SlideShare a Scribd company logo
1 of 48
Download to read offline
Computer vision: models, learning
and inference
Chapter 4
Fitting Probability Models
Iihs 'RE to a 7h 7 Ta -
- 7
"
no ; t -
7 Nyah
Structure
22Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
• Fitting probability distributions
– Maximum likelihood
– Maximum a posteriori
– Bayesian approach
• Worked example 1: Normal distribution
• Worked example 2: Categorical distribution
IEEE HETE
* Kkk
.TK#.EEakfKzTeMAPfhEFer--k7i
Fitting: As the name suggests: find the parameters under which
the data are most likely:
Maximum Likelihood
3Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Predictive Density:
Evaluate new data point under probability distribution
with best parameters
We have assumed that data was independent (hence product)
E
EEE Fastest
E- A to
"
FL 's K2 ,
¥7 E E
'
E 's cc ,
no 5 x - A 2 Fi K2
43-4 Let "
I
"
-
9- Xi knot lift I
"
-
A a no it -7
nm
is # . a EFE It Btp a En a the Er I f "
.
qi fax
c- = a ti Fk z FIE E3 3 Hit -
A O
Xie G . . . my t Ez.
-422 . THE a
Fifa I B Fpa a
.
It
-
A Efik 3 .
Fi -2 THEIR't 2
. '
I s .
= IF FEE tha Fa's
th
sa
Xi X s
Xgx5¥
'
ok . Xx
I
"
-
'
7 X ,
i 's XI It I 2 9K¥ 71 a 2
"
FEg
. te et 3 .
7¥,
airs E -
'
715 's lit t -
A a HE FINE I te tu la ES .
Eth u u
T
"
-
A X
*
zi IKEA
u ta tf 3¥ Et F H2o
Maximum a posteriori (MAP)
Fitting
As the name suggests we find the parameters which maximize the
posterior probability .
4Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Again we have assumed that data was independent
¥4 .EE#iEEF-kf5EBeCMAP7Bahe )
E
"
-7 F
"
-7 Xi . . . I 8 "E¥5kE2E9N3t -
A On 7¥64 ft EFFI '¥
Xi their .EE#.EIEutebEa4iz
¥43. -434¥.NET/EFIQTktqa=4evE3.ETEiHEFEtthUtt
¥.EE#zzfkgzgz-*g1~hH9dtEtE
Its Tufts # 8ft CHE 'ELE .
¥¥yEfE¥
÷¥t¥÷¥.
j÷÷:÷*⇒-
J
E
"
-7k
"
3kV KARLIE "2
KEEN -322
.fi/Tfc23krakn#X I
"
r
ask.at#GfpaFEakAzI
-
FEEL 5th So
X ,
X¢XsXsX5#k8
49 Xo
Maximum a posteriori (MAP)
Fitting
As the name suggests we find the parameters which maximize the
posterior probability .
6Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Since the denominator doesn’t depend on the parameters we can
instead maximize I¥¥¥÷÷::::in
' '
fat HE .
¥2 E
'
fkIkHEE¥¥IIPnf Xi I o I E
' '
et Fi ; E x
"
,
Ma p fFE If it Z the k
Ef FM I TG a
"
7 u 2 a 3 .
Maximum a posteriori (MAP)
Predictive Density:
Evaluate new data point under probability distribution
with MAP parameters
7Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
It I Fel
-
k a 5 t
-
A v Effi u n T
"
-
7 E
'
I 4 HIT t 3
Bayesian Approach
Fitting
Compute the posterior distribution over possible parameter values
using Bayes’ rule:
Principle: why pick one set of parameters? There are many values
that could have explained the data. Try to capture all of the
possibilities
8Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
N
'
il 2
' '
HE II
n
"
h K HE ¥ a Fg in Y
TI E
"
Ikki HE ft F M A P FAE ¥ a
F 's E it 3 t
-
A Z -
7 k Ik I 3 He II gu Ta 3 a 5 ? Y
'
W H I " -7 t -
A a 7 u
2
E ¥4 Katie Ef low 54 YI v I 3 a Fi
'
a
-
I ,
ETHKK Itt ' '
a e -
Fi s 's .
E
"
-
A b
"
it it -
7 a ¥47297548 Top E E 2 It 97¥ to 3 .
Bayesian Approach
Predictive Density
• Each possible parameter value makes a prediction
• Some parameters more probable than others
Make a prediction that is an infinite weighted sum (integral) of the
predictions for each parameter value, where weights are the
probabilities
9Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
q
.
.
a A E ¥ KI ETE It Et ¥ , .
a
- -
¥44 He E TE KK FIE Et EETFizEe e n A p HE ¥2 "
t .
that Ec Eli 3 x -
F O
I ok I 7
"
t Hike "
K
iz
Has me Fitz ¥ I tip is 's ABE s in z x
*
a qq.az 3¥ E
. .
y .
N I t -
A 0 n El Kk KITE ¥
#
I TEH h't 4 c 2 Fauna 3 .
Itis E 5432
fPrCxxdoR7
X
*
209 An a HE Top
u KML i Q q .
Ffa Be Tg 3 a Each I , 2 O X
"
HA L2 .
I a 8 Ff o a I I .
-
EE4 ft IT 4k
Predictive densities for 3 methods
Maximum a posteriori:
Evaluate new data point under probability distribution
with MAP parameters
Maximum likelihood:
Evaluate new data point under probability distribution
with ML parameters
Bayesian:
Calculate weighted sum of predictions from all possible values of
parameters
10Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
'
ETEKIAZFE
-
¥hkEfe¥EEtHE¥ ( MAP )
-
ftp.#IKe2MAPHEEetE3HAtIh*mAnci
.
N km
How to rationalize different forms?
Consider ML and MAP estimates as probability
distributions with zero probability everywhere except at
estimate (i.e. delta functions)
Predictive densities for 3 methods
11Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
EEEHE Heh M A p HEBe it t k 7 " 793£ a
*¥ Fit
'
I 73g E- a KEI 's K I .
f a 48996k¥Ef -
or
'
E a 2 E ex
'
H -
n
.
-
FTW Th# EET MA P TAEK E hav
Structure
1212Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
• Fitting probability distributions
– Maximum likelihood
– Maximum a posteriori
– Bayesian approach
• Worked example 1: Normal distribution
• Worked example 2: Categorical distribution
Univariate Normal Distribution
For short we write:
Univariate normal distribution
describes single continuous
variable.
Takes 2 parameters m and s2>0
13Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
EEE Sfp
↳ Iz Aka
µ o
'
m Ms
Normal Inverse Gamma
DistributionDefined on 2 variables m and s2>0
or for short
Four parameters a,b,g > 0 and d.
14Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
9h24 "
'
r 28 tip
x or d
bae g m
Ready?
• Approach the same problem 3 different ways:
– Learn ML parameters
– Learn MAP parameters
– Learn Bayesian distribution of parameters
• Will we get the same results?
15Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
As the name suggests we find the parameters under which the data
is most likely.
Fitting normal distribution: ML
16Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Likelihood given by
pdf
III fish a I EYE b TG a les t -
A FETE
I
"
-
A X I u .
X I
am I l 's th E 2 I
,
ci i f -
F O om h '
Fer II e
t - I C of I F b of co 3 t -
F O E Fei K 3 .
'
te n I
"
-
A of AKI
94 a T TAE aw fi F L .
Y
FEEL'
Ik a -
HE Eng
-
- It EES-4 g t g t
-
a Ten HSE .
* .
D- it
m , o
-
the I
' '
-
A D - -
Kc
-
-
d 3 .
<
Fitting normal distribution: ML
17Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
rake
-
¥
"
-
o
'
a
4Th
( Fife ) it #eEH¥ Ese .
I
-
L
I FEI k s is -5 Hated ME # La IEEE "
or 's , TE -82295 a FA
C a hi Fax "
IIe 't EE u .
Fitting a normal distribution: ML
Plotted surface of likelihoods
as a function of possible
parameter values
ML Solution is at peak
18Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
fifth a. y I - LEED
-
-
- - - - - - - -
- - - -
w .
-
"
"
!
( vs t -
7 MIO 'D "
Ink 'Ea2E .
Ezek '
Feb "
FE -
i
.
Fitting normal distribution: ML
Algebraically
:
or alternatively, we can maximize the
logarithm
19Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
where:
Etta
me€
⇐ " '
'
B
Ff Eknath
" -
FIERI Fk
FIE Du 412 E 7J I .
I E.
ftp.EKPH#kaIF7L3
.
Why the logarithm?
The logarithm is a monotonic transformation.
Hence, the position of the peak stays in the same place
But the log likelihood is easier to work with
20Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
at E-
'
Ft Eh E EH , 2 E f u
a a ?
It ¥42 EH, 2E he N -
PEHEt to ' B 's I . .
.
Fy :p # than a
PEEK
Fitting normal distribution: ML
How to maximize a function? Take derivative and equate to zero.
21Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Solution
:
444,2 .tt#NEME-Ek3fIx-ta-gz$
-
?
Initiates
-53
HEIKE kB 417 # to "
On e'ZEIT LERETTE)
Likelihood 'Ll "
@
EFES .
E' Fat 'HEka=u .
I
hEt4Eh
14779¥ 't . H 's .
Fitting normal distribution: ML
Maximum likelihood solution:
Should look
familiar!
22Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
4th
bitts
Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Least Squares
2323
Maximum likelihood for the normal distribution...
...gives `least squares’ fitting criterion.
R
Fak = FEEL
IEDS tip IEEE '
II
a if¥7 '
E H i3 E on ¥34 - =
# Eh
↳ IKE Ethic.
EEE B Ep z f Kiku . BIKE % I Fi Fff to CT I s a 5. Es.
J M k -7 ul Ii K F- u a I
' '
.mx
"
2¥18of ¥e.
FA
ur
-
II,
tri -
ni EILERT 389362 .
I.,
Lai -
n )
'
z Bit -
ke -92 PHOEBE a Me u .
.
-
IN a -5¥ Eh
Fitting normal distribution: MAP
Fitting
As the name suggests we find the parameters which maximize the
posterior probability ..
Likelihood is normal PDF
24Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
MAPFETEV.EE/I8FpnN5t -
775¥52
-fifth ¥8159
Ghee .tt#KBFpnfi5f-9FEEItaz. .
FACIE
.LI/3FpI#KBEp9EEiKEfFxsJ9z..Taz- Fasti 't 28 TGZhK 's .
Fitting normal distribution: MAP
Prior
Use conjugate prior, normal scaled inverse gamma.
25Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
,
i
g t -
A d .
R ,
T
,
8 I 't Lk
4h17 "
t ? B Fp 2 E a u a o
'
a inHas It 8 The
Mega t IRYaa
u
.
y
Fifth
to
"
Ya u
Fitting normal distribution: MAP
Likelihoo
d
Prior Posterior
26Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
-¥&nkTmHu
"
Eiti -K±¥
E- A TETI
"
-7
MAP 't Asha
Extensive
.
zakat "¥tk
Maximum Prior
Ed'EyTeTAs¥E¥xknE.
d x =
tiFe Effigy 424£59
-
ti 'Fk2¥Ey8fpa' ftp.547aylffpaci-t-ac-ttass-vkfk3
-
-
£¥n£kK5fx ¥4231 '
Ifta -4hL
# =agq
Fitting normal distribution: MAP
Again maximize the log – does not change position of
maximum
27Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
| It aft a
-
F Hav If Ea q IRL a . hi Ee e
Ed Kl 5-4 n FIE Eu,
-
te men
tfto
E723 .
{ the
"
K HE It Ei E "
IT It FI Y th it
"
F - i
.
( i 3 t
-
A µ E o
'
e s u 2 3 42
"
K TEHKkk I a ⇐ o ) 2 T I 2 .
ik no -
I
' '
n I
'
I
-
-
z 2
Tifft et TEE I a a BE A #
Fitting normal distribution: MAP
MAP
solution:
Mean can be rewritten as weighted sum of data mean and
prior mean:
28Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
A ,
B ,
r
,
or it ¥ Fang tip a
N I t -
A
(
¥a¥si¥ EEE #a
-
Fitting normal distribution: MAP
50 data points 5 data points 1 data points
I
"
-
A an E CIL Ta 3 E EEE'
fAs Erbe E
MAP FSE the 9¥ it STL 7
"
C o
F- 7 a
"
Htt uE¥¥18 The k£3 .
my mm
me
FIEND9
q
.
.
.
a * LEE ex
-
Kc 2 E MAP HE 'Et7¥E
MAP HE Ekka
42k£ Ffa
Fifa
&
"
-
Ma
'
"
qq.ws#Fay 43¥ £4 E I
"
-
A E KI At to do E
"
-
A a- 4 Hi e . EEK 48 TG re f t .
F- A 6 "
1k¥ use
-
In z Tiff on
. .
It ¥27.
E
'
a ,
Retake
"
Iet'¥
2- E Hu 155 .
MA PFE feet Est 4¥ .
Fitting normal: Bayesian approach
Fitting
Compute the posterior distribution using Bayes’ rule:
IEEE Fp
nee
-7 t
-
7 Zakk .
-4¥ '¥
a anutttaso . -
¥ :*
.int#hkEFEEE8Fp-EfiK3avtt2tc
.
Ern -447k¥ '¥zi¥AuI
's
.
¥f¥Et
.rs/f*Fttc2Ic.FE4#tAfEItiK3
to ¥ x
EITHEEEEi.TK=
Elektra '¥ 's -4
Fitting normal: Bayesian approach
Fitting
Compute the posterior distribution using Bayes’ rule:
Two constants MUST cancel out or LHS not a valid pdf
31Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
E.fi/iz-EfazTE8Ff
list -
Art # Effy
d
m-FBEEN.tt#heIthf*Ts3 -
F¥HuIk43Ehe¥FqEt NEFJJ ITEVE 's .
an -4391=4445*40 "
-42mL
Titch .
I ¥229 # HIT
SEALE 's .
Fitting normal: Bayesian approach
Fitting
Compute the posterior distribution using Bayes’ rule:
where
32Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Fitting normal: Bayesian approach
Predictive density
Take weighted sum of predictions from different parameter values:
33Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Posterior Samples from posterior
-
-
-
-
game
it
Era no 5 t -
79 ¥ Fay
gig 2- EI Htt at oh FAIR
CETI's I
FIH ft t C 2 FEES LEE a
⇒ I se ft E 4th
l ,
Fitting normal: Bayesian approach
Predictive density
Take weighted sum of predictions from different parameter values:
34Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
-
me 06
"
Ez Ek lust n ol
-
'
s EES a F tea £2 .
-
l k 2L I
Fitting normal: Bayesian approach
Predictive density
Take weighted sum of predictions from different parameter values:
where
35Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Fitting normal: Bayesian Approach
50 data points 5 data points 1 data points
36Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
77¥22 Not
"
ER,
t.IE
MAP
v Hi '
et m AP HETE is Ect
-
2 ten I
"
-
A Eu ZEAL IFE IT a -
u .
I
"
-
F ka 472 u 2 MAP HE FEI REEFS at et Tu .
Structure
3737Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
• Fitting probability distributions
– Maximum likelihood
– Maximum a posteriori
– Bayesian approach
• Worked example 1: Normal distribution
• Worked example 2: Categorical distribution
Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Categorical Distribution
or can think of data as vector with all
elements zero except kth e.g. [0,0,0,1 0]
For short we write:
Categorical distribution describes situation where K possible
outcomes y=1… y=k.
Takes K parameters where
38
4 I I
" '
I 71 a 95 Fp
*TETE EE IK 2 k 3 " K k Fo FEET a k sac
.
In d .
Ffa IT it AI Te t e I .
Dirichlet Distribution
Defined over K values where
Or for short: Has k
parameters ak>0
39Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Categorical distribution: ML
40Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Maximize product of individual
likelihoods
(remember, P(x) = )
Nk = # times we
observed bin k
$ I a
"
4 a
a 84 z EFFETE he
Categorical distribution: ML
41Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Instead maximize the log probability
Log
likelihood
Lagrange multiplier to ensure
that params sum to one
Take derivative, set to zero and re-arrange:
Equity # H
-
n
¥tERE¥ I -
917
"
-7 '-E2¥E¥f
 =0kK3n .
Ff
'
dear
2- k¥4553
24430
( 72 am
"
-7412kt
KEE Ata
HHtlFH2 .
Categorical distribution: MAP
42Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
MAP
criterion:
A I I
" '
I A n 5 F a M A P HI He
EfKEEFE ¥ 2 HE E re Td
←
no T t -
7 a K ,
2 a I a
55ft HEE HE 2- I 3 a e .
,
= I La.
ez la
'
f Fi 9 .
-fi FE of A I 7
"
4 a Nis En Is In 5 Fe et F'a 4 the 5 Ep
- -
y
if
"
Is a
"
Taika
-
T PEI Ek a Fat he k MEH a n a e
-
-
IF '
n k
-
-
Categorical distribution: MAP
43Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
With a uniform prior (a1..K=1), gives same result as
maximum likelihood.
Take derivative, set to zero and re-arrange:
MAP -fE¥afzEh
Lank
'e2f±cTH
.
T
si
-71--71249
MAP
-tEd¥k¥K
feat
' '
µ¥Tp.at#sEay7L8Gaci3t -
F
-
-
Ali . . k
xx .ci#21HsEfIE'fAFegIEfE2-ZfE
Categorical Distribution
Observed data
Five samples from prior
Five samples from posterior
44Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
¥584954
k¥2474 I KE E
"
-
7
¥ Ekg tip
Categorical Distribution:
Bayesian approach
45Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Two constants MUST cancel out or LHS not a valid pdf
Compute posterior distribution over parameters:
A I I
'
'
I a a Q Ep a v a 2
"
HE ¥
fi Ea ¥ Eat if
I I I
"
4 8 a
GF
Z Fa 4 7 L
IF a
I e
"
I
" -
-
I
¥42
EffingFife If 2 a E 9 2 F
-
70 a 2 k¥5 . fi EE is
tf I "
4 an 4364459 I Fa y a
-
-
FT T ITA CE ,
7 I a
23 .
¥447fft 8TH
Categorical Distribution:
Bayesian approach
46Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
Two constants MUST cancel out or LHS not a valid pdf
Compute predictive distribution:
- -
¥2 a list -
F re Et KkFifa IT i ¥ Htt Hu FAI he
-
I R k EIKE I a a t Ftc =
I To E
"
x Y
'
7 c
8 F I k¥ E FF.
E F I e
I .
ML / MAP vs. Bayesian
MAP/M
L
Bayesia
n 47Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
FEZIBME-FC.at#xc
⇒
t.EE#actTuNkHfE&I2rLNenhEaEpu3FbEc
FEE
of
* a .
HERMIE
"
-
A L h
do on
Conclusion
48Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
• Three ways to fit probability distributions
• Maximum likelihood
• Maximum a posteriori
• Bayesian Approach
• Two worked example
• Normal distribution (ML least squares)
• Categorical distribution
04 Fitting Probability Models ノート

More Related Content

Similar to 04 Fitting Probability Models ノート

Critical Path Method/ Program Evaluation and Review Technique
Critical Path Method/ Program Evaluation and Review TechniqueCritical Path Method/ Program Evaluation and Review Technique
Critical Path Method/ Program Evaluation and Review Technique
Jomari Gingo Selibio
 
Products go Green: Worst-Case Energy Consumption in Software Product Lines
Products go Green: Worst-Case Energy Consumption in Software Product LinesProducts go Green: Worst-Case Energy Consumption in Software Product Lines
Products go Green: Worst-Case Energy Consumption in Software Product Lines
GreenLabAtDI
 
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
Sri Ambati
 

Similar to 04 Fitting Probability Models ノート (12)

Day 2 build up your own neural network
Day 2  build up your own neural networkDay 2  build up your own neural network
Day 2 build up your own neural network
 
Experimental investigation of artificial intelligence applied in MPPT techniques
Experimental investigation of artificial intelligence applied in MPPT techniquesExperimental investigation of artificial intelligence applied in MPPT techniques
Experimental investigation of artificial intelligence applied in MPPT techniques
 
Algorithm of some numerical /computational methods
Algorithm of some numerical /computational methodsAlgorithm of some numerical /computational methods
Algorithm of some numerical /computational methods
 
The physics of computational drug discovery
The physics of computational drug discoveryThe physics of computational drug discovery
The physics of computational drug discovery
 
Critical Path Method/ Program Evaluation and Review Technique
Critical Path Method/ Program Evaluation and Review TechniqueCritical Path Method/ Program Evaluation and Review Technique
Critical Path Method/ Program Evaluation and Review Technique
 
Predict saturated thickness using tensor board visualization
Predict saturated thickness using tensor board visualizationPredict saturated thickness using tensor board visualization
Predict saturated thickness using tensor board visualization
 
IEEE_EMCS_DL JDM LABS LLC 1i Pdf
IEEE_EMCS_DL JDM LABS LLC 1i PdfIEEE_EMCS_DL JDM LABS LLC 1i Pdf
IEEE_EMCS_DL JDM LABS LLC 1i Pdf
 
Graphical Models for chains, trees and grids
Graphical Models for chains, trees and gridsGraphical Models for chains, trees and grids
Graphical Models for chains, trees and grids
 
Products go Green: Worst-Case Energy Consumption in Software Product Lines
Products go Green: Worst-Case Energy Consumption in Software Product LinesProducts go Green: Worst-Case Energy Consumption in Software Product Lines
Products go Green: Worst-Case Energy Consumption in Software Product Lines
 
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKSAN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
 
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKSAN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
AN IMPROVED ROUTING PROTOCOL SCHEME IN ADHOC NETWORKS
 
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
Interpretable Machine Learning Using LIME Framework - Kasia Kulma (PhD), Data...
 

Recently uploaded

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 

Recently uploaded (20)

PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 

04 Fitting Probability Models ノート

  • 1. Computer vision: models, learning and inference Chapter 4 Fitting Probability Models Iihs 'RE to a 7h 7 Ta - - 7 " no ; t - 7 Nyah
  • 2. Structure 22Computer vision: models, learning and inference. ©2011 Simon J.D. Prince • Fitting probability distributions – Maximum likelihood – Maximum a posteriori – Bayesian approach • Worked example 1: Normal distribution • Worked example 2: Categorical distribution IEEE HETE * Kkk .TK#.EEakfKzTeMAPfhEFer--k7i
  • 3. Fitting: As the name suggests: find the parameters under which the data are most likely: Maximum Likelihood 3Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Predictive Density: Evaluate new data point under probability distribution with best parameters We have assumed that data was independent (hence product) E EEE Fastest E- A to " FL 's K2 , ¥7 E E ' E 's cc , no 5 x - A 2 Fi K2 43-4 Let " I " - 9- Xi knot lift I " - A a no it -7 nm is # . a EFE It Btp a En a the Er I f " . qi fax c- = a ti Fk z FIE E3 3 Hit - A O Xie G . . . my t Ez. -422 . THE a Fifa I B Fpa a . It - A Efik 3 . Fi -2 THEIR't 2 . ' I s . = IF FEE tha Fa's th sa Xi X s Xgx5¥ ' ok . Xx I " - ' 7 X , i 's XI It I 2 9K¥ 71 a 2 " FEg . te et 3 . 7¥, airs E - ' 715 's lit t - A a HE FINE I te tu la ES . Eth u u T " - A X * zi IKEA u ta tf 3¥ Et F H2o
  • 4. Maximum a posteriori (MAP) Fitting As the name suggests we find the parameters which maximize the posterior probability . 4Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Again we have assumed that data was independent ¥4 .EE#iEEF-kf5EBeCMAP7Bahe ) E " -7 F " -7 Xi . . . I 8 "E¥5kE2E9N3t - A On 7¥64 ft EFFI '¥ Xi their .EE#.EIEutebEa4iz ¥43. -434¥.NET/EFIQTktqa=4evE3.ETEiHEFEtthUtt ¥.EE#zzfkgzgz-*g1~hH9dtEtE Its Tufts # 8ft CHE 'ELE . ¥¥yEfE¥ ÷¥t¥÷¥. j÷÷:÷*⇒- J E " -7k " 3kV KARLIE "2 KEEN -322 .fi/Tfc23krakn#X I " r ask.at#GfpaFEakAzI - FEEL 5th So X , X¢XsXsX5#k8 49 Xo
  • 5. Maximum a posteriori (MAP) Fitting As the name suggests we find the parameters which maximize the posterior probability . 6Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Since the denominator doesn’t depend on the parameters we can instead maximize I¥¥¥÷÷::::in ' ' fat HE . ¥2 E ' fkIkHEE¥¥IIPnf Xi I o I E ' ' et Fi ; E x " , Ma p fFE If it Z the k Ef FM I TG a " 7 u 2 a 3 .
  • 6. Maximum a posteriori (MAP) Predictive Density: Evaluate new data point under probability distribution with MAP parameters 7Computer vision: models, learning and inference. ©2011 Simon J.D. Prince It I Fel - k a 5 t - A v Effi u n T " - 7 E ' I 4 HIT t 3
  • 7. Bayesian Approach Fitting Compute the posterior distribution over possible parameter values using Bayes’ rule: Principle: why pick one set of parameters? There are many values that could have explained the data. Try to capture all of the possibilities 8Computer vision: models, learning and inference. ©2011 Simon J.D. Prince N ' il 2 ' ' HE II n " h K HE ¥ a Fg in Y TI E " Ikki HE ft F M A P FAE ¥ a F 's E it 3 t - A Z - 7 k Ik I 3 He II gu Ta 3 a 5 ? Y ' W H I " -7 t - A a 7 u 2 E ¥4 Katie Ef low 54 YI v I 3 a Fi ' a - I , ETHKK Itt ' ' a e - Fi s 's . E " - A b " it it - 7 a ¥47297548 Top E E 2 It 97¥ to 3 .
  • 8. Bayesian Approach Predictive Density • Each possible parameter value makes a prediction • Some parameters more probable than others Make a prediction that is an infinite weighted sum (integral) of the predictions for each parameter value, where weights are the probabilities 9Computer vision: models, learning and inference. ©2011 Simon J.D. Prince q . . a A E ¥ KI ETE It Et ¥ , . a - - ¥44 He E TE KK FIE Et EETFizEe e n A p HE ¥2 " t . that Ec Eli 3 x - F O I ok I 7 " t Hike " K iz Has me Fitz ¥ I tip is 's ABE s in z x * a qq.az 3¥ E . . y . N I t - A 0 n El Kk KITE ¥ # I TEH h't 4 c 2 Fauna 3 . Itis E 5432 fPrCxxdoR7 X * 209 An a HE Top u KML i Q q . Ffa Be Tg 3 a Each I , 2 O X " HA L2 . I a 8 Ff o a I I . - EE4 ft IT 4k
  • 9. Predictive densities for 3 methods Maximum a posteriori: Evaluate new data point under probability distribution with MAP parameters Maximum likelihood: Evaluate new data point under probability distribution with ML parameters Bayesian: Calculate weighted sum of predictions from all possible values of parameters 10Computer vision: models, learning and inference. ©2011 Simon J.D. Prince ' ETEKIAZFE - ¥hkEfe¥EEtHE¥ ( MAP ) - ftp.#IKe2MAPHEEetE3HAtIh*mAnci . N km
  • 10. How to rationalize different forms? Consider ML and MAP estimates as probability distributions with zero probability everywhere except at estimate (i.e. delta functions) Predictive densities for 3 methods 11Computer vision: models, learning and inference. ©2011 Simon J.D. Prince EEEHE Heh M A p HEBe it t k 7 " 793£ a *¥ Fit ' I 73g E- a KEI 's K I . f a 48996k¥Ef - or ' E a 2 E ex ' H - n . - FTW Th# EET MA P TAEK E hav
  • 11. Structure 1212Computer vision: models, learning and inference. ©2011 Simon J.D. Prince • Fitting probability distributions – Maximum likelihood – Maximum a posteriori – Bayesian approach • Worked example 1: Normal distribution • Worked example 2: Categorical distribution
  • 12. Univariate Normal Distribution For short we write: Univariate normal distribution describes single continuous variable. Takes 2 parameters m and s2>0 13Computer vision: models, learning and inference. ©2011 Simon J.D. Prince EEE Sfp ↳ Iz Aka µ o ' m Ms
  • 13. Normal Inverse Gamma DistributionDefined on 2 variables m and s2>0 or for short Four parameters a,b,g > 0 and d. 14Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 9h24 " ' r 28 tip x or d bae g m
  • 14. Ready? • Approach the same problem 3 different ways: – Learn ML parameters – Learn MAP parameters – Learn Bayesian distribution of parameters • Will we get the same results? 15Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
  • 15. As the name suggests we find the parameters under which the data is most likely. Fitting normal distribution: ML 16Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Likelihood given by pdf III fish a I EYE b TG a les t - A FETE I " - A X I u . X I am I l 's th E 2 I , ci i f - F O om h ' Fer II e t - I C of I F b of co 3 t - F O E Fei K 3 . ' te n I " - A of AKI 94 a T TAE aw fi F L . Y FEEL' Ik a - HE Eng - - It EES-4 g t g t - a Ten HSE . * . D- it m , o - the I ' ' - A D - - Kc - - d 3 . <
  • 16. Fitting normal distribution: ML 17Computer vision: models, learning and inference. ©2011 Simon J.D. Prince rake - ¥ " - o ' a 4Th ( Fife ) it #eEH¥ Ese . I - L I FEI k s is -5 Hated ME # La IEEE " or 's , TE -82295 a FA C a hi Fax " IIe 't EE u .
  • 17. Fitting a normal distribution: ML Plotted surface of likelihoods as a function of possible parameter values ML Solution is at peak 18Computer vision: models, learning and inference. ©2011 Simon J.D. Prince fifth a. y I - LEED - - - - - - - - - - - - - - w . - " " ! ( vs t - 7 MIO 'D " Ink 'Ea2E . Ezek ' Feb " FE - i .
  • 18. Fitting normal distribution: ML Algebraically : or alternatively, we can maximize the logarithm 19Computer vision: models, learning and inference. ©2011 Simon J.D. Prince where: Etta me€ ⇐ " ' ' B Ff Eknath " - FIERI Fk FIE Du 412 E 7J I . I E. ftp.EKPH#kaIF7L3 .
  • 19. Why the logarithm? The logarithm is a monotonic transformation. Hence, the position of the peak stays in the same place But the log likelihood is easier to work with 20Computer vision: models, learning and inference. ©2011 Simon J.D. Prince at E- ' Ft Eh E EH , 2 E f u a a ? It ¥42 EH, 2E he N - PEHEt to ' B 's I . . . Fy :p # than a PEEK
  • 20. Fitting normal distribution: ML How to maximize a function? Take derivative and equate to zero. 21Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Solution : 444,2 .tt#NEME-Ek3fIx-ta-gz$ - ? Initiates -53 HEIKE kB 417 # to " On e'ZEIT LERETTE) Likelihood 'Ll " @ EFES . E' Fat 'HEka=u . I hEt4Eh 14779¥ 't . H 's .
  • 21. Fitting normal distribution: ML Maximum likelihood solution: Should look familiar! 22Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 4th bitts
  • 22. Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Least Squares 2323 Maximum likelihood for the normal distribution... ...gives `least squares’ fitting criterion. R Fak = FEEL IEDS tip IEEE ' II a if¥7 ' E H i3 E on ¥34 - = # Eh ↳ IKE Ethic. EEE B Ep z f Kiku . BIKE % I Fi Fff to CT I s a 5. Es. J M k -7 ul Ii K F- u a I ' ' .mx " 2¥18of ¥e. FA ur - II, tri - ni EILERT 389362 . I., Lai - n ) ' z Bit - ke -92 PHOEBE a Me u . . - IN a -5¥ Eh
  • 23. Fitting normal distribution: MAP Fitting As the name suggests we find the parameters which maximize the posterior probability .. Likelihood is normal PDF 24Computer vision: models, learning and inference. ©2011 Simon J.D. Prince MAPFETEV.EE/I8FpnN5t - 775¥52 -fifth ¥8159 Ghee .tt#KBFpnfi5f-9FEEItaz. . FACIE .LI/3FpI#KBEp9EEiKEfFxsJ9z..Taz- Fasti 't 28 TGZhK 's .
  • 24. Fitting normal distribution: MAP Prior Use conjugate prior, normal scaled inverse gamma. 25Computer vision: models, learning and inference. ©2011 Simon J.D. Prince , i g t - A d . R , T , 8 I 't Lk 4h17 " t ? B Fp 2 E a u a o ' a inHas It 8 The Mega t IRYaa u . y Fifth to " Ya u
  • 25. Fitting normal distribution: MAP Likelihoo d Prior Posterior 26Computer vision: models, learning and inference. ©2011 Simon J.D. Prince -¥&nkTmHu " Eiti -K±¥ E- A TETI " -7 MAP 't Asha Extensive . zakat "¥tk Maximum Prior Ed'EyTeTAs¥E¥xknE. d x = tiFe Effigy 424£59 - ti 'Fk2¥Ey8fpa' ftp.547aylffpaci-t-ac-ttass-vkfk3 - - £¥n£kK5fx ¥4231 ' Ifta -4hL # =agq
  • 26. Fitting normal distribution: MAP Again maximize the log – does not change position of maximum 27Computer vision: models, learning and inference. ©2011 Simon J.D. Prince | It aft a - F Hav If Ea q IRL a . hi Ee e Ed Kl 5-4 n FIE Eu, - te men tfto E723 . { the " K HE It Ei E " IT It FI Y th it " F - i . ( i 3 t - A µ E o ' e s u 2 3 42 " K TEHKkk I a ⇐ o ) 2 T I 2 . ik no - I ' ' n I ' I - - z 2 Tifft et TEE I a a BE A #
  • 27. Fitting normal distribution: MAP MAP solution: Mean can be rewritten as weighted sum of data mean and prior mean: 28Computer vision: models, learning and inference. ©2011 Simon J.D. Prince A , B , r , or it ¥ Fang tip a N I t - A ( ¥a¥si¥ EEE #a -
  • 28. Fitting normal distribution: MAP 50 data points 5 data points 1 data points I " - A an E CIL Ta 3 E EEE' fAs Erbe E MAP FSE the 9¥ it STL 7 " C o F- 7 a " Htt uE¥¥18 The k£3 . my mm me FIEND9 q . . . a * LEE ex - Kc 2 E MAP HE 'Et7¥E MAP HE Ekka 42k£ Ffa Fifa & " - Ma ' " qq.ws#Fay 43¥ £4 E I " - A E KI At to do E " - A a- 4 Hi e . EEK 48 TG re f t . F- A 6 " 1k¥ use - In z Tiff on . . It ¥27. E ' a , Retake " Iet'¥ 2- E Hu 155 . MA PFE feet Est 4¥ .
  • 29. Fitting normal: Bayesian approach Fitting Compute the posterior distribution using Bayes’ rule: IEEE Fp nee -7 t - 7 Zakk . -4¥ '¥ a anutttaso . - ¥ :* .int#hkEFEEE8Fp-EfiK3avtt2tc . Ern -447k¥ '¥zi¥AuI 's . ¥f¥Et .rs/f*Fttc2Ic.FE4#tAfEItiK3 to ¥ x EITHEEEEi.TK= Elektra '¥ 's -4
  • 30. Fitting normal: Bayesian approach Fitting Compute the posterior distribution using Bayes’ rule: Two constants MUST cancel out or LHS not a valid pdf 31Computer vision: models, learning and inference. ©2011 Simon J.D. Prince E.fi/iz-EfazTE8Ff list - Art # Effy d m-FBEEN.tt#heIthf*Ts3 - F¥HuIk43Ehe¥FqEt NEFJJ ITEVE 's . an -4391=4445*40 " -42mL Titch . I ¥229 # HIT SEALE 's .
  • 31. Fitting normal: Bayesian approach Fitting Compute the posterior distribution using Bayes’ rule: where 32Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
  • 32. Fitting normal: Bayesian approach Predictive density Take weighted sum of predictions from different parameter values: 33Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Posterior Samples from posterior - - - - game it Era no 5 t - 79 ¥ Fay gig 2- EI Htt at oh FAIR CETI's I FIH ft t C 2 FEES LEE a ⇒ I se ft E 4th l ,
  • 33. Fitting normal: Bayesian approach Predictive density Take weighted sum of predictions from different parameter values: 34Computer vision: models, learning and inference. ©2011 Simon J.D. Prince - me 06 " Ez Ek lust n ol - ' s EES a F tea £2 . - l k 2L I
  • 34. Fitting normal: Bayesian approach Predictive density Take weighted sum of predictions from different parameter values: where 35Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
  • 35. Fitting normal: Bayesian Approach 50 data points 5 data points 1 data points 36Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 77¥22 Not " ER, t.IE MAP v Hi ' et m AP HETE is Ect - 2 ten I " - A Eu ZEAL IFE IT a - u . I " - F ka 472 u 2 MAP HE FEI REEFS at et Tu .
  • 36. Structure 3737Computer vision: models, learning and inference. ©2011 Simon J.D. Prince • Fitting probability distributions – Maximum likelihood – Maximum a posteriori – Bayesian approach • Worked example 1: Normal distribution • Worked example 2: Categorical distribution
  • 37. Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Categorical Distribution or can think of data as vector with all elements zero except kth e.g. [0,0,0,1 0] For short we write: Categorical distribution describes situation where K possible outcomes y=1… y=k. Takes K parameters where 38 4 I I " ' I 71 a 95 Fp *TETE EE IK 2 k 3 " K k Fo FEET a k sac . In d . Ffa IT it AI Te t e I .
  • 38. Dirichlet Distribution Defined over K values where Or for short: Has k parameters ak>0 39Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
  • 39. Categorical distribution: ML 40Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Maximize product of individual likelihoods (remember, P(x) = ) Nk = # times we observed bin k $ I a " 4 a a 84 z EFFETE he
  • 40. Categorical distribution: ML 41Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Instead maximize the log probability Log likelihood Lagrange multiplier to ensure that params sum to one Take derivative, set to zero and re-arrange: Equity # H - n ¥tERE¥ I - 917 " -7 '-E2¥E¥f =0kK3n . Ff ' dear 2- k¥4553 24430 ( 72 am " -7412kt KEE Ata HHtlFH2 .
  • 41. Categorical distribution: MAP 42Computer vision: models, learning and inference. ©2011 Simon J.D. Prince MAP criterion: A I I " ' I A n 5 F a M A P HI He EfKEEFE ¥ 2 HE E re Td ← no T t - 7 a K , 2 a I a 55ft HEE HE 2- I 3 a e . , = I La. ez la ' f Fi 9 . -fi FE of A I 7 " 4 a Nis En Is In 5 Fe et F'a 4 the 5 Ep - - y if " Is a " Taika - T PEI Ek a Fat he k MEH a n a e - - IF ' n k - -
  • 42. Categorical distribution: MAP 43Computer vision: models, learning and inference. ©2011 Simon J.D. Prince With a uniform prior (a1..K=1), gives same result as maximum likelihood. Take derivative, set to zero and re-arrange: MAP -fE¥afzEh Lank 'e2f±cTH . T si -71--71249 MAP -tEd¥k¥K feat ' ' µ¥Tp.at#sEay7L8Gaci3t - F - - Ali . . k xx .ci#21HsEfIE'fAFegIEfE2-ZfE
  • 43. Categorical Distribution Observed data Five samples from prior Five samples from posterior 44Computer vision: models, learning and inference. ©2011 Simon J.D. Prince ¥584954 k¥2474 I KE E " - 7 ¥ Ekg tip
  • 44. Categorical Distribution: Bayesian approach 45Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Two constants MUST cancel out or LHS not a valid pdf Compute posterior distribution over parameters: A I I ' ' I a a Q Ep a v a 2 " HE ¥ fi Ea ¥ Eat if I I I " 4 8 a GF Z Fa 4 7 L IF a I e " I " - - I ¥42 EffingFife If 2 a E 9 2 F - 70 a 2 k¥5 . fi EE is tf I " 4 an 4364459 I Fa y a - - FT T ITA CE , 7 I a 23 . ¥447fft 8TH
  • 45. Categorical Distribution: Bayesian approach 46Computer vision: models, learning and inference. ©2011 Simon J.D. Prince Two constants MUST cancel out or LHS not a valid pdf Compute predictive distribution: - - ¥2 a list - F re Et KkFifa IT i ¥ Htt Hu FAI he - I R k EIKE I a a t Ftc = I To E " x Y ' 7 c 8 F I k¥ E FF. E F I e I .
  • 46. ML / MAP vs. Bayesian MAP/M L Bayesia n 47Computer vision: models, learning and inference. ©2011 Simon J.D. Prince FEZIBME-FC.at#xc ⇒ t.EE#actTuNkHfE&I2rLNenhEaEpu3FbEc FEE of * a . HERMIE " - A L h do on
  • 47. Conclusion 48Computer vision: models, learning and inference. ©2011 Simon J.D. Prince • Three ways to fit probability distributions • Maximum likelihood • Maximum a posteriori • Bayesian Approach • Two worked example • Normal distribution (ML least squares) • Categorical distribution