RETINA-VISUAL PATHWAYS
Retina takes the information from its 100 million  photoreceptors about 1 million optic nerve  axons. Interposed between...
 Bipolar cells convey signals straight across  this layer, receiving inputs from  photoreceptors and synapsing on ganglio...
 ganglion cell axons travel along its vitreal  surface, so they need to cross the retina,  choroid, and sclera in order t...
 The sclera continues over the optic nerve as a  sheath continuous with the dura mater, much  as the spinal dura continue...
Central visual pathways
 Axons of retinal ganglion cells project to a  variety of places:1. the superior colliculus, to help direct visual   atte...
 but mostly to the thalamus, for conscious  awareness of visual stimuli. Optic nerve fibers convey all the information  ...
 Different classes of ganglion cells emphasize  different properties of a visual stimulus these different properties beg...
 Different layers of the lateral geniculate then  project differentially to primary visual cortex  above and below the ca...
 Primary visual cortex then picks apart these  attributes a little more and parcels them out  semiselectively to distinct...
CN II Extension of white matter of the brain-  enclosed in meninges No effective regeneration when divided Attached to ...
Optic chiasma Nasal fibres of each CN II decussate and pass  to opposite optic tract Temporal fibres pass directly to op...
Optic tract Passes around cerebral peduncle, high up  against temporal lobe , reaches side of  thalamusBranches1. Larger ...
1. Some fibres end in hypothalamus [ circadian   rhythm] circa= about; diem=a day superior colliculus also receives fibre...
Efferents from superior colliculus1. Reticular formation2. Inferior colliculus3. Cervical spinal cord [tectospinal tract]4...
Optic Nerve, Chiasma, and Tract visual information from one side of the world  ends up in the contralateral occipital lob...
 the crossed and uncrossed fibers  representing one half of the visual field  emerge from the chiasm as an optic tract. ...
 damage to one optic tract (or any part of the  visual system behind the chiasm) can cause  loss of the contralateral hal...
Beyond primary visual cortex analysis of form and color is largely carried  out in ventral parts of the occipital and  te...
dorsal stream reaching the area near the junction of the parietal,occipital, and temporal lobes is particularly important ...
 damage to the occipitotemporal gyrus can  cause deficits in recognizing things visually  despite visual fields being int...
 deficits can be fairly selective depending on  which part of the occipitotemporal gyrus is  damaged . For example1. cort...
 damage near the junction of the parietal,  occipital, and temporal lobes can cause  difficulties in perceiving the motio...
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Retina and visual tract
Upcoming SlideShare
Loading in …5
×

Retina and visual tract

2,541 views

Published on

CR MAN..:P

Published in: Spiritual, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,541
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
147
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Retina and visual tract

  1. 1. RETINA-VISUAL PATHWAYS
  2. 2. Retina takes the information from its 100 million photoreceptors about 1 million optic nerve axons. Interposed between the photoreceptor layer and the layer of ganglion cells (whose axons form the optic nerve) is a layer containing three kinds of interneurons
  3. 3.  Bipolar cells convey signals straight across this layer, receiving inputs from photoreceptors and synapsing on ganglion cells. Horizontal cells spread laterally in the outer synaptic layer, affecting transmission from photoreceptors to bipolar cells. Amacrine cells have a similar role in the inner synaptic layer, affecting transmission from bipolar to ganglion cells
  4. 4.  ganglion cell axons travel along its vitreal surface, so they need to cross the retina, choroid, and sclera in order to leave the eye in the optic nerve. at the optic disc, all the axons converge and collect into groups that leave the eye through small holes in the sclera.
  5. 5.  The sclera continues over the optic nerve as a sheath continuous with the dura mater, much as the spinal dura continues as the epineurium of spinal nerves. The normal layers of the retina are absent at the optic disc, which results in a blind spot in the visual field of each eye
  6. 6. Central visual pathways
  7. 7.  Axons of retinal ganglion cells project to a variety of places:1. the superior colliculus, to help direct visual attention;2. other midbrain sites, for things like the pupillary light reflex;3. the hypothalamus, to help regulate circadian rhythms;
  8. 8.  but mostly to the thalamus, for conscious awareness of visual stimuli. Optic nerve fibers convey all the information we will ever get about the shape, color, location, and movement of objects in the outside world.
  9. 9.  Different classes of ganglion cells emphasize different properties of a visual stimulus these different properties begin to be sorted out in the six-layered lateral geniculate nucleus of the thalamus
  10. 10.  Different layers of the lateral geniculate then project differentially to primary visual cortex above and below the calcarine sulcus (also known as striate cortex because of a stripe of myelinated fibers that run through one of its middle layers).
  11. 11.  Primary visual cortex then picks apart these attributes a little more and parcels them out semiselectively to distinct areas of visual association cortex in the occipital and temporal lobes.
  12. 12. CN II Extension of white matter of the brain- enclosed in meninges No effective regeneration when divided Attached to anterior part of floor of 3rd ventricle
  13. 13. Optic chiasma Nasal fibres of each CN II decussate and pass to opposite optic tract Temporal fibres pass directly to optic tract of their own side Right tract has fibres from right ½ of each retina [nasal field of right eye and temporal field of left eye]
  14. 14. Optic tract Passes around cerebral peduncle, high up against temporal lobe , reaches side of thalamusBranches1. Larger – lateral geniculate body [visual fibres2. Smaller – bypasses LGB → superior colliculus→ pretectal nuclei [re light reflexes]3. Some fibres end in hypothalamus [ circadian rhytm]
  15. 15. 1. Some fibres end in hypothalamus [ circadian rhythm] circa= about; diem=a day superior colliculus also receives fibres from1. Spinotectal/spinomesencephalic tracts2. Auditory inputs via Inferior colliculus
  16. 16. Efferents from superior colliculus1. Reticular formation2. Inferior colliculus3. Cervical spinal cord [tectospinal tract]4. LGB→ pulvinar → visual association cortex
  17. 17. Optic Nerve, Chiasma, and Tract visual information from one side of the world ends up in the contralateral occipital lobe. each eye looks at most of the right and left half of the total visual field As a result, half of the output of each retina needs to cross in the optic chiasm, and half needs to stay uncrossed
  18. 18.  the crossed and uncrossed fibers representing one half of the visual field emerge from the chiasm as an optic tract. damage in front of the optic chiasm can cause complete blindness of the ipsilateral eye, damage to one optic tract (or any part of the visual system behind the chiasm) can cause loss of the contralateral half of the visual field of both eyes
  19. 19.  damage to one optic tract (or any part of the visual system behind the chiasm) can cause loss of the contralateral half of the visual field of both eyes This deficit has the tongue-twisting name of homonymous hemianopia ("blindness in the same half of both visual fields")
  20. 20. Beyond primary visual cortex analysis of form and color is largely carried out in ventral parts of the occipital and temporal lobes analysis of location and motion takes place more dorsally, around the junction of the occipital, parietal, and temporal lobes.
  21. 21. dorsal stream reaching the area near the junction of the parietal,occipital, and temporal lobes is particularly important foranalyzing the location and movement of visual stimuli;ventralstream reaching the occipitotemporal gyrus is particularlyimportant for analyzing colors and shapes.
  22. 22.  damage to the occipitotemporal gyrus can cause deficits in recognizing things visually despite visual fields being intact.
  23. 23.  deficits can be fairly selective depending on which part of the occipitotemporal gyrus is damaged . For example1. cortical color blindness [achromatopsia]2. difficulty recognizing faces [prosopagnosia]).
  24. 24.  damage near the junction of the parietal, occipital, and temporal lobes can cause difficulties in perceiving the motion of objects or in "stitching together" multiple objects in different locations into a unified scene.

×