V_in Charge Image by MIT OpenCourseWare. Adapted from Figure 7.9 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 175. ISBN: 9780792372462. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 23
  • 24.
    Behavior through pull-in 7 10 8 1.6 6 10 8 Drive (scaled) 1.4 Charge Release 1.2 5 10 8 1.0 4 10 8 Position Pull-in 0.8 3 10 8 0.6 2 10 8 0.4 1 10 8 0.2 0 10 0 0.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Time Time Image by MIT OpenCourseWare. Adapted from Figure 7.10 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 176. ISBN: 9780792372462. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 24
  • 25.
    Behavior through pull-in 1.0 1.4 0.5 1.2 Release Drive 1.0 0.0 Release Velocity Position Pull-in 0.8 -0.5 0.6 Discharge 0.4 -1.0 0.2 Pull-in -1.5 0.0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Time Time Image by MIT OpenCourseWare. Adapted from Figure 7.11 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 177. ISBN: 9780792372462. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 25
  • 26.
    Outline > Ourprogress so far > Formulating state equations > Quasistatic analysis > Large-signal analysis > Small-signal analysis > Addendum: Review of 2nd-order system dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 26
  • 27.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Ei aly Form TFs An g e si nf s ct Transfer SSS Frequency n functions response poles & Given O.P. form TFs zeros How fast Natural Equivalent Linearize Linearized can I wiggle system circuit circuit tip? dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 27
  • 28.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Vin(t)? Given O.P. How fast Equivalent can I wiggle circuit tip? Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 28
  • 29.
    Linearization about afixed point > This is EXTREMELY common in MEMS literature > This is also done in many other fields, with different names • Small-signal analysis • Incremental analysis • Etc. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 29
  • 30.
    Linearization About anOperating Point > Using Taylor’s theorem, a system can x = f (x, u) be linearized about any fixed point x (t ) = X 0 + δx (t ) u(t ) = U0 + δu(t ) > We can do this in one dimension or many Operating point d (δx ) f(x) X0 + = f (X 0 + δx, U0 + δu) df/dx dt ~ f(X0+δ x) Multi-dimensional Taylor f( X0)=Y0 ⎛ ∂f ⎞ ⎛ ⎞ d (δx ) ⎟δx (t ) + ⎜ ∂f i X0 + = f (X 0 , U0 ) + ⎜ i ⎜ ∂x ⎟ ⎜ ∂u ⎟δu(t ) ⎟ dt ⎝ j X 0 ,U 0 ⎠ ⎝ j X 0 ,U 0 ⎠ δx x Cancel X0 d (δxi (t ) ) ⎛ ∂f i ⎞ ⎛ ⎟δx (t ) + ⎜ ∂f i ⎞ =⎜ ⎜ ∂x ⎟ i ⎜ ∂u ⎟δu (t ) ⎟ i dt df ⎝ j X 0 ,U 0 ⎠ ⎝ j X 0 ,U 0 ⎠ f ( X 0 + δx ) ≈ f ( X 0 ) + δx J2 dx X0 J1 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 30
  • 31.
    Linearization About anOperating Point > The resulting set of δx (t ) = J1δx + J2δu(t) equations are linear, and ⎡ ∂f1 ⎤ ∂f1 ∂f1 have dynamics described ⎢ ⎥ ⎢ ∂Q O.P. ∂g O. P. ∂g O. P. ⎥ by the Jacobians of f(x,u) ⎢ ∂f ∂f 2 ∂f 2 ⎥ J1 = ⎢ 2 ⎥ evaluted at the fixed point. ⎢ ∂Q O.P. ∂g O. P. ∂g O. P. ⎥ ⎢ ∂f 3 ∂f 3 ∂f 3 ⎥ > These describe how much ⎢ ⎥ ⎢ ∂Q O.P. ⎣ ∂g O.P. ∂g O. P. ⎥ ⎦ a small change in one state ⎛ ⎞ variable affects itself or ⎜ g0ˆ Q0 ⎟ ⎜ − − 0 ⎟ another state variable ⎜ RεA RεA ⎟ ⎛1⎞ ⎛ δQ ⎞ ⎜ ⎟⎛ δQ ⎞ ⎜ ⎟ The O.P. must be evaluated d ⎜ δg ⎟ = ⎜ 0 0 1 ⎟⎜ ⎟ ⎜ R ⎟ > ⎜ ⎟ δg + ⎟⎜ ⎟ ⎜ 0 ⎟ in (δV ) to use the Jacobian dt ⎜ ⎟ ⎜ ⎜ ⎟ ⎜ ⎟ ⎝ δg ⎠ ⎜ Q0 k b ⎟⎝ δg ⎠ ⎜ 0 ⎟ ⎜− − − ⎟ ⎝ ⎠ > Example – linearization of ⎜ mεA m m⎟ the voltage-controlled ⎜ ⎟ J2 ⎝ J1 ⎠ electrostatic actuator Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 31
  • 32.
    State Equations forLinear Systems > Normally expressed with: • x: a vector of state variables • u: a vector of inputs x = Ax + Bu • y: a vector of outputs y = Cx + Du • Four matrices, A,B,C, D > For us, Jacobian matrices take the place of A and B > C and D depend on what outputs are desired • Often C is identity and D is zero > Can use to simulate time responses to arbitrary SMALL inputs • Remember, this is only valid for small deviations from O.P. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 32
  • 33.
    Direct Integration inTime Impulse Response > Can integrate via Simulink® 1000 model (as before) or Charge Charge (Q) 500 MATLAB® > First define system in 0 MATLAB® 2 • using ss(J1,J2,C,D) or Displacement alternate method 0 > Can use MATLAB® -2 commands step, initial, impulse etc. -4 4 2 > Response of electrostatic 0 Velocity actuator to impulse of voltage -2 • Parameters from text (pg -4 167) -6 0 5 10 15 20 25 Time (sec) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 33
  • 34.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Form TFs Transfer SSS Frequency functions response poles & Given O.P. zeros How fast Equivalent can I wiggle circuit tip? Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 34
  • 35.
    Solve via Laplacetransform > Use Laplace Transforms to solve in frequency x = Ax + Bu domain ⇓ Unilateral Laplace • Transform DE to algebraic sX ( s ) − x (0) = AX( s ) + BU( s ) equations sIX ( s ) − x (0) = AX( s ) + BU( s ) • Use unilateral Laplace to allow for non-zero IC’s (sI − A )X( s) = x(0) + BU( s) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 35
  • 36.
    Transfer Functions >Transfer functions H(s) are useful for obtaining compact expression of input-output relation • What is the tip displacement as a function of voltage > Most easily obtained from equivalent circuit > But can also be obtained from linearized state eqns • Depends on A, B, C (or J1, J2, C) matrices • Can do this for fun analytically (see attachment at end) • Matlab can automatically convert from s.s to t.f. ⎡ Q( s ) ⎤ formulations ⎢ ⎥ ⎢ Vin ( s ) ⎥ > For our actuator, we would get three transfer ⎢ g( s) ⎥ H(s) = ⎢ ⎥ functions ⎢ Vin ( s ) ⎥ ⎢ g( s) ⎥ ⎢ ⎥ ⎣ Vin ( s ) ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 36
  • 37.
    Sinusoidal Steady State > When a LTI system is driven with a sinusoid, the u (t ) = U 0 cos(ωt ) steady-state response is a sinusoid at the same Y ( jω ) = H ( jω )U ( jω ) frequency > The amplitude of the y sss (t ) = Y0 cos(ωt + θ ) response is |H(jω)| > The phase of the response relative to the drive is the angle of H(jω) Y0 = H ( jω ) U 0 > A plot of log magnitude vs Im{H ( jω )} tanθ = Re{H ( jω )} log frequency and angle vs log frequency is called a Bode plot Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 37
  • 38.
    Bode plot ofelectrostatic actuator Bode Diagram > Use Matlab® command 40 20 bode with previously 0 Magnitude (dB) -20 defined system sys -40 -60 > Evaluate only one of TFs -80 -100 g( s) H(s) = -120 Vin ( s ) -140 180 > This tells us how quickly 135 we can wiggle tip! 90 Phase (deg) • At a certain OP! 45 0 -45 -90 -2 -1 0 1 2 3 10 10 10 10 10 10 Frequency (rad/sec) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 38
  • 39.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Form TFs Transfer SSS Frequency functions response poles & Given O.P. zeros How fast Natural Equivalent can I wiggle system circuit tip? dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 39
  • 40.
    Poles and Zeros > For our models, system function is a ratio of polynomials in s > Roots of denominator are called poles • They describe the natural (unforced) response of the system > Roots of the numerator are called zeros • They describe particular frequencies that fail to excite any output > System functions with the same poles and zeros have the same dynamics −Q0 g( s) ε ARm H(s) = = Vin ( s ) 3 ⎛ 1 b⎞ 2 ⎛ 1 b k⎞ ⎛ 1 k Q02 1 ⎞ s +⎜ + ⎟s +⎜ + ⎟s+⎜ − 2 2 ⎟ ⎝ RC0 m ⎠ ⎝ RC0 m m ⎠ ⎝ RC0 m ε A Rm ⎠ εA where C0 = ˆ g0 > MATLAB solution for poles is VERY long Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 40
  • 41.
    Pole-zero diagram >Displays information 1 Pole-Zero Map tip velocity about dynamics of 0.5 pole ωd Imaginary Axis zero system function 0 • Matlab command -0.5 pzmap -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 > Useful for examining Real A i R l axis dynamics, stability, 1 Pole-Zero Map gap etc. 0.5 Imaginary Axis 0 -0.5 -1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 Real Axis Real axis Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 41
  • 42.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Ei aly Form TFs An g e si nf s ct Transfer SSS Frequency n functions response poles & Given O.P. zeros How fast Natural Equivalent can I wiggle system circuit tip? dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 42
  • 43.
    Eigenfunction Analysis >For an LTI system, we can find the eigenvalues and eigenvectors of the J1 (or A) matrix describing the internal dynamics For scalar 1st-order system: If we try solution: dx = λx ⇒ x(t ) = K 0 e λt + K1 x (t ) = Ke λt dt Plug into DE: λx = Ax Our linear (or linearized) homogeneous systems look like: •This is an eigenvalue δx (t ) = J1δx + J2δu(t) equation dx d (δx ) •If we find λ we can find = Ax = J1δx natural frequencies of dt dt system Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 43
  • 44.
    Eigenfunction Analysis >These λ are the same as the poles si of the system > Can solve analytically • Find λ from det(A-λI)=0 > Or numerically eig(sys) -8.9904 -0.2627 + 0.8455i -0.2627 - 0.8455i Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 44
  • 45.
    Linearized system poles > We can use either λi or si to determine natural frequencies of system > As we increase applied voltage • Stable damped resonant frequency decreases Increasing voltage jω > Plotting poles as system changes is a root-locus plot σ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 45
  • 46.
    Spring softening > Plot damped resonant frequency versus applied voltage > Resonant frequency is changing because net spring constant k changes with frequency > This is an electrically tuned mechanical resonator 1.00 Damped resonant frequency 0.90 0.80 ε AV 2 0.70 k'=k− 3 0.60 g 0.50 0.40 This is called 0.30 0 0.01 0.02 0.03 0.04 0.05 0.06 spring softening Voltage Image by MIT OpenCourseWare. Adapted from Figure 7.5 in Senturia, Stephen D. Microsystem Design. Boston, MA: Kluwer Academic Publishers, 2001, p. 169. ISBN: 9780792372462. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 46
  • 47.
    Small-signal analysis Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Ei aly Form TFs An g e si nf s ct Transfer SSS Frequency n functions response poles & Given O.P. form TFs zeros How fast Natural Equivalent Linearize Linearized can I wiggle system circuit circuit tip? dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 47
  • 48.
    Linearized Transducers >Can we directly linearize our equivalent circuit? I 1/k U R YES! + C + + > This is perhaps the most Vin(t) + F Fout m - V common analysis in the - W - - b literature Source Transducer Load > First, choose what is load Find OP and what is transducer Linearize • Here we include spring δI δU with transducer R + + + Linearized δVin(t) δV δFout m - Transducer - - b Source Load Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 48
  • 49.
    Linearized Transducer Model > First, find O.P. ˆ V0 , g 0 , Q0 > Recast in terms of port variables δI > Next, generate matrix to ⎡δ Q⎤ ⎡ s ⎤ ⎢ ⎥ relate incremental port ⎢δ g ⎥ = ⎢δ U ⎥ ⎣ ⎦ variables to each other ⎣ s⎦ • Start from energy and force > Define intermediate variables relations εA Q0 C0 = , V0 = V= Qg ˆ g0 C0 εA Q2 Fout = − k ( g0 − g ) > Final expression 2ε A • Linearize (take partials…) ⎡ 1 V0 ⎤ ˆ ⎡ g0 Q0 ⎤ ⎡δ V ⎤ ⎢ sC0 sg 0 ⎥ ⎡δ I ⎤ ˆ ⎡δ V ⎤ ⎢ ε A ε A ⎥ ⎡δ Q ⎤ ⎢δ F ⎥ = ⎢ V ⎥⎢ ⎥ k ⎥ ⎣δ U ⎦ ⎢δ F ⎥ = ⎢ Q ⎥⎢ ⎥ ⎣ out ⎦ ⎢ 0 ⎣ out ⎦ ⎢ 0 k ⎥⎣ ⎦ δg ⎢ sg s ⎥ ⎢ε A ⎣ ⎥ ⎦ ⎣ ˆ0 ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 49
  • 50.
    Linearized Transducers >Now we want to convert this relation into a circuit > Many circuit topologies are consistent with this matrix relation > THIS IS NOT UNIQUE! i i' u' u i 1:Γ/κ2 u 1:Γ + + + + + + -1/k' 1/k ∗ Co { 1/k* υ υ' F' F υ F Co 1/k _ _ _ _ _ _ i u i u 1:Γ + + + + Γ2/κ∗ Co 1 1_Γ k_Γ/C o υ F υ Co F Co _ Γ _ _ _ Image by MIT OpenCourseWare. Adapted from Figure 5 on p. 163 in Tilmans, Harrie A. C. "Equivalent Circuit Representations of Electromechanical Transducers: I. Lumped-parameter Systems." Journal of Micromechanics and Microengineering 6, no. 1 (1996): 157-176. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 50
  • 51.
    Linearized Transducers >This is the one used in the text ⎡ δ V ⎤ ⎡ Z EB ϕ Z EB ⎤ ⎡ δ I ⎤ ⎢δ F ⎥ = ⎢ϕ Z Z MO ⎥ ⎢δ U ⎥ ⎣ out ⎦ ⎣ EB ⎦⎣ ⎦ ⎛ ϕ 2 Z EB ⎞ Z MS = Z MO ⎜1 − ⎟ ⎝ Z MO ⎠ > Uses a transformer • Transforms port variables • Doesn’t store energy > What we want to do now is identify ZEB, ZMS and ϕ, and figure out what they mean… ⎛ e2 ⎞ ⎛ ϕ 0 ⎞⎛ e1 ⎞ ⎜ ⎟=⎜ ⎜ f ⎟ ⎜0 ⎟ − 1 ⎟⎜ f ⎟ ⎜ ⎟ ⎝ 2⎠ ⎝ ϕ ⎠⎝ 1 ⎠ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 51
  • 52.
    Linearized Transducers ⎡ δ V ⎤ ⎡ Z EB ϕ Z EB ⎤ ⎡ δ I ⎤ ⎢δ F ⎥ = ⎢ϕ Z Z MO ⎥ ⎢δ U ⎥ ⎣ out ⎦ ⎣ EB ⎦⎣ ⎦ ⎛ ϕ 2 Z EB ⎞ Z MS = Z MO ⎜1 − ⎟ ⎝ Z MO ⎠ ⎡ 1 V0 ⎤ ⎡δV ⎤ ⎢ sC0 sg 0 ⎥ ⎡δI ⎤ ˆ ⎢δF ⎥ = ⎢ V ⎥ k ⎥ ⎢δU ⎥ ⎣ ⎦ ⎢ 0 ⎣ ⎦ ⎢ sg 0 ⎣ ˆ s ⎥ ⎦ ⎛ 2 1 ⎞ k ⎜ ⎛ Q0 ⎞ sC0 ⎟ k ⎛ ⎛ Q0 ⎞ 1 ⎞ 2 ⎜ ⎟ Z MS ⎜ g ⎟ k ⎟ = s ⎜1 − ⎜ g ⎟ C k ⎟ = ⎜1 − ⎜ ⎟ s ⎜ ⎝ ˆ0 ⎠ ⎜ˆ ⎟ ⎝ s ⎟ ⎠ ⎝ ⎝ 0⎠ 0 ⎠ C0V0 ϕ= k⎛ Q02 ⎞ Q02 ˆ g0 = ⎜1 − ⎟ k'= k − s ⎜ εAkg 0 ⎟ ⎝ ˆ ⎠ εAg ˆ 0 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 52
  • 53.
    Linearized Transducers > C0represents the capacitance of the structure seen from the electrical port > It is simply the capacitance εA at the gap given by the C0 = ˆ g0 operating point > As Vin increases, C0 will increase until the structure pulls in > This is a tunable capacitor Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 53
  • 54.
    Linearized Transducers >k’ represents the effective spring > A combination of the mechanical spring k and the electrical spring > This is an electrically Q02 k'= k − tunable spring! εAg 0 ˆ • Spring softening shows up in k’ > As Vin increases, k’ will decrease from k (at Vin=0) to 0 (at Vin=Vpi) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 54
  • 55.
    Linearized Transducers >ϕ represents the electromechanical coupling > Represents how much the capacitance changes with ϕ= C0V0 Q0 = ˆ g0 ˆ g0 gap > A measure of sensitivity ∂C ∂ εA ϕ = −V0 = −V0 ∂g O. P. ∂g g O. P. εA = V0 ˆ2 g0 C0V0 = ˆ g0 Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 55
  • 56.
    Transfer Functions >Can use linearized R 1:ϕ 1/k’ δU circuit to construct H(s) m using complex δVin + impedances - C0 b > Usually helpful to “eliminate” transformer ϕ2/k’ δU R > Transformer changes m/ϕ2 δVin impedances + C0 Z1 - b/ϕ 2 Z2 = ϕ2 1:ϕ Can now get any transfer Z1 Z2 function using standard circuit analysis Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 56
  • 57.
    Linearized Transducer Models > Now we can understand Nguyen’s filter! Image removed due to copyright restrictions. Image removed due to copyright restrictions. Figure 9 on p. 17 in Nguyen, C. T.-C. "Vibrating RF MEMS Figure 12 on p. 62 in: Nguyen, C. T.-C. "Micromechanical Overview: Applications to Wireless Communications." Filters for Miniaturized Low-power Communications." Proceedings of SPIE Int Soc Opt Eng 5715 (January 2005): 11-25. Proceedings of SPIE Int Soc Opt Eng 3673 (July 1999): 55-66. Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 57
  • 58.
    Small-signal analysis summary Given O.P. Linearized Time What is g(t) Linearize Integrate State eqns state eqns response due to small (Jacobians) changes in Take LT Vin(t)? Ei aly Form TFs An g e si nf s ct Transfer SSS Frequency n functions response poles & Given O.P. form TFs zeros How fast Natural Equivalent Linearize Linearized can I wiggle system circuit circuit tip? dynamics Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 58
  • 59.
    Conclusions > Wecan now analyze and design both quasistatic and dynamic behavior of our multi-domain MEMS > We have much more powerful tools to analyze linear systems than nonlinear systems > But most systems we encounter are nonlinear > Linearization permits the study of small-signal inputs > Next up: special topics in structures, heat transfer, fluids Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 59
  • 60.
    Review: analysis ofa 2nd-order linear system > Spring-mass-dashpot . 1/k x + ek - + F + em m - - eb + - b d ⎡ x⎤ ⎡ x ⎤ State x = Ax + Bu ⎢ x ⎥ = ⎢ 1 (F − kx − bx )⎥ dt ⎣ ⎦ ⎢ m ⎣ ⎥ ⎦ eqns y = Cx + Du Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 60
  • 61.
    Direct Integration inTime > Example: Spring-mass-dashpot step response • k=m=1;b=0.5; Step Response 1.5 Position 1 >> A=[0 1;-1 -0.5]; B=[0;1]; >> C=[1 0;0 1]; D=[0;0]; 0.5 >> sys=ss(A,B,C,D); Amplitude >> step(sys) 0 1 0.5 Velocity 0 -0.5 0 5 10 15 20 25 Tim e (sec) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 61
  • 62.
    Transfer Functions >Can get TFs from A,B,C matrices Y ( s ) = CX ( s ) + DU( s ) [ Y ( s ) = C (sI − A ) x (0) + (sI − A ) BU( s ) + DU( s ) −1 −1 ] Assume transient has died out (XZIR=0) No feed-through (D=0) Y( s) = ⎡C ( sI − A )−1 B ⎤ U( s ) ⎣ ⎦ Y( s ) = H ( s )U( s ) H ( s ) = ⎡C ( sI − A ) B ⎤ −1 ⎣ ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 62
  • 63.
    Transfer Functions >Let’s do analytically & via MATLAB ⎡ X( s ) ⎤ ⎡ 1 ⎤ ⎢ F( s) ⎥ ⎢ 2 ⎡ s 0⎤ ⎡ 0 1 ⎤ ⎢ ⎥ ⎥ = ⎢ ms + sb + k ⎥ sI − A = ⎢ ⎥ − ⎢− k 0 s ⎦ ⎢ m − b m⎥ ⎥ H( s) = ⎢ X( s ) ⎥ ⎢ ⎣ ⎣ ⎦ s ⎥ ⎢ ⎥ ⎢ ms 2 + sb + k ⎥ ⎡ s −1 ⎤ ⎣ F( s) ⎦ ⎣ ⎦ = ⎢k ⎢ m s+b ⎥ ⎡ 1 ⎤ ⎣ m⎥⎦ ⎢ s 2 + 0.5s + 1⎥ H( s) = ⎢ ⎥ 1 ⎡ s + b m 1⎤ (sI − A ) = ⎢ k −1 ⎥ ⎢ s ⎥ Δ⎢− s⎥ ⎢ s + 0.5s + 1⎥ ⎣ 2 ⎦ ⎣ m ⎦ Δ = s ( s + b m) + k m = s 2 + s b m + k m >> [n,d]=ss2tf(A,B,C,D) ⎡1 0⎤ 1 ⎡ s + b m 1⎤ ⎡0 ⎤ n= s2 s1 s0 C(sI − A ) B = ⎢ −1 ⎥Δ⎢ k ⎥⎢ ⎥ 1 0 -0.0000 1.0000 ⎣0 1 ⎦ ⎢ − m s ⎥ ⎢ m ⎥ ⎣ ⎦⎣ ⎦ 0 1.0000 -0.0000 ⎡1 ⎤ 1 ⎢ m⎥ = d= Δ ⎢s ⎥ 1.0000 0.5000 1.0000 ⎣ m⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 63
  • 64.
    Transfer Functions >Can also construct H(s) directly X( s ) 1 using complex impedances and = H2 ( s ) = F( s ) Z( s ) circuit model . x 1/k 1 = b + ms + k s + ek - + = s F + em m ms 2 + bs + k - - eb + - X( s ) sX( s ) = b F( s ) F( s ) F − ek − em − eb = 0 X( s ) 1 k = H1 ( s ) = ek = kx = x F( s ) ms 2 + bs + k s eb = bx em = mx = msx Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 64
  • 65.
    Poles and Zeros > For 2nd-order system, easy to get poles and zeros from TFs ⎡ 1 ⎤ 1 ⎢s + sb m + k m⎥ 2 H(s) = ⎢ ⎥ m⎢ s ⎥ where ⎢ s2 + s b m + k m ⎥ ⎣ ⎦ ⎡ 1 ⎤ b ⎛ b ⎞ k 2 ⎢ ⎥ 1 ⎢ ( s − s1 )( s − s2 ) ⎥ s1,2 = − ± ⎜ ⎟ − = 2m ⎝ 2m ⎠ m m⎢ s ⎥ ⎢ ( s − s )( s − s ) ⎥ these are the poles ⎣ 1 2 ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 65
  • 66.
    Spring-mass-dashpot system >It is a second order system, with two poles s2 + b s+k = s 2 + 2αs + ω 0 2 m m > We conventionally define k ω0 = • Undamped resonant frequency m • b Damping constant α= 2m • Damped resonant frequency s1, 2 = −α ± α 2 − ω 0 2 • Quality factor For underdamped systems (α < ω 0 ) s1, 2 = −α ± jω d where ω d = ω 02−α 2 Quality factor : ω 0 mω 0 Q= = 2α b Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 66
  • 67.
    Pole-zero diagram >Displays information about dynamics of system function s H2 ( s ) = 2 s + 0.5s + 1 s1, 2 = −0.25 ± j 1 − 1 = −0.25 ± j 0.97 16 Pole-Zero Map 2 1.5 pole 1 Imaginary Axis 0.5 zero ωd 0 -0.5 -1 -1.5 -2 -2 -1 0 1 2 Real Axis Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 67
  • 68.
    SMD-position frequency response Bode Diagram 1 1 10 H( jω ) = m − ω 2 + 2αjω + ω 0 2 0 Magnitude (dB) 1 1 -10 H( jω ) = m (ω 0 − ω 2 ) 2 + 4α 2ω 2 2 -20 -30 ⎛ 2αω ⎞ ∠H( jω ) = − atan⎜ 2 ⎜ ω −ω 2 ⎟ ⎟ -40 ⎝ 0 ⎠ 360 315 Phase (deg) 270 225 180 -1 0 1 10 10 10 Frequency (rad/sec) Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 68
  • 69.
    Eigenfunction Analysis >Find eigenvalues numerically using MATLAB and A matrix ⎡0 1 ⎤ A=⎢ ⎣ 0 − 0.5⎥ ⎦ [ V , Λ ] = eig( A) ⎡λ1 0 ⎤ ⎡− 0.25 + 0.97 j 0 ⎤ Λ=⎢ =⎢ ⎣ 0 λ2 ⎥ ⎣ ⎦ 0 − 0.25 − 0.97 j ⎥ ⎦ ⎡ 0.707 0.707 ⎤ V = [v1 v2 ] = ⎢ ⎥ ⎣− 0.18 − 0.68 j − 0.18 − 0.68 j ⎦ Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. JV: 6.777J/2.372J Spring 2007, Lecture 10 - 69