SlideShare a Scribd company logo
Milling Underground - The Importance of
Mineralogy and Leach Studies in the Evaluation
of In Situ Recovery Projects
G.W. Heinrich, R.J. De Klerk, L. Reimann, E. Lam and C. Foldenauer
Cameco Corporation
IAEA Technical Meeting on the
Origin of Sandstone Uranium Deposits - A Global Perspective
May-June 2012, Vienna
Forward-looking Statement
Please note that the statements made in this presentation,
including statements regarding the company’s objectives,
projections, outlook, estimates, expectations or predictions, are
considered to be forward-looking information and statements
under Canadian and US securities laws. This information
involves risk and uncertainty and actual results could differ
materially. In addition, material factors or assumptions were
applied in drawing the conclusions contained in them.
Additional information about the material factors that could
cause the results to differ materially, and the material factors or
assumptions that were applied, are contained in Cameco’s
current Annual Information Form and MD&A, which are
available on SEDAR and EDGAR.




   Slide 2      Cameco Technology and Innovation – Research Centre
Introduction
● What is in situ recovery (ISR)?
- Schematic of typical alkaline ISR operation




   Slide 3     Cameco Technology and Innovation – Research Centre
Introduction
Operational requirements, characteristics and
performance for ISR (for typical sandstone ores):
1. Impermeable layers above and below ore horizon
2. Water-bearing open pore space (typically 15-30%)
3. Sufficient permeability (normally 0.7 to 1 d)
4. Leachable uranium minerals (typical uranium leaching
   recovery target = 80%)
5. Uranium mineralization accessible to leach solutions
   (allowing completion of leaching after 2 to 4 years or 50 to
   200 pore volume replacements)
6. Sufficiently low contents of preg-robbing components (e.g.,
   carbonaceous material)




     Slide 4   Cameco Technology and Innovation – Research Centre
Introduction
Post-discovery technical evaluation of sandstone
orebodies for ISR:
● Delineation drilling
● Borehole geophysics/radiometry
● Borehole lithology/stratigraphy
● Hydro-geology
● Mineralogical and geochemical drill core characterization
● Metallurgical drill core characterization (leaching amenability
  tests




   Slide 5     Cameco Technology and Innovation – Research Centre
Core Evaluation Methods Used
Sample preparation (under an
inert atmosphere):


● Core splitting

● Intact texture sampling plus
  polished section prep.

● Homogenization of half cores

● Test charge preparation

● Head sample cutting




   Slide 6     Cameco Technology and Innovation – Research Centre
Core Evaluation Methods Used
Mineralogical characterization:

Head sample:
● Moisture determination

● Whole-rock analysis for main
  element contents

● Uranium and impurity
  analyses (e.g., vanadium and
  selenium)

● X-ray diffractometry and
  Rietveld analysis for main
  mineral contents                                      X-ray powder diffractometer




    Slide 7     Cameco Technology and Innovation – Research Centre
Core Evaluation Methods Used
Mineralogical characterization:

Samples with intact texture:
● Porosity and pore size
  determination

● Reflected light microscopy for
  quality of polish and for
  carbonaceous matter

● Scanning electron
  microscope/microprobe
  analyses for uranium
  minerals, trace minerals and
  ore texture (e.g. for
  determination of uranium
  mineral accessibility to
  solutions)
     Slide 8     Cameco Technology and Innovation – Research Centre
Core Evaluation Methods Used
Metallurgical characterization:
Pressurized bottle roll tests (under oxygen pressure) to
determine leaching chemistry (example of six parallel tests
shown)




   Slide 9     Cameco Technology and Innovation – Research Centre
Core Evaluation Methods Used
Metallurgical characterization:

Pressurized column leach tests
(under oxygen pressure) for
leaching and ion exchange tests
(Example of two parallel tests
shown)




   Slide 10    Cameco Technology and Innovation – Research centre
Ore Mineralogy
Example of poresizer application (deposit 1):




  Correlation of calculated montmorillonite content (based on
           magnesium assay) with pore surface area
   Slide 11    Cameco Technology and Innovation – Research Centre
Ore Mineralogy
Example of ore compositional data (deposit 1):

                                                          Area in          Mineral                 XRD/Rietveld
                             F
                                                          Micrograph                                Content (%)
                                                                A          Quartz                      56.2
                  E                                             B          Albite                       8.9
                                                                C          K-feldspar                  12.1
                                                                D          Micas: Muscovite/Illite      1.9
                                    A
         D                                                      E          Pyrite/Marcasite              0
                                                                F          Kaolinite                    5.5
                                                                           Montmorillonite *           15.4
                                                                           Total:                       100
                                                                            * by Mg assay          obtained with
                                                                                                    Cu K-alpha
                      B                                                                             wavelength
              A                             C




   Slide 12           Cameco Technology and Innovation – Research Centre
Ore Mineralogy
   Examples of uranium mineralization solution accessibility




                                                                                       A
                                                                               A


                                                                           B


Solution accessible uranium
mineralization with a composition of
calcium-phosphorus-bearing coffinite and                       Poorly solution accessible uranium
uranium-bearing clay, associated with                          mineralization (A) with shapes of
clay, pyrite and zircon in deposit 1 core                      framboidal pyrite in a clay matrix (B)
                                                               in deposit 2 core

       Slide 13       Cameco Technology and Innovation – Research Centre
Ore Mineralogy
    Uranium mineralization texture and genesis




Micrograph of uranium mineralization with                     Micrograph of uranium mineralization
euxenite and clay in a corrosion pocket in                    with a composition of calcium-
chlorite in deposit 1 core                                    phosphorus-bearing coffinite around
                                                              corroded framboidal pyrite in deposit 1
                                                              core

        Slide 14       Cameco Technology and Innovation – Research Centre
Ore Mineralogy
Uranium mineralization texture and genesis

                                                                    Ca-P-coffinite apparently displacing
                                                                    illite that had formed from K-feldspar.
                                                                    Rounded oxygen deficient particles in
                                                                    upper part of the image with contents
                                                                    of uranium, iron, sulphur and silicon
                                                                    show shapes typical for micro-
                                                                    organisms (deposit 3 core)




Energy dispersive microanalysis:
Spectrum    O       Mg     Al      Si     P     S      Cl    K      Ca    V     Fe     As    U      Interpretation
A           24.3           0.5     5.9    1.6   0.4                 1.8   0.3   0.8          64.4   Ca-P-coffinite
B           56.9                   43.1                                                             Quartz
C           50.3                   49.7                                                             Quartz
D           47.1    0.2    8.5     28.4                      10.6               1.0          4.2    K-feldspar, U-min
E           21.0           0.8     6.1    1.8   0.5    0.3          1.9   0.4   1.7          65.5   Ca-P-coffinite
F           7.1                    0.6          43.5                0.3         41.9   1.0   5.7    Pyrite, U-min.
G           7.1                    3.8    1.4   12.0   0.3          1.6   0.4   13.7         59.8   Org., U-min., pyrite
H           12.7                   5.2    2.2   1.7    0.6          2.1   0.4   2.5          72.7   Ca-P-coffinite, org.
Ore Mineralogy
Overall mineralogy summary and comparison
                                                           Estimated Content
          Mineral
                                         Deposit 1                               Deposit 2
                               Core 1                    Core 2           Core 1        Core 2
Quartz                           56.2                         50           62            71.1
Orthoclase                       12.1                       17.8            7                2
Albite                            8.9                        9.4           10.3              0
Muscovite/illite                  1.9                        7.7           2.1               4.1
Kaolinite                         5.5                       11.5           6.7               4
Montmorillonite *                15.4                        3.7           11.1          18.4
Total Clays                      22.8                       22.9           19.9          26.5
Pyrite **                         0.8                        0.4           0.9               0.4
*    Not amenable to Rietveld analysis - estimated by EDX analyses for magnesium
**   Estimated by EDX analysis for sulphur

      Slide 16       Cameco Technology and Innovation – Research Centre
Ore Mineralogy
Uranium mineralogy summary and comparison
                                                                                  *
                                                              Estimated Content
    Uranium Mineral                            Deposit 1                      Deposit 2
   Composition Type
                                       Core 1                   Core 2    Core 1      Core 2
Ca-P bearing coffinite                   35%                      85%      83%         62%
Uraninite/pitchblende                    39%                       8%      17%         8%
Coffinite                                27%                       8%      0%          0%
Autunite                                  0%                       0%      0%          31%


Solution accessibility                  good                     good     good        good


Uranium head grade                 2,200-2,600                   2,000-    700        1,000
(ppm)                                                            2,100
 * Based on approx. 20 observations per core


    Slide 17       Cameco Technology and Innovation – Research Centre
Ore Mineralogy
Influence of uranium minerals on leaching requirements

                                                                   Uranium minerals requiring
                                                                   oxidants
                                                                   Name              Valency
                                                                   Uraninite           U4+
                                                                   Pitchblende         U4+
                                                                   Thucholite          U4+
                                                                   Coffinite           U4+
                                                                   Uranothorite        U4+
                                                                   Brannerite          U4+
                                                                   Davidite            U4+
                                                                   Pyrochlore          U4+
                                                                   Euxenite            U4+


   Slide 18   Cameco Technology and Innovation – Research Centre
ISR Leaching Simulation
Summary and comparison of optimized bottle roll leach test
results

                                                   Uranium Recovery
Leaching Time                                             (%)
     (h)
                                 Deposit 1                                  Deposit 2
                     Core 1                     Core 2               Core 1        Core 2
          86              41                       46.5               71.1          77.4
         598           81-91                           --              --               --
         672                --                     79.2                --               --
         720                --                         --             83            87.1




   Slide 19     Cameco Technology and Innovation – Research Centre
ISR Leaching Simulation
Column leach tests – example of absolute uranium recovery
kinetics




  Slide 20    Cameco Technology and Innovation – Research Centre
ISR Leaching Simulation
Column leach tests – example of leach solution volume-based
uranium recovery kinetics




  Slide 21    Cameco Technology and Innovation – Research Centre
ISR Leaching Simulation
Estimate of possible ISR improvements from alkaline lixiviant
optimization
  Ore Sample                 Standard                           Optimized       Uranium
    Origin                   Uranium                             Uranium        Recovery
                             Recovery                           Recovery      Improvement
                                                                      **              **
                                (%)                               (%)             (%)
   Deposit 1                         65                                  72        7
   Deposit 2                         80                                  85        5
   Deposit 3                         70                                  80       10
   Deposit 4                         83                                  88        5
   Average *                                                                      6.4
 * resource size weighted
 ** by optimizing leach chemistry - bottle roll tests



   Slide 22         Cameco Technology and Innovation – Research Centre
Impurities
  Modes of occurrence of arsenic and selenium (elements of
  concern)




Backscattered electron micrograph of                         Backscattered micrograph of ferroselite
zoned pyrite in roll-front ore (0-2% As,                     (FeSe2) in marcasite and/or pyrite in roll-
present in outer zones, deposit 1,                           front ore (deposit 1, core 3)
core 3)

      Slide 23        Cameco Technology and Innovation – Research Centre
Impurities
   Occurrence of vanadium (an element of concern) with uranium
   mineralization



                                                                                      Backscattered electron
                                                                                      micrograph and elemental
                                                                                      composition of uranium-coal
                                                                                      mineralization consisting of a
                                                                                      coffinite-tyuyamunite type
                                                                                      mixed composition with
                                                                                      associated minerals (in
                                                                                      deposit 3, core 1)


Microanalyses by EDX (%)
Spectrum    C      O       Na      Al      Si       P       Cl      Ca      V         Fe    U      Total   Interpretation
6A                 23.5    0.6     0.3     7.6      0.6             2.7     3.0       0.6   61.1   100.0   coffinite-tyuyamunite?
6B                 22.5    0.4     0.2     7.6      0.8             2.5     2.6             63.6   100.0   coffinite-tyuyamunite?
6C                 25.9    0.6     0.1     7.5      0.7             2.8     3.0             59.5   100.0   coffinite-tyuyamunite?
6D          78.6   20.7                                     0.7                                    100.0   carbonaceous material
6E          79.1   20.2                                     0.7                                    100.0   carbonaceous material
6F                 52.6                    47.4                                                    100.0   quartz
6G                 51.4                    48.6                                                    100.0   quartz

         Slide 24                Cameco Technology and Innovation – Research Centre
Impurities
Comparison of impurity grades and recoveries to leach solution
in bottle roll leach tests

    Parameter                  Units             Sample Origin
                                           Deposit 1     Deposit 3
                                    Ore Grade
              As               (ppm)          27              4
              Se               (ppm)          14             160
              V                (ppm)          39             80
                               Recovery to Solution
              As                (%)           0.4            3.3
              Se                (%)          14.8            0.2
              V                 (%)           0.1            16




   Slide 25        Cameco Technology and Innovation – Research Centre
Summary & Conclusions
● Mineralogical studies and laboratory bottle roll and column
  leaching tests are well established methods to assess the
  amenability of sandstone ores to ISR.
● Uranium minerals can vary considerably within a given
  deposit and do not always give well-defined elemental
  compositions - as was the case with a compound interpreted
  as calcium-phosphorus-bearing coffinite.
● The mineralogical characteristics and final uranium leaching
  recoveries can vary equally within and between individual
  deposits, thus necessitating characterization of drill cores
  from multiple locations within an ISR deposit.
● In the examples given, the final uranium recoveries of
  optimized tests were not dependent on ore grades and met
  the target of >80% in most cases - showing improvements of
  up to 10% per ore.
● Elements of concern displayed variable leachability that
  depended on the characteristics of their host minerals.
   Slide 26    Cameco Technology and Innovation – Research Centre
Acknowledgements
The authors are indebted to:

● The members of the Cameco Technology and Innovation-
  Research Centre (CTI-RC) hydrometallurgy team for sample
  preparation and for carrying out the leaching tests
● The members of the CTI-RC Mineral and Chemical Analysis
  Laboratory team for sample characterization and analyses
● Simon Reid for review of this presentation
● Cameco management for sponsoring the related projects and
  for permission for this presentation




   Slide 27    Cameco Technology and Innovation – Research Centre
Questions?




 Slide 28   Cameco Technology and Innovation – Research centre

More Related Content

Similar to 06 iaea 2012 sandstone isr cameco heinr2

SKARN DEPOSITS
SKARN DEPOSITSSKARN DEPOSITS
SKARN DEPOSITS
VICTOR OBI
 
Tailoring process selection to uranium minerology and oil type
Tailoring process selection to uranium minerology and oil typeTailoring process selection to uranium minerology and oil type
Tailoring process selection to uranium minerology and oil type
Engineers Australia
 
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
jonsli
 
09 wilde iaea meeting may 2012
09 wilde iaea meeting may 201209 wilde iaea meeting may 2012
09 wilde iaea meeting may 2012
Monatom Mgl
 
Wilde Century PMD-CRC 2006
Wilde Century PMD-CRC 2006Wilde Century PMD-CRC 2006
Wilde Century PMD-CRC 2006
drwilde
 
Articulo1
Articulo1Articulo1
Articulo1
Articulo1Articulo1
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowska
Monatom Mgl
 
02 iaea2012 sklodowska
02 iaea2012 sklodowska02 iaea2012 sklodowska
02 iaea2012 sklodowska
Monatom Mgl
 
Universiteit utrecht
Universiteit utrechtUniversiteit utrecht
Universiteit utrecht
Green Minerals B.V.
 
Copper flotation and related plants in turkey
Copper flotation and related plants in turkeyCopper flotation and related plants in turkey
Copper flotation and related plants in turkey
behzadvaziri
 
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
Victoria Haukongo
 
Final presentation compiled v12
Final presentation   compiled v12Final presentation   compiled v12
Final presentation compiled v12
Henry Miyamoto
 
Nickel_Processes.ppt
Nickel_Processes.pptNickel_Processes.ppt
Nickel_Processes.ppt
DianKumalasari7
 
Philips ELFNET 2006 SAC101
Philips ELFNET 2006 SAC101Philips ELFNET 2006 SAC101
Philips ELFNET 2006 SAC101
Soldertec at ITRI
 
Flowsheet development in the context of copper extraction
Flowsheet development in the context of copper extractionFlowsheet development in the context of copper extraction
Flowsheet development in the context of copper extraction
Sargon Lovkis
 
Ph.D. Thesis presentation
Ph.D. Thesis presentationPh.D. Thesis presentation
Ph.D. Thesis presentation
Noël Djobo
 
SAIMM 2015 Conference 1.2.2
SAIMM 2015 Conference 1.2.2SAIMM 2015 Conference 1.2.2
SAIMM 2015 Conference 1.2.2
Ngoni Mhonde
 
Jim Galford
Jim GalfordJim Galford
Metallurgy MCQ
Metallurgy MCQMetallurgy MCQ
Metallurgy MCQ
Analytical Minds
 

Similar to 06 iaea 2012 sandstone isr cameco heinr2 (20)

SKARN DEPOSITS
SKARN DEPOSITSSKARN DEPOSITS
SKARN DEPOSITS
 
Tailoring process selection to uranium minerology and oil type
Tailoring process selection to uranium minerology and oil typeTailoring process selection to uranium minerology and oil type
Tailoring process selection to uranium minerology and oil type
 
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
0505_GC2010_The_Upper_Cretaceous_Bad_Heart_Ooidal_Ironstones
 
09 wilde iaea meeting may 2012
09 wilde iaea meeting may 201209 wilde iaea meeting may 2012
09 wilde iaea meeting may 2012
 
Wilde Century PMD-CRC 2006
Wilde Century PMD-CRC 2006Wilde Century PMD-CRC 2006
Wilde Century PMD-CRC 2006
 
Articulo1
Articulo1Articulo1
Articulo1
 
Articulo1
Articulo1Articulo1
Articulo1
 
Session 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowskaSession 8 02 a.d. sklodowska
Session 8 02 a.d. sklodowska
 
02 iaea2012 sklodowska
02 iaea2012 sklodowska02 iaea2012 sklodowska
02 iaea2012 sklodowska
 
Universiteit utrecht
Universiteit utrechtUniversiteit utrecht
Universiteit utrecht
 
Copper flotation and related plants in turkey
Copper flotation and related plants in turkeyCopper flotation and related plants in turkey
Copper flotation and related plants in turkey
 
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
GEOCHEMICAL AND GEOPHYSICAL CHRACTERISTICS OF THE SWARTMODDER CU-AU DEPOSITS ...
 
Final presentation compiled v12
Final presentation   compiled v12Final presentation   compiled v12
Final presentation compiled v12
 
Nickel_Processes.ppt
Nickel_Processes.pptNickel_Processes.ppt
Nickel_Processes.ppt
 
Philips ELFNET 2006 SAC101
Philips ELFNET 2006 SAC101Philips ELFNET 2006 SAC101
Philips ELFNET 2006 SAC101
 
Flowsheet development in the context of copper extraction
Flowsheet development in the context of copper extractionFlowsheet development in the context of copper extraction
Flowsheet development in the context of copper extraction
 
Ph.D. Thesis presentation
Ph.D. Thesis presentationPh.D. Thesis presentation
Ph.D. Thesis presentation
 
SAIMM 2015 Conference 1.2.2
SAIMM 2015 Conference 1.2.2SAIMM 2015 Conference 1.2.2
SAIMM 2015 Conference 1.2.2
 
Jim Galford
Jim GalfordJim Galford
Jim Galford
 
Metallurgy MCQ
Metallurgy MCQMetallurgy MCQ
Metallurgy MCQ
 

More from Monatom Mgl

Iaea
IaeaIaea
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хуульMonatom Mgl
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хуульMonatom Mgl
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хуульMonatom Mgl
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хуульMonatom Mgl
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хуульMonatom Mgl
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хуульMonatom Mgl
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хуульMonatom Mgl
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хуульMonatom Mgl
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хуульMonatom Mgl
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хуульMonatom Mgl
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хуульMonatom Mgl
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference becker
Monatom Mgl
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium deposits
Monatom Mgl
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tm
Monatom Mgl
 
Tmus programme
Tmus programmeTmus programme
Tmus programme
Monatom Mgl
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012
Monatom Mgl
 
05 iaea sandstone-hari
05 iaea sandstone-hari05 iaea sandstone-hari
05 iaea sandstone-hari
Monatom Mgl
 

More from Monatom Mgl (20)

Iaea
IaeaIaea
Iaea
 
Scan
ScanScan
Scan
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
12.компанийн тухай хууль
12.компанийн тухай хууль12.компанийн тухай хууль
12.компанийн тухай хууль
 
11.газрын тухай хууль
11.газрын тухай хууль11.газрын тухай хууль
11.газрын тухай хууль
 
10.газрын тухай хууль
10.газрын тухай хууль10.газрын тухай хууль
10.газрын тухай хууль
 
9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль9.төрийн хяналт шалгалтын тухай хууль
9.төрийн хяналт шалгалтын тухай хууль
 
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
7.аж ахуйн үйл ажиллагааны тусгай зөвшөөрлийн тухай хууль
 
6.усны тухай хууль
6.усны тухай хууль6.усны тухай хууль
6.усны тухай хууль
 
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
5.ашигт малтмалын хуулинд нэмэлт өөрчлөлт оруулах тухай хууль
 
4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль4.ашигт малтмалын тухай хууль
4.ашигт малтмалын тухай хууль
 
3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль3.цөмийн зэвсгээс ангид байх тухай хууль
3.цөмийн зэвсгээс ангид байх тухай хууль
 
1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль1.цөмийн энергийн тухай хууль
1.цөмийн энергийн тухай хууль
 
13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль13.тэмдэгтийн хураамжийн тухай хууль
13.тэмдэгтийн хураамжийн тухай хууль
 
03 iaea conference becker
03 iaea conference becker03 iaea conference becker
03 iaea conference becker
 
Tm on origin of sandston uranium deposits
Tm on origin of sandston uranium depositsTm on origin of sandston uranium deposits
Tm on origin of sandston uranium deposits
 
Summary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tmSummary.conclusion.u.sandstone.tm
Summary.conclusion.u.sandstone.tm
 
Tmus programme
Tmus programmeTmus programme
Tmus programme
 
04 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 201204 poland sandstone deposits - iaea 2012
04 poland sandstone deposits - iaea 2012
 
05 iaea sandstone-hari
05 iaea sandstone-hari05 iaea sandstone-hari
05 iaea sandstone-hari
 

06 iaea 2012 sandstone isr cameco heinr2

  • 1. Milling Underground - The Importance of Mineralogy and Leach Studies in the Evaluation of In Situ Recovery Projects G.W. Heinrich, R.J. De Klerk, L. Reimann, E. Lam and C. Foldenauer Cameco Corporation IAEA Technical Meeting on the Origin of Sandstone Uranium Deposits - A Global Perspective May-June 2012, Vienna
  • 2. Forward-looking Statement Please note that the statements made in this presentation, including statements regarding the company’s objectives, projections, outlook, estimates, expectations or predictions, are considered to be forward-looking information and statements under Canadian and US securities laws. This information involves risk and uncertainty and actual results could differ materially. In addition, material factors or assumptions were applied in drawing the conclusions contained in them. Additional information about the material factors that could cause the results to differ materially, and the material factors or assumptions that were applied, are contained in Cameco’s current Annual Information Form and MD&A, which are available on SEDAR and EDGAR. Slide 2 Cameco Technology and Innovation – Research Centre
  • 3. Introduction ● What is in situ recovery (ISR)? - Schematic of typical alkaline ISR operation Slide 3 Cameco Technology and Innovation – Research Centre
  • 4. Introduction Operational requirements, characteristics and performance for ISR (for typical sandstone ores): 1. Impermeable layers above and below ore horizon 2. Water-bearing open pore space (typically 15-30%) 3. Sufficient permeability (normally 0.7 to 1 d) 4. Leachable uranium minerals (typical uranium leaching recovery target = 80%) 5. Uranium mineralization accessible to leach solutions (allowing completion of leaching after 2 to 4 years or 50 to 200 pore volume replacements) 6. Sufficiently low contents of preg-robbing components (e.g., carbonaceous material) Slide 4 Cameco Technology and Innovation – Research Centre
  • 5. Introduction Post-discovery technical evaluation of sandstone orebodies for ISR: ● Delineation drilling ● Borehole geophysics/radiometry ● Borehole lithology/stratigraphy ● Hydro-geology ● Mineralogical and geochemical drill core characterization ● Metallurgical drill core characterization (leaching amenability tests Slide 5 Cameco Technology and Innovation – Research Centre
  • 6. Core Evaluation Methods Used Sample preparation (under an inert atmosphere): ● Core splitting ● Intact texture sampling plus polished section prep. ● Homogenization of half cores ● Test charge preparation ● Head sample cutting Slide 6 Cameco Technology and Innovation – Research Centre
  • 7. Core Evaluation Methods Used Mineralogical characterization: Head sample: ● Moisture determination ● Whole-rock analysis for main element contents ● Uranium and impurity analyses (e.g., vanadium and selenium) ● X-ray diffractometry and Rietveld analysis for main mineral contents X-ray powder diffractometer Slide 7 Cameco Technology and Innovation – Research Centre
  • 8. Core Evaluation Methods Used Mineralogical characterization: Samples with intact texture: ● Porosity and pore size determination ● Reflected light microscopy for quality of polish and for carbonaceous matter ● Scanning electron microscope/microprobe analyses for uranium minerals, trace minerals and ore texture (e.g. for determination of uranium mineral accessibility to solutions) Slide 8 Cameco Technology and Innovation – Research Centre
  • 9. Core Evaluation Methods Used Metallurgical characterization: Pressurized bottle roll tests (under oxygen pressure) to determine leaching chemistry (example of six parallel tests shown) Slide 9 Cameco Technology and Innovation – Research Centre
  • 10. Core Evaluation Methods Used Metallurgical characterization: Pressurized column leach tests (under oxygen pressure) for leaching and ion exchange tests (Example of two parallel tests shown) Slide 10 Cameco Technology and Innovation – Research centre
  • 11. Ore Mineralogy Example of poresizer application (deposit 1): Correlation of calculated montmorillonite content (based on magnesium assay) with pore surface area Slide 11 Cameco Technology and Innovation – Research Centre
  • 12. Ore Mineralogy Example of ore compositional data (deposit 1): Area in Mineral XRD/Rietveld F Micrograph Content (%) A Quartz 56.2 E B Albite 8.9 C K-feldspar 12.1 D Micas: Muscovite/Illite 1.9 A D E Pyrite/Marcasite 0 F Kaolinite 5.5 Montmorillonite * 15.4 Total: 100 * by Mg assay obtained with Cu K-alpha B wavelength A C Slide 12 Cameco Technology and Innovation – Research Centre
  • 13. Ore Mineralogy Examples of uranium mineralization solution accessibility A A B Solution accessible uranium mineralization with a composition of calcium-phosphorus-bearing coffinite and Poorly solution accessible uranium uranium-bearing clay, associated with mineralization (A) with shapes of clay, pyrite and zircon in deposit 1 core framboidal pyrite in a clay matrix (B) in deposit 2 core Slide 13 Cameco Technology and Innovation – Research Centre
  • 14. Ore Mineralogy Uranium mineralization texture and genesis Micrograph of uranium mineralization with Micrograph of uranium mineralization euxenite and clay in a corrosion pocket in with a composition of calcium- chlorite in deposit 1 core phosphorus-bearing coffinite around corroded framboidal pyrite in deposit 1 core Slide 14 Cameco Technology and Innovation – Research Centre
  • 15. Ore Mineralogy Uranium mineralization texture and genesis Ca-P-coffinite apparently displacing illite that had formed from K-feldspar. Rounded oxygen deficient particles in upper part of the image with contents of uranium, iron, sulphur and silicon show shapes typical for micro- organisms (deposit 3 core) Energy dispersive microanalysis: Spectrum O Mg Al Si P S Cl K Ca V Fe As U Interpretation A 24.3 0.5 5.9 1.6 0.4 1.8 0.3 0.8 64.4 Ca-P-coffinite B 56.9 43.1 Quartz C 50.3 49.7 Quartz D 47.1 0.2 8.5 28.4 10.6 1.0 4.2 K-feldspar, U-min E 21.0 0.8 6.1 1.8 0.5 0.3 1.9 0.4 1.7 65.5 Ca-P-coffinite F 7.1 0.6 43.5 0.3 41.9 1.0 5.7 Pyrite, U-min. G 7.1 3.8 1.4 12.0 0.3 1.6 0.4 13.7 59.8 Org., U-min., pyrite H 12.7 5.2 2.2 1.7 0.6 2.1 0.4 2.5 72.7 Ca-P-coffinite, org.
  • 16. Ore Mineralogy Overall mineralogy summary and comparison Estimated Content Mineral Deposit 1 Deposit 2 Core 1 Core 2 Core 1 Core 2 Quartz 56.2 50 62 71.1 Orthoclase 12.1 17.8 7 2 Albite 8.9 9.4 10.3 0 Muscovite/illite 1.9 7.7 2.1 4.1 Kaolinite 5.5 11.5 6.7 4 Montmorillonite * 15.4 3.7 11.1 18.4 Total Clays 22.8 22.9 19.9 26.5 Pyrite ** 0.8 0.4 0.9 0.4 * Not amenable to Rietveld analysis - estimated by EDX analyses for magnesium ** Estimated by EDX analysis for sulphur Slide 16 Cameco Technology and Innovation – Research Centre
  • 17. Ore Mineralogy Uranium mineralogy summary and comparison * Estimated Content Uranium Mineral Deposit 1 Deposit 2 Composition Type Core 1 Core 2 Core 1 Core 2 Ca-P bearing coffinite 35% 85% 83% 62% Uraninite/pitchblende 39% 8% 17% 8% Coffinite 27% 8% 0% 0% Autunite 0% 0% 0% 31% Solution accessibility good good good good Uranium head grade 2,200-2,600 2,000- 700 1,000 (ppm) 2,100 * Based on approx. 20 observations per core Slide 17 Cameco Technology and Innovation – Research Centre
  • 18. Ore Mineralogy Influence of uranium minerals on leaching requirements Uranium minerals requiring oxidants Name Valency Uraninite U4+ Pitchblende U4+ Thucholite U4+ Coffinite U4+ Uranothorite U4+ Brannerite U4+ Davidite U4+ Pyrochlore U4+ Euxenite U4+ Slide 18 Cameco Technology and Innovation – Research Centre
  • 19. ISR Leaching Simulation Summary and comparison of optimized bottle roll leach test results Uranium Recovery Leaching Time (%) (h) Deposit 1 Deposit 2 Core 1 Core 2 Core 1 Core 2 86 41 46.5 71.1 77.4 598 81-91 -- -- -- 672 -- 79.2 -- -- 720 -- -- 83 87.1 Slide 19 Cameco Technology and Innovation – Research Centre
  • 20. ISR Leaching Simulation Column leach tests – example of absolute uranium recovery kinetics Slide 20 Cameco Technology and Innovation – Research Centre
  • 21. ISR Leaching Simulation Column leach tests – example of leach solution volume-based uranium recovery kinetics Slide 21 Cameco Technology and Innovation – Research Centre
  • 22. ISR Leaching Simulation Estimate of possible ISR improvements from alkaline lixiviant optimization Ore Sample Standard Optimized Uranium Origin Uranium Uranium Recovery Recovery Recovery Improvement ** ** (%) (%) (%) Deposit 1 65 72 7 Deposit 2 80 85 5 Deposit 3 70 80 10 Deposit 4 83 88 5 Average * 6.4 * resource size weighted ** by optimizing leach chemistry - bottle roll tests Slide 22 Cameco Technology and Innovation – Research Centre
  • 23. Impurities Modes of occurrence of arsenic and selenium (elements of concern) Backscattered electron micrograph of Backscattered micrograph of ferroselite zoned pyrite in roll-front ore (0-2% As, (FeSe2) in marcasite and/or pyrite in roll- present in outer zones, deposit 1, front ore (deposit 1, core 3) core 3) Slide 23 Cameco Technology and Innovation – Research Centre
  • 24. Impurities Occurrence of vanadium (an element of concern) with uranium mineralization Backscattered electron micrograph and elemental composition of uranium-coal mineralization consisting of a coffinite-tyuyamunite type mixed composition with associated minerals (in deposit 3, core 1) Microanalyses by EDX (%) Spectrum C O Na Al Si P Cl Ca V Fe U Total Interpretation 6A 23.5 0.6 0.3 7.6 0.6 2.7 3.0 0.6 61.1 100.0 coffinite-tyuyamunite? 6B 22.5 0.4 0.2 7.6 0.8 2.5 2.6 63.6 100.0 coffinite-tyuyamunite? 6C 25.9 0.6 0.1 7.5 0.7 2.8 3.0 59.5 100.0 coffinite-tyuyamunite? 6D 78.6 20.7 0.7 100.0 carbonaceous material 6E 79.1 20.2 0.7 100.0 carbonaceous material 6F 52.6 47.4 100.0 quartz 6G 51.4 48.6 100.0 quartz Slide 24 Cameco Technology and Innovation – Research Centre
  • 25. Impurities Comparison of impurity grades and recoveries to leach solution in bottle roll leach tests Parameter Units Sample Origin Deposit 1 Deposit 3 Ore Grade As (ppm) 27 4 Se (ppm) 14 160 V (ppm) 39 80 Recovery to Solution As (%) 0.4 3.3 Se (%) 14.8 0.2 V (%) 0.1 16 Slide 25 Cameco Technology and Innovation – Research Centre
  • 26. Summary & Conclusions ● Mineralogical studies and laboratory bottle roll and column leaching tests are well established methods to assess the amenability of sandstone ores to ISR. ● Uranium minerals can vary considerably within a given deposit and do not always give well-defined elemental compositions - as was the case with a compound interpreted as calcium-phosphorus-bearing coffinite. ● The mineralogical characteristics and final uranium leaching recoveries can vary equally within and between individual deposits, thus necessitating characterization of drill cores from multiple locations within an ISR deposit. ● In the examples given, the final uranium recoveries of optimized tests were not dependent on ore grades and met the target of >80% in most cases - showing improvements of up to 10% per ore. ● Elements of concern displayed variable leachability that depended on the characteristics of their host minerals. Slide 26 Cameco Technology and Innovation – Research Centre
  • 27. Acknowledgements The authors are indebted to: ● The members of the Cameco Technology and Innovation- Research Centre (CTI-RC) hydrometallurgy team for sample preparation and for carrying out the leaching tests ● The members of the CTI-RC Mineral and Chemical Analysis Laboratory team for sample characterization and analyses ● Simon Reid for review of this presentation ● Cameco management for sponsoring the related projects and for permission for this presentation Slide 27 Cameco Technology and Innovation – Research Centre
  • 28. Questions? Slide 28 Cameco Technology and Innovation – Research centre