SlideShare a Scribd company logo
1 of 23
Download to read offline
Course Calendar
Class DATE Contents
1 Sep. 26 Course information & Course overview
2 Oct. 4 Bayes Estimation
3 〃 11 Classical Bayes Estimation - Kalman Filter -
4 〃 18 Simulation-based Bayesian Methods
5 〃 25 Modern Bayesian Estimation :Particle Filter
6 Nov. 1 HMM(Hidden Markov Model)
Nov. 8 No Class
7 〃 15 Supervised Learning
8 〃 29 Bayesian Decision
9 Dec. 6 PCA(Principal Component Analysis)
10 〃 13 ICA(Independent Component Analysis)
11 〃 20 Applications of PCA and ICA
12 〃 27 Clustering, k-means et al.
13 Jan. 17 Other Topics 1 Kernel machine.
14 〃 22(Tue) Other Topics 2
Lecture Plan
Hidden Markov Model
1. Introduction
2. Hidden Markov Model (HMM)
Discrete-time Markov Chain & HMM
3. Evaluation Problem
4. Decoding Problem
5. Learning Problem
1. Introduction
3
1.1 Discrete-time hidden Markov model (HMM)
The HMM is a stochastic model of a process that can be used for
modeling and estimation. Its distinguishing feature is the probabilistic
model which is driven by internal probability distribution for both
states and measurements. The internal states are usually not observed
directly therefore, are hidden.
1.2 Applications
Discrete representation of stochastic processes:
Speech recognition, Communications, Economics,
Biomedical (DNA analysis), Computer vision (Gesture recognition)
2. HMM
4
2.1 Discrete-time Markov Chains
 
 
  
 
1, 2,
At each time step t, the state variables are defined by
state space
where, .....,
Pr : the probability that at time t the state i is occupied.
1st-order Markovian:
Pr
xN
i
n
x t
x t
x t


X
X X X X
           
    
1 , 2 ,...., 0 Pr 1
Define a :=Pr 1 (time-stationary)
m r l n m
mn n m
x t x t x x t x t
x t x t
   

  
 
a set of noisy measurements up to , i.e.,
: 0,1,
, the MAP or Minimum Mean Square Error (MMSE)
estimate of
(Assume the probability densities are represented by continu
t
t
Y y t
x t
  
Given
find
  
ous
PDF such as )tp x t Y
State estimation problem:
1.2 Basic Bayesian Approach (Review)
The state estimation problem in the context of Bayesian approach is
to provide the following relation from Bayes’ rule.
       
       
  
         
          
1
1 1 1 2
1
1 1
2 1 1
,
,
(5)
Likelihood : , (6)
Prediction : 1 1 (7)
Ig
t t
t t
t
t
t t
p x t Y p x t y t Y
p y t x t Y p x t Y N N
Dp y t Y
N p y t x t Y p y t x t
N p x t Y p x t x t p x t Y

 


 

 
  
 
 
   
               1
noring the term
1 1 (8)t t
evicence D
p x t Y p y t x t p x t x t p x t Y   
6
posterior density
at t
posterior density
at t-1
UPDATE
    1p x t x t 
  11 tp x t Y 
    p y t x t
  1tp x t Y 
  tp x t Y
t-1
t
Likelihood N1
Prediction PDF N2
posterior PDF at t-1
posterior PDF at t
State transition
Figure Update Scheme
2. Sequential Importance Sampling (SIS)
2.1 Importance Sampling
 
    
      
( ) ( )
( ) ( )
1
N particles: , , ; 1
The posterior approximated by the importance sampling
1
(9)
The weight of the i-th particle at
p
i i i
t p
N
i i
t t t
p i
s state weight x t i N
p x Y x t x t
N
t

 

  
 
  
  
            
 
( )
( )
( )
( ) ( ) ( ) ( )
1( )
( ) (
,
(10)
Using Beyes rule and related equalities, we have a sequential relation as
1 1
i
ti
t i
t
i i i i
ti
t i i
p x t Y
q x t Y
p y t x t p x t x t p x t Y
q x t x




 

     ) ( )
1
(11)
1 , 1i
t tt Y q x t Y  
(SIS-based estimation approach called by particle filter, bootstrap filter, condensation)
         
    
( ) ( ) ( )
( )
1( ) ( )
1
(12)
1 ,
i i i
i
ti i
t
p y t x t p x t x t
q x t x t Y
 



     
 
( ) ( )( )
1 1
:
At step , suppose the following approximation by the samples(particles)
1 1 , ; 1 (13)
After observing , we wish to approximate with a new
i ii
t pt
t -1
p x t Y x t i N
y t
   
Problem
    ( )( )
samples at
(14), ; 1 p
jj
t t t
t
p x Y x t j N 
2.2 Choice of the proposal density – Convenient way -
         
    
( ) ( ) ( ) ( )
easy to evaluate
( ) ( )( )
1
1 , 1 (15)
From (12), (16)
i i i i
t
i ii
t t
q x t x t Y p x t x t
p y t x t  
  

update weight
at t
previous weight
at t-1
Likelihood at t
10
3. Particle Filter Algorithm
- Sampling Importance Resampling (SIR) Filter-
(A) Sampling (Prediction)
 
    
(A-1) Generate random values according to
1 1 1, ,
p
i
w P
N
w t p w t i N  
10
 
   
   
  1
(A-2) Compute predicted particles:
1 , 1i i i
tx t f x t w t  
 
  1
,i
pParticles x t N

11
(B) Weight Update
   
  (B-1) Compute the likelihood :
i
p y t x t
 
   
  
(B-2) Update the weight
(19)i i
t p y t x t 
 
 
 
1
(B-3) Normalization
: (20)p
i
i t
t N
j
t
j






 
   
 ,i i
tParticles x t 
12
(C) Resampling for degeneracy avoiding
(C-1) Weighted samples Equal weight samples
 
 
  
ˆThe distribution of gives an approximation of posterior distribution
t
j
x t
p x t Y
         
  1
Now, we have
1
ˆ ˆ
pN
j
t t
jp
p x t Y p x t Y x t x t
N


  
   
 
1
Using above approximation we may obtain an MMSE Estimation as
1
ˆ ˆ
pN
j
jp
x t x t
N 
 
 
   
   
  1
ˆParticles , ,i ji
t px t x t N 

(D) State Estimation
 
   
 ˆ is used for in the next step sampling
(prediction) processes, i.e. go to sampling step A).
ij
x t x t
13
Resampling process in 1-d case:
(C-1) Weighted samples Equal weight samples
Revised figure in [ P. M. Djuric et al. Particle Filtering IEEE SP magazine 2003 ]
 t tp y x
 1 1t tp x Y 
 ˆ t tp x Y
t
t+1
Likelihood
Prediction Density
State transition
(A) Sampling
(A) Sampling
 1 1t tp y x 
(C) Resampling
(B) Weight Update
 1
ˆ t tp x Y
Likelihood
(D) State Estimate
(B) Weight Update
-Visual tracking object for mobile systems- (moving camera and no static background)
K. Nummiaro et al. “” An adaptive color-based particle filter” Image and Vision
Computing XX (2001) 1-12
Object state model
The state of a particle is modeled as
 
 
 
     
     
     
 
2
: , , , , , ,
, :position of the tracked object by the particle
, : velocity of the tracked object (motion displacement)
:scale change
1
1
1 0,
T
x z x z
x z
x
z
x x Hx
z
x z H H v v a
x z
v v
a
x t x t v t
z t z t v t
H t H t N
H t


  
  
  
Motion model :
x
   2
1 0,z HzH t N   
 ,x z
 ,x zv v
xH
zH
4. Application example of particle filter
A distribution p(x) of the state of the object is approximated by
a set of weighted particles,
 
  ( ) ( ) ( )
: , 1
, : importance weight
j
t t
j j j j
t t t
S s j J
s x t  
 

Update process: from one frame to the next frrame
1) motion model
2) new frame gives likelihood of the observation
    ( ) ( )j j
t p y t x t 
    ( )
1j j
p x t x t 
By integrating the J particles the state of the tracked object is
estimated as
   ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , ,
(weighted average)
TT j j j j j j
x z t x zx z H H a x z H H a 
    
 
     
 
 
( )
1
1,....,
Evaluation of the likelihood of the particle, for a new
obsevation :
Color-based similarity measure between color histograms
,
Histogram of target model: ,
Histog
j
m
u u
u
u
u m
p y t x t
y t
p q p q
p p






 
 
 
1,....,
ram of the image of a particle
The distance between two distributions :
: 1 , Bhattacharyya distance
u
u m
q q
d p q


 
2
2( ) 2
Weight of particle based on color distribution likelihood
1
2
d
j
t e 




Tracking results by mean shift (left), Kalman+mean shift (middle), Particle filter (right)
19Tracking results for occlusion cases by the color-based Particle filter
20
References:
[1] J. Candy, “ Bayesian Signal Processing Classical, Modern, and Particle Filtering
Methods”, John Wiley/IEEE Press, 2009
[2] B. Ristic, et al. , “Beyond the Kalman Filter”, Artech house Publishers, 2004
[3] F. Asano(浅野太), “Array signal processing for acoustics (音のアレイ信号処理)”,
CORONA publishing Co., LTD, 2011 (Japanese)
[4] M. Isard and A. Blake, “CONDENSATION- Conditioned Density Propagation for
Visual Tracking”, International J. of Computer Vision 29(1), 5-28 (1998)
[5] K. Nummiaro et al. “” An adaptive color-based particle filter”, Image and Vision
Computing XX (2001) 1-12
[6] D. A. Klein et al., Adaptive Real-time video-tracking for arbitrary objects,
Intelligent robotics and …, 2010
In practice, it is difficult to generate the samples directly from the
density . Instead, the samples can be generated by , referred
to as importance distribution or proposal distribution, whose PDF is
similar as .
 i
x
 p x  q x
 
   
 
     
 
 
 
Similarity of means:
0 0
In terms of , we have
where : is referred to as the .
q x
p x q x for all x
q x
I f x x q x dx
p x
x importance weght
q x


  



Appendix Importance sampling
- partially revised Section 3.2 in the Lecture 4 slides -
 p x
         
The importance sampling approximation of can be written by
N
( i ) ( i )
i
I
ˆ ˆI I f x x q x dx x f x
N
 

    1
1
 
 
 
 
 
     
 
 
 
   ( ) ( )
1
can be evaluated up to a normalization constant, i.e.
( is unknown), q ( is unknown)
Then,
=
1
,
p q
p q
q
p
N
q i i
p i
p x
p x q x
p x Z x Z
Z Z
Z p x
I f x p x dx f x q x dx
Z q x
Z
x f x
Z N


 


 

Case :
 
 
 
( )
( )
( )
i
i
i
p x
x
q x
 
 
   
 
( )
( )
1
( )
1
Consider the case ( ), the ratio can be evaluated by using the sample
set as follows.
1
1
1
Thus,
1
i
N
q i
p i
q
N
p i
i
f x
x
Z
p x dx x
Z N
Z
Z
w x
N



 



 
     
 
 
 
( )
( ) ( ) ( )
1 1
( )
( )
( )
1
Therefore,
where :
iN N
i i i
pi i
q
i
i
N
j
j
x
I f x x f x
Z
Z
x
x
x





 

 
 
  
 

 


More Related Content

What's hot

Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
Springer
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
zukun
 

What's hot (20)

Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
机器学习Adaboost
机器学习Adaboost机器学习Adaboost
机器学习Adaboost
 
Mixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete ObservationsMixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete Observations
 
R180304110115
R180304110115R180304110115
R180304110115
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Pria 2007
Pria 2007Pria 2007
Pria 2007
 
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions ManualApplied Digital Signal Processing 1st Edition Manolakis Solutions Manual
Applied Digital Signal Processing 1st Edition Manolakis Solutions Manual
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 
NIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learningNIPS2010: optimization algorithms in machine learning
NIPS2010: optimization algorithms in machine learning
 
stochastic notes
stochastic notes stochastic notes
stochastic notes
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
Phase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle SystemsPhase-Type Distributions for Finite Interacting Particle Systems
Phase-Type Distributions for Finite Interacting Particle Systems
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
5.n nmodels i
5.n nmodels i5.n nmodels i
5.n nmodels i
 
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based ComputingMolecular Solutions For The Set-Partition Problem On Dna-Based Computing
Molecular Solutions For The Set-Partition Problem On Dna-Based Computing
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 05 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
Linear models for classification
Linear models for classificationLinear models for classification
Linear models for classification
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 

Similar to 2012 mdsp pr05 particle filter

2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
nozomuhamada
 
2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo
nozomuhamada
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
Chiheb Ben Hammouda
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Umberto Picchini
 
2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda
nozomuhamada
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 

Similar to 2012 mdsp pr05 particle filter (20)

2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
A lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controlsA lambda calculus for density matrices with classical and probabilistic controls
A lambda calculus for density matrices with classical and probabilistic controls
 
2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo2012 mdsp pr04 monte carlo
2012 mdsp pr04 monte carlo
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
MUMS Opening Workshop - Model Uncertainty in Data Fusion for Remote Sensing -...
MUMS Opening Workshop - Model Uncertainty in Data Fusion for Remote Sensing -...MUMS Opening Workshop - Model Uncertainty in Data Fusion for Remote Sensing -...
MUMS Opening Workshop - Model Uncertainty in Data Fusion for Remote Sensing -...
 
E028047054
E028047054E028047054
E028047054
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...Bayesian inference for mixed-effects models driven by SDEs and other stochast...
Bayesian inference for mixed-effects models driven by SDEs and other stochast...
 
2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda2012 mdsp pr09 pca lda
2012 mdsp pr09 pca lda
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Mixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete ObservationsMixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete Observations
 
MIXED SPECTRA FOR STABLE SIGNALS FROM DISCRETE OBSERVATIONS
MIXED SPECTRA FOR STABLE SIGNALS FROM DISCRETE OBSERVATIONSMIXED SPECTRA FOR STABLE SIGNALS FROM DISCRETE OBSERVATIONS
MIXED SPECTRA FOR STABLE SIGNALS FROM DISCRETE OBSERVATIONS
 
Mixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete ObservationsMixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete Observations
 
Mixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete ObservationsMixed Spectra for Stable Signals from Discrete Observations
Mixed Spectra for Stable Signals from Discrete Observations
 
Common Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative SchemesCommon Fixed Theorems Using Random Implicit Iterative Schemes
Common Fixed Theorems Using Random Implicit Iterative Schemes
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
 
Discretization of a Mathematical Model for Tumor-Immune System Interaction wi...
Discretization of a Mathematical Model for Tumor-Immune System Interaction wi...Discretization of a Mathematical Model for Tumor-Immune System Interaction wi...
Discretization of a Mathematical Model for Tumor-Immune System Interaction wi...
 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
 
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
DISCRETIZATION OF A MATHEMATICAL MODEL FOR TUMOR-IMMUNE SYSTEM INTERACTION WI...
 

More from nozomuhamada

2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine
nozomuhamada
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian
nozomuhamada
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition
nozomuhamada
 
2012 mdsp pr10 ica
2012 mdsp pr10 ica2012 mdsp pr10 ica
2012 mdsp pr10 ica
nozomuhamada
 
2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach
nozomuhamada
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision
nozomuhamada
 
2012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 09212012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 0921
nozomuhamada
 
招待講演(鶴岡)
招待講演(鶴岡)招待講演(鶴岡)
招待講演(鶴岡)
nozomuhamada
 

More from nozomuhamada (10)

2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine2012 mdsp pr13 support vector machine
2012 mdsp pr13 support vector machine
 
2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian2012 mdsp pr12 k means mixture of gaussian
2012 mdsp pr12 k means mixture of gaussian
 
2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition2012 mdsp pr11 ica part 2 face recognition
2012 mdsp pr11 ica part 2 face recognition
 
2012 mdsp pr10 ica
2012 mdsp pr10 ica2012 mdsp pr10 ica
2012 mdsp pr10 ica
 
2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach2012 mdsp pr08 nonparametric approach
2012 mdsp pr08 nonparametric approach
 
2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision2012 mdsp pr07 bayes decision
2012 mdsp pr07 bayes decision
 
2012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 09212012 mdsp pr01 introduction 0921
2012 mdsp pr01 introduction 0921
 
Ieice中国地区
Ieice中国地区Ieice中国地区
Ieice中国地区
 
招待講演(鶴岡)
招待講演(鶴岡)招待講演(鶴岡)
招待講演(鶴岡)
 
最終講義
最終講義最終講義
最終講義
 

Recently uploaded

Recently uploaded (20)

A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

2012 mdsp pr05 particle filter

  • 1. Course Calendar Class DATE Contents 1 Sep. 26 Course information & Course overview 2 Oct. 4 Bayes Estimation 3 〃 11 Classical Bayes Estimation - Kalman Filter - 4 〃 18 Simulation-based Bayesian Methods 5 〃 25 Modern Bayesian Estimation :Particle Filter 6 Nov. 1 HMM(Hidden Markov Model) Nov. 8 No Class 7 〃 15 Supervised Learning 8 〃 29 Bayesian Decision 9 Dec. 6 PCA(Principal Component Analysis) 10 〃 13 ICA(Independent Component Analysis) 11 〃 20 Applications of PCA and ICA 12 〃 27 Clustering, k-means et al. 13 Jan. 17 Other Topics 1 Kernel machine. 14 〃 22(Tue) Other Topics 2
  • 2. Lecture Plan Hidden Markov Model 1. Introduction 2. Hidden Markov Model (HMM) Discrete-time Markov Chain & HMM 3. Evaluation Problem 4. Decoding Problem 5. Learning Problem
  • 3. 1. Introduction 3 1.1 Discrete-time hidden Markov model (HMM) The HMM is a stochastic model of a process that can be used for modeling and estimation. Its distinguishing feature is the probabilistic model which is driven by internal probability distribution for both states and measurements. The internal states are usually not observed directly therefore, are hidden. 1.2 Applications Discrete representation of stochastic processes: Speech recognition, Communications, Economics, Biomedical (DNA analysis), Computer vision (Gesture recognition)
  • 4. 2. HMM 4 2.1 Discrete-time Markov Chains          1, 2, At each time step t, the state variables are defined by state space where, ....., Pr : the probability that at time t the state i is occupied. 1st-order Markovian: Pr xN i n x t x t x t   X X X X X                  1 , 2 ,...., 0 Pr 1 Define a :=Pr 1 (time-stationary) m r l n m mn n m x t x t x x t x t x t x t     
  • 5.      a set of noisy measurements up to , i.e., : 0,1, , the MAP or Minimum Mean Square Error (MMSE) estimate of (Assume the probability densities are represented by continu t t Y y t x t    Given find    ous PDF such as )tp x t Y State estimation problem:
  • 6. 1.2 Basic Bayesian Approach (Review) The state estimation problem in the context of Bayesian approach is to provide the following relation from Bayes’ rule.                                         1 1 1 1 2 1 1 1 2 1 1 , , (5) Likelihood : , (6) Prediction : 1 1 (7) Ig t t t t t t t t p x t Y p x t y t Y p y t x t Y p x t Y N N Dp y t Y N p y t x t Y p y t x t N p x t Y p x t x t p x t Y                                     1 noring the term 1 1 (8)t t evicence D p x t Y p y t x t p x t x t p x t Y    6 posterior density at t posterior density at t-1 UPDATE
  • 7.     1p x t x t    11 tp x t Y      p y t x t   1tp x t Y    tp x t Y t-1 t Likelihood N1 Prediction PDF N2 posterior PDF at t-1 posterior PDF at t State transition Figure Update Scheme
  • 8. 2. Sequential Importance Sampling (SIS) 2.1 Importance Sampling               ( ) ( ) ( ) ( ) 1 N particles: , , ; 1 The posterior approximated by the importance sampling 1 (9) The weight of the i-th particle at p i i i t p N i i t t t p i s state weight x t i N p x Y x t x t N t                               ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1( ) ( ) ( , (10) Using Beyes rule and related equalities, we have a sequential relation as 1 1 i ti t i t i i i i ti t i i p x t Y q x t Y p y t x t p x t x t p x t Y q x t x             ) ( ) 1 (11) 1 , 1i t tt Y q x t Y   (SIS-based estimation approach called by particle filter, bootstrap filter, condensation)
  • 9.                ( ) ( ) ( ) ( ) 1( ) ( ) 1 (12) 1 , i i i i ti i t p y t x t p x t x t q x t x t Y              ( ) ( )( ) 1 1 : At step , suppose the following approximation by the samples(particles) 1 1 , ; 1 (13) After observing , we wish to approximate with a new i ii t pt t -1 p x t Y x t i N y t     Problem     ( )( ) samples at (14), ; 1 p jj t t t t p x Y x t j N  2.2 Choice of the proposal density – Convenient way -                ( ) ( ) ( ) ( ) easy to evaluate ( ) ( )( ) 1 1 , 1 (15) From (12), (16) i i i i t i ii t t q x t x t Y p x t x t p y t x t       update weight at t previous weight at t-1 Likelihood at t
  • 10. 10 3. Particle Filter Algorithm - Sampling Importance Resampling (SIR) Filter- (A) Sampling (Prediction)        (A-1) Generate random values according to 1 1 1, , p i w P N w t p w t i N   10             1 (A-2) Compute predicted particles: 1 , 1i i i tx t f x t w t       1 ,i pParticles x t N 
  • 11. 11 (B) Weight Update       (B-1) Compute the likelihood : i p y t x t          (B-2) Update the weight (19)i i t p y t x t        1 (B-3) Normalization : (20)p i i t t N j t j              ,i i tParticles x t 
  • 12. 12 (C) Resampling for degeneracy avoiding (C-1) Weighted samples Equal weight samples        ˆThe distribution of gives an approximation of posterior distribution t j x t p x t Y             1 Now, we have 1 ˆ ˆ pN j t t jp p x t Y p x t Y x t x t N            1 Using above approximation we may obtain an MMSE Estimation as 1 ˆ ˆ pN j jp x t x t N                1 ˆParticles , ,i ji t px t x t N   (D) State Estimation        ˆ is used for in the next step sampling (prediction) processes, i.e. go to sampling step A). ij x t x t
  • 13. 13 Resampling process in 1-d case: (C-1) Weighted samples Equal weight samples
  • 14. Revised figure in [ P. M. Djuric et al. Particle Filtering IEEE SP magazine 2003 ]  t tp y x  1 1t tp x Y   ˆ t tp x Y t t+1 Likelihood Prediction Density State transition (A) Sampling (A) Sampling  1 1t tp y x  (C) Resampling (B) Weight Update  1 ˆ t tp x Y Likelihood (D) State Estimate (B) Weight Update
  • 15. -Visual tracking object for mobile systems- (moving camera and no static background) K. Nummiaro et al. “” An adaptive color-based particle filter” Image and Vision Computing XX (2001) 1-12 Object state model The state of a particle is modeled as                           2 : , , , , , , , :position of the tracked object by the particle , : velocity of the tracked object (motion displacement) :scale change 1 1 1 0, T x z x z x z x z x x Hx z x z H H v v a x z v v a x t x t v t z t z t v t H t H t N H t            Motion model : x    2 1 0,z HzH t N     ,x z  ,x zv v xH zH 4. Application example of particle filter
  • 16. A distribution p(x) of the state of the object is approximated by a set of weighted particles,     ( ) ( ) ( ) : , 1 , : importance weight j t t j j j j t t t S s j J s x t      Update process: from one frame to the next frrame 1) motion model 2) new frame gives likelihood of the observation     ( ) ( )j j t p y t x t      ( ) 1j j p x t x t  By integrating the J particles the state of the tracked object is estimated as    ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , (weighted average) TT j j j j j j x z t x zx z H H a x z H H a 
  • 17.                  ( ) 1 1,...., Evaluation of the likelihood of the particle, for a new obsevation : Color-based similarity measure between color histograms , Histogram of target model: , Histog j m u u u u u m p y t x t y t p q p q p p             1,...., ram of the image of a particle The distance between two distributions : : 1 , Bhattacharyya distance u u m q q d p q     2 2( ) 2 Weight of particle based on color distribution likelihood 1 2 d j t e     
  • 18. Tracking results by mean shift (left), Kalman+mean shift (middle), Particle filter (right)
  • 19. 19Tracking results for occlusion cases by the color-based Particle filter
  • 20. 20 References: [1] J. Candy, “ Bayesian Signal Processing Classical, Modern, and Particle Filtering Methods”, John Wiley/IEEE Press, 2009 [2] B. Ristic, et al. , “Beyond the Kalman Filter”, Artech house Publishers, 2004 [3] F. Asano(浅野太), “Array signal processing for acoustics (音のアレイ信号処理)”, CORONA publishing Co., LTD, 2011 (Japanese) [4] M. Isard and A. Blake, “CONDENSATION- Conditioned Density Propagation for Visual Tracking”, International J. of Computer Vision 29(1), 5-28 (1998) [5] K. Nummiaro et al. “” An adaptive color-based particle filter”, Image and Vision Computing XX (2001) 1-12 [6] D. A. Klein et al., Adaptive Real-time video-tracking for arbitrary objects, Intelligent robotics and …, 2010
  • 21. In practice, it is difficult to generate the samples directly from the density . Instead, the samples can be generated by , referred to as importance distribution or proposal distribution, whose PDF is similar as .  i x  p x  q x                     Similarity of means: 0 0 In terms of , we have where : is referred to as the . q x p x q x for all x q x I f x x q x dx p x x importance weght q x         Appendix Importance sampling - partially revised Section 3.2 in the Lecture 4 slides -  p x
  • 22.           The importance sampling approximation of can be written by N ( i ) ( i ) i I ˆ ˆI I f x x q x dx x f x N        1 1                          ( ) ( ) 1 can be evaluated up to a normalization constant, i.e. ( is unknown), q ( is unknown) Then, = 1 , p q p q q p N q i i p i p x p x q x p x Z x Z Z Z Z p x I f x p x dx f x q x dx Z q x Z x f x Z N          Case :       ( ) ( ) ( ) i i i p x x q x  
  • 23.         ( ) ( ) 1 ( ) 1 Consider the case ( ), the ratio can be evaluated by using the sample set as follows. 1 1 1 Thus, 1 i N q i p i q N p i i f x x Z p x dx x Z N Z Z w x N                       ( ) ( ) ( ) ( ) 1 1 ( ) ( ) ( ) 1 Therefore, where : iN N i i i pi i q i i N j j x I f x x f x Z Z x x x                     