SlideShare a Scribd company logo
1 of 77
Download to read offline
1
Fundamentals of Microelectronics
๏ƒ˜ CH1 Why Microelectronics?
๏ƒ˜ CH2 Basic Physics of Semiconductors
๏ƒ˜ CH3 Diode Circuits
๏ƒ˜ CH4 Physics of Bipolar Transistors
๏ƒ˜ CH5 Bipolar Amplifiers
๏ƒ˜ CH6 Physics of MOS Transistors
๏ƒ˜ CH7 CMOS Amplifiers
๏ƒ˜ CH8 Operational Amplifier As A Black Box
2
Chapter 3 Diode Circuits
๏ƒ˜ 3.1 Ideal Diode
๏ƒ˜ 3.2 PN Junction as a Diode
๏ƒ˜ 3.3 Applications of Diodes
CH3 Diode Circuits 3
Diode Circuits
๏ƒ˜ You know the physics of a diode from EE3310, in EE3311
we will study its behavior as a circuit element and its many
applications.
CH3 Diode Circuits 4
Diodeโ€™s Application: Cell Phone Charger
๏ƒ˜ An important application of diode is chargers.
๏ƒ˜ Diode acts as the black box (after transformer) that passes
only the positive half of the stepped-down sinusoid.
CH3 Diode Circuits 5
Diodeโ€™s Action in The Black Box (Ideal Diode)
๏ƒ˜ The diode behaves as a short circuit during the positive
half cycle (voltage across it tends to exceed zero), and an
open circuit during the negative half cycle (voltage across it
is less than zero).
CH3 Diode Circuits 6
Ideal Diode
๏ƒ˜ In an ideal diode, if the voltage across it tends to exceed
zero, current flows.
๏ƒ˜ It is analogous to a water pipe that allows water to flow in
only one direction.
CH3 Diode Circuits 7
Diodes in Series
๏ƒ˜ Diodes cannot be connected in series randomly. For the
circuits above, only a) can conduct current from A to C.
CH3 Diode Circuits 8
IV Characteristics of an Ideal Diode
๏ƒ˜ If the voltage across anode and cathode is greater than
zero, the resistance of an ideal diode is zero and current
becomes infinite. However, if the voltage is less than zero,
the resistance becomes infinite and current is zero.
๏‚ฅ๏€ฝ๏€ฝ๏ƒž๏€ฝ
R
V
IR 0 0๏€ฝ๏€ฝ๏ƒž๏‚ฅ๏€ฝ
R
V
IR
CH3 Diode Circuits 9
Anti-Parallel Ideal Diodes
๏ƒ˜ If two diodes are connected in anti-parallel, it acts as a
short for all voltages.
CH3 Diode Circuits 10
Diode-Resistor Combination
๏ƒ˜ The IV characteristic of this diode-resistor combination is
zero for negative voltages and Ohmโ€™s law for positive
voltages.
CH3 Diode Circuits 11
Diode Implementation of OR Gate
๏ƒ˜ The circuit above shows an example of diode-implemented
OR gate.
๏ƒ˜ Vout can only be either VA or VB, not both.
CH3 Diode Circuits 12
Input/Output Characteristics
๏ƒ˜ When Vin is less than zero, the diode opens, so Vout = Vin.
๏ƒ˜ When Vin is greater than zero, the diode shorts, so Vout = 0.
CH3 Diode Circuits 13
Diodeโ€™s Application: Rectifier
๏ƒ˜ A rectifier is a device that passes positive-half cycle of a
sinusoid and blocks the negative half-cycle or vice versa.
๏ƒ˜ When Vin is greater than 0, diode shorts, so Vout = Vin;
however, when Vin is less than 0, diode opens, no current
flows thru R1, Vout = IยฃR1 = 0.
CH3 Diode Circuits 14
Signal Strength Indicator
๏ƒ˜ The averaged value of a rectifier output can be used as a
signal strength indicator for the input, since Vout,avg is
proportional to Vp, the input signalโ€™s amplitude.
๏ƒ˜ RSSI in WiFi receivers
๏› ๏
๏ฐ
๏ท
๏ท
๏ท
pTp
T
p
T
outavgout
V
t
V
T
tdtV
T
dttV
T
V
๏€ฝ๏€ญ๏€ฝ
๏ƒฒ๏€ฝ๏ƒฒ๏€ฝ
2/
0
2/
00
,
cos
1
sin
1
)(
1
Tt
T
๏‚ฃ๏‚ฃ
2
for
2
0
T
t ๏‚ฃ๏‚ฃ
for0sin ๏€ฝ๏€ฝ tVV pout ๏ท
CH3 Diode Circuits 15
Diodeโ€™s application: Limiter
๏ƒ˜ The purpose of a limiter is to force the output to remain
below certain value.
๏ƒ˜ In a), the addition of a 1 V battery forces the diode to turn
on after V1 has become greater than 1 V.
CH3 Diode Circuits 16
Limiter: When Battery Varies
๏ƒ˜ An interesting case occurs when VB (battery) varies.
๏ƒ˜ Rectification fails if VB is greater than the input amplitude.
Complex Diode Circuit Examples
๏ƒ˜ Assuming the diodes ideal, find the values of I and V in the
circuits above
๏ƒ˜ In these circuits, it may not be obvious at first sight whether
none, one, or both diodes are conducting
๏ƒ˜ Make a plausible assumption ๏ƒ  Proceed with the analysis ๏ƒ 
Check whether the solution is consistent
17
Diode Examples
18
CH2 Basic Physics of Semiconductors 19
Diodeโ€™s Three Operation Regions
๏ƒ˜ In order to understand the operation of a diode, it is
necessary to study its three operation regions: equilibrium,
reverse bias, and forward bias.
Terminal Characteristics of Junction Diodes
Two distinct regions
1. VD >0
2. VD<0
Forward Bias
ID = IS (exp(VD/VT)-1)ยผ IS exp(VD/VT)
IS ๏ƒ  Saturation current (proportional to surface
area of pn junction)
VT =kT/q๏ƒ  Thermal voltage
k ๏ƒ  Boltzmannโ€™s constant=1.38 ยฃ 10-23 joules/Kelvin
T ๏ƒ  The absolute temperature in Kelvins =273+ ยฑ C
q ๏ƒ  the magnitude of electronic charge = 1.60 ยฃ 10-19
coulomb
20
VT ยผ 26 mV at T=300K
The current and voltage relationship of
a PN junction is exponential in
forward bias region, and relatively
constant in reverse bias region.
CH2 Basic Physics of Semiconductors 21
IV Characteristic of PN Junction
๏ƒ˜ The current and voltage relationship of a PN junction is
exponential in forward bias region, and relatively constant
in reverse bias region.
)1(exp ๏€ญ๏€ฝ
T
D
SD
V
V
II
Temperature Dependence of the Diode Forward
Characteristics
22
I = IS exp(q V/(kT))
๏ƒ˜ Is (saturation current) is also a function of temperature.
๏ƒ˜ At a constant current, there is a decrease of approximately 2mV in
diode voltage for every 1ยฑ C degree increase
CH3 Diode Circuits 23
Different Models for Diode
๏ƒ˜ Thus far, Diode models include the ideal model of diode,
the exponential, and constant voltage models.
CH3 Diode Circuits 24
Input/Output Characteristics with Ideal and
Constant-Voltage Models
๏ƒ˜ The circuit above shows the difference between the ideal
and constant-voltage model; the two models yield two
different break points of slope.
CH3 Diode Circuits 25
Input/Output Characteristics with a Constant-
Voltage Model
๏ƒ˜ When using a constant-voltage model, the voltage drop
across the diode is no longer zero but Vd,on when it
conducts.
CH3 Diode Circuits 26
Another Constant-Voltage Model Example
๏ƒ˜ In this example, since Vin is connected to the cathode, the
diode conducts when Vin is very negative.
๏ƒ˜ The break point where the slope changes is when the
current across R1 is equal to the current across R2.
CH3 Diode Circuits 27
Another Constant-Voltage Model Example
๏ƒ˜ This example shows the importance of good initial
guess and careful confirmation.
Example: Constant Voltage Model
28
Example: Constant Voltage Model
29
CH3 Diode Circuits 30
Exponential Model
๏ƒ˜ In this example, since the two diodes have different cross-
section areas, only exponential model can be used.
๏ƒ˜ The two currents are solved by summing them with Iin, and
equating their voltages.
2
1
2
1
2
1
1
1
s
s
in
D
s
s
in
D
I
I
I
I
I
I
I
I
๏€ซ
๏€ฝ
๏€ซ
๏€ฝ
Iterative Analysis Using the Exponential Model
๏ƒ˜ Determine the current an the diode voltage VD for the circuit
above with VDD=5V and R=1K๏—. Assume that the diode has a
current of 1 mA at a voltage of 0.7V.
๏ƒ˜ Apply KVL or KCL as usual
๏ƒ˜ Drive two independent equations between ID and VD
๏ƒ˜ Start with good initial guess for either ID or VD
๏ƒ˜ Iterate between two equations of ID and VD until values of ID
or VD is very close.
31
How to choose a diode model to utilize?
๏ƒ˜ Utilize the ideal model so as to develop a quick understanding of
the circuit
๏ƒ˜ If the ideal model is insufficient, employ the constant-voltage
model
๏ƒ˜ For more accurate analysis with smaller signal levels, we need to
resort to the exponential model.
โ€“ Exponential model is often complicated.
โ€“ Thus, we do first approximation to exponential
model ๏ƒ  Small-signal model
32
Exp[x] ยผ 1+x +x2/2 + โ€ฆ
HOT for abs(x)<<1
CH3 Diode Circuits 33
Cell Phone Adapter
๏ƒ˜ Vout = 3VD,on is used to charge cell phones.
๏ƒ˜ However, if Ix changes, iterative method is often needed to
obtain a solution, thus motivating a simpler technique.
s
X
T
Dout
I
I
V
VV
ln3
3
๏€ฝ
๏€ฝ
Ix
Vad=3V
Vout=2.4V, IX=6mA
Is=2.602x10-16 A and VT=26mV
Vad-> 3.1V
Large-Signal and Small-Signal Operations
๏ƒ˜ Large-Signal Operation
โ€“ โ€œGeneral Modelโ€ such as exponential I/V
characteristics
โ€“ Arbitrarily large voltage and current changes
โ€“ Complicates the analysis
๏ƒ˜ Small-Signal Operation
34
Exp[x] ยผ 1+x +x2/2 + โ€ฆ
HOT for abs(x)<<1
CH3 Diode Circuits 35
Small-Signal Analysis
๏ƒ˜ Small-signal analysis is performed around a bias point by
perturbing the voltage by a small amount and observing
the resulting linear current perturbation.
1D
T
D I
V
V
I
๏„
๏€ฝ๏„
CH3 Diode Circuits 36
Small-Signal Analysis in Detail
๏ƒ˜ If two points on the IV curve of a diode are close enough,
the trajectory connecting the first to the second point is like
a line, with the slope being the proportionality factor
between change in voltage and change in current.
T
D
T
D
T
s
VDVD
D
D
D
D
V
I
V
I
V
I
dV
dI
V
I
1
1
1
exp
|
๏€ฝ
๏€ฝ
๏€ฝ
๏„
๏„
๏€ฝ
CH3 Diode Circuits 37
Small-Signal Incremental Resistance
๏ƒ˜ Since thereโ€™s a linear relationship between the small signal
current and voltage of a diode, the diode can be viewed as
a linear resistor when only small changes are of interest.
D
T
d
I
V
r ๏€ฝSmall-signal resistance
CH3 Diode Circuits 38
Adapter Example Revisited
๏ƒ˜ With our understanding of small-signal analysis, we can
revisit our cell phone charger example and easily solve it
with just algebra instead of iterations.
mV
v
rR
r
v ad
d
d
out
5.11
3
3
1
๏€ฝ
๏€ซ
๏€ฝ
CH3 Diode Circuits 39
Simple is Beautiful
๏ƒ˜ In this example we study the effect of cell phone pulling
some current from the diodes. Using small signal analysis,
this is easily done. However, imagine the nightmare, if we
were to solve it using non-linear equations.
mV
mA
rIV dDout
5.6
)33.43(5.0
)3(
๏€ฝ
๏—๏‚ด๏€ฝ
๏ƒ—๏„๏€ฝ๏„
CH3 Diode Circuits 40
Line Regulation VS. Load Regulation
๏ƒ˜ Line regulation is the suppression of change in Vout due to
change in Vin (b).
๏ƒ˜ Load regulation is the suppression of change in Vout due
to change in load current (c).
121
21
Rrr
rr
v
v
DD
DD
in
out
๏€ซ๏€ซ
๏€ซ
๏€ฝ 121 ||)( Rrr
i
v
DD
L
out
๏€ซ๏€ฝ
CH3 Diode Circuits 41
Applications of Diode
CH3 Diode Circuits 42
Half-Wave Rectifier
๏ƒ˜ A very common application of diodes is half-wave
rectification, where either the positive or negative half of
the input is blocked.
๏ƒ˜ But, how do we generate a constant output?
CH3 Diode Circuits 43
Diode-Capacitor Circuit: Constant Voltage Model
๏ƒ˜ If the resistor in half-wave rectifier is replaced by a
capacitor, a fixed voltage output is obtained since the
capacitor (assumed ideal) has no path to discharge.
CH3 Diode Circuits 44
Diode-Capacitor Circuit: Ideal Model
๏ƒ˜ Note that (b) is just like Vin, only shifted down.
VD1=-Vp+Vp sin wt
CH3 Diode Circuits 45
Diode-Capacitor With Load Resistor
๏ƒ˜ A path is available for capacitor to discharge. Therefore,
Vout will not be constant and a ripple exists.
CH3 Diode Circuits 46
Peak to Peak amplitude of Ripple
๏ƒ˜ The ripple amplitude is the decaying part of the exponential.
๏ƒ˜ Ripple voltage becomes a problem if it goes above 5 to 10%
of the output voltage.
inL
onDpin
L
onDp
R
V
L
onDp
onDp
L
onDpout
L
onDpout
fCR
VV
C
T
R
VV
V
C
t
R
VV
VV
CR
t
VVtV
CR
t
VVtV
R
1
,
1
,
1
,
,
1
,
1
,
)()1)(()(
exp)()(
๏€ญ
๏‚ป๏ƒ—
๏€ญ
๏‚ป
๏€ญ
๏€ญ๏€ญ๏‚ป๏€ญ๏€ญ๏‚ป
๏€ญ
๏€ญ๏€ฝ
๏€ด๏€ด๏€ณ๏€ด๏€ด๏€ฒ๏€ฑ
inTt ๏‚ฃ๏‚ฃ0
1for1 ๏€ผ๏€ผ๏€ญ๏‚ป๏€ญ
xxe x
inTt ๏‚ป
CH3 Diode Circuits 47
Behavior for Different Capacitor Values
๏ƒ˜ For large C1, Vout has small ripple.
CH3 Diode Circuits 48
Maximum Diode Current
๏ƒ˜ The diode has its maximum current at t1, since thatโ€™s when
the slope of Vout is the greatest.
๏ƒ˜ This current has to be carefully controlled so it does not
damage the device.
)1
2
(
2
11 ๏€ซ๏‚ป๏€ซ๏‚ป
p
R
inL
L
p
L
p
p
R
pinp
V
V
CR
R
V
R
V
V
V
VCI ๏ท๏ท
L
p
inpin
L
pout
D
inpRp
R
V
twVwC
R
V
dt
tdV
CtI
twVVV
๏€ซ๏€ฝ
๏€ซ๏€ฝ
๏€ฝ๏€ญ
11
11
1
cos
)(
)(
sin
This current reaches a peak at t=t1
L
p
p
R
pinp
R
V
V
V
VwCI ๏€ซ
๏ƒท
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ญ๏€ฝ
2
1 11
CH3 Diode Circuits 49
Full-Wave Rectifier
๏ƒ˜ A full-wave rectifier passes both the negative and positive
half cycles of the input, while inverting the negative half of
the input.
๏ƒ˜ As proved later, a full-wave rectifier reduces the ripple by a
factor of two.
CH3 Diode Circuits 50
The Evolution of Full-Wave Rectifier
๏ƒ˜ Figures (d) and (e) show the topology that inverts the negative
half cycle of the input.
CH3 Diode Circuits 51
Full-Wave Rectifier: Bridge Rectifier
๏ƒ˜ The figure above shows a full-wave rectifier, where D1 and
D2 pass/invert the negative half cycle of input and D3 and
D4 pass the positive half cycle.
CH3 Diode Circuits 52
Input/Output Characteristics of a Full-Wave Rectifier
(Constant-Voltage Model)
๏ƒ˜ The dead-zone around Vin arises because Vin must exceed 2
VD,ON to turn on the bridge.
CH3 Diode Circuits 53
Complete Full-Wave Rectifier
๏ƒ˜ Since C1 only gets ยฝ of period to discharge, ripple voltage
is decreased by a factor of 2. Also (b) shows that each
diode is subjected to approximately one Vp reverse bias
drop (versus 2Vp in half-wave rectifier).
CH3 Diode Circuits 54
Current Carried by Each Diode in the Full-Wave Rectifier
CH3 Diode Circuits 55
Summary of Half and Full-Wave Rectifiers
๏ƒ˜ Full-wave rectifier is more suited to adapter and charger
applications.
CH3 Diode Circuits 56
Voltage Regulator
๏ƒ˜ The ripple created by the rectifier can be unacceptable to
sensitive load; therefore, a regulator is required to obtain a
very stable output.
๏ƒ˜ Three diodes operate as a primitive regulator.
CH3 Diode Circuits 57
Evolution of AC-DC Converter
Operation in The Reverse Breakdown Region โ€“ Zener Diodes
zdDzz IrVV ๏€ซ๏€ฝ
dr
1
slope๏€ฝ
IrV d ๏„๏€ฝ๏„
d
Dz
r
V
CH3 Diode Circuits 58
Voltage Regulation With Zener Diode
๏ƒ˜ Voltage regulation can be accomplished with Zener diode.
Since rd is small, large change in the input will not be
reflected at the output.
in
D
D
out V
Rr
r
V ๏„
๏€ซ
๏€ฝ๏„
1
outV๏„
CH3 Diode Circuits 59
Limiting Circuits
๏ƒ˜ The motivation of having limiting circuits is to keep the
signal below a threshold so it will not saturate the entire
circuitry.
๏ƒ˜ When a receiver is close to a base station, signals are large
and limiting circuits may be required.
CH3 Diode Circuits 60
Input/Output Characteristics
๏ƒ˜ Note the clipping of the output voltage.
CH3 Diode Circuits 61
Limiting Circuit Using a Diode:
Positive Cycle Clipping
๏ƒ˜ As was studied in the past, the combination of resistor-
diode creates limiting effect.
CH3 Diode Circuits 62
Limiting Circuit Using a Diode:
Negative Cycle Clipping
CH3 Diode Circuits 63
Limiting Circuit Using a Diode:
Positive and Negative Cycle Clipping
Anti-parallel
configuration
CH3 Diode Circuits 64
General Voltage Limiting Circuit
๏ƒ˜ Two batteries in series with the antiparalle diodes control
the limiting voltages.
CH3 Diode Circuits 65
Non-idealities in Limiting Circuits
๏ƒ˜ The clipping region is not exactly flat since as Vin
increases, the currents through diodes change, and so
does the voltage drop.
CH3 Diode Circuits 66
Capacitive Divider
inout VV ๏„๏€ฝ๏„ inout V
CC
C
V ๏„
๏€ซ
๏€ฝ๏„
21
1
CH3 Diode Circuits 67
Waveform Shifter: Peak at -2Vp
๏ƒ˜ As Vin increases, D1 turns on and Vout is zero.
๏ƒ˜ As Vin decreases, D1 turns off, and Vout drops with Vin from
zero. The lowest Vout can go is -2Vp, doubling the voltage.
CH3 Diode Circuits 68
Waveform Shifter: Peak at 2Vp
๏ƒ˜ Similarly, when the terminals of the diode are switched, a
voltage doubler with peak value at 2Vp can be conceived.
CH3 Diode Circuits 69
Voltage Doubler
๏ƒ˜ The output increases by Vp, Vp/2, Vp/4, etc in each input
cycle, eventually settling to 2 Vp.
CH3 Diode Circuits 70
Current thru D1 in Voltage Doubler
CH3 Diode Circuits 71
Another Application: Voltage Shifter
CH3 Diode Circuits 72
Voltage Shifter (2VD,ON)
CH3 Diode Circuits 73
Diode as Electronic Switch
๏ƒ˜ Diode as a switch finds application in logic circuits and
data converters.
CH3 Diode Circuits 74
Junction Feedthrough
๏ƒ˜ For the circuit shown in part e) of the previous slide, a small
feedthrough from input to output via the junction capacitors
exists even if the diodes are reverse biased
๏ƒ˜ Therefore, C1 has to be large enough to minimize this
feedthrough.
in
j
j
out V
CC
C
V ๏„
๏€ซ
๏€ฝ๏„
12/
2/
CH3 Diode Circuits 75
Small Sinusoidal Analysis
๏ƒ˜ If a sinusoidal voltage with small amplitude is applied, the
resulting current is also a small sinusoid around a DC
value.
tV
I
V
V
V
ItIItI p
T
T
spD ๏ท๏ท cosexpcos)(
0
0
0 ๏€ซ๏€ฝ๏€ซ๏€ฝtVVtV p ๏ทcos)( 0 ๏€ซ๏€ฝ
CH3 Diode Circuits 76
Small Sinusoidal Analysis
๏ƒ˜ If a sinusoidal voltage with small amplitude is applied, the
resulting current is also a small sinusoid around a DC
value.
๏ƒท๏ƒท
๏ƒธ
๏ƒถ
๏ƒง๏ƒง
๏ƒจ
๏ƒฆ
๏€ซ๏€ฝ๏€ซ๏€ฝ tV
I
V
V
V
ItIItI p
T
T
spD ๏ท๏ท cosexpcos)(
0
0
0tVVtV p ๏ทcos)( 0 ๏€ซ๏€ฝ
CH3 Diode Circuits 77
Cause and Effect
๏ƒ˜ In (a), voltage is the cause and current is the effect. In (b),
the other way around.

More Related Content

What's hot

Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosSesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosJavier Garcรญa Molleja
ย 
Second order circuits linear circuit analysis
Second order circuits linear circuit analysisSecond order circuits linear circuit analysis
Second order circuits linear circuit analysisZulqarnainEngineerin
ย 
C hapter 2 diode applications
C hapter 2 diode applicationsC hapter 2 diode applications
C hapter 2 diode applicationsHazrul156
ย 
AST 406 Ammeter and Voltmeter
AST 406 Ammeter and VoltmeterAST 406 Ammeter and Voltmeter
AST 406 Ammeter and VoltmeterNeil MacIntosh
ย 
First order circuits
First order circuitsFirst order circuits
First order circuitsmiranteogbonna
ย 
Direct current circuits
Direct current circuitsDirect current circuits
Direct current circuitsJFG407
ย 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysisZulqarnainEngineerin
ย 
Lab - 03
Lab - 03Lab - 03
Lab - 03MD Jakaria
ย 
Basic laws linear circuit analysis
Basic laws linear circuit analysisBasic laws linear circuit analysis
Basic laws linear circuit analysisZulqarnainEngineerin
ย 
Inducciรณn electromagnรฉtica
Inducciรณn electromagnรฉticaInducciรณn electromagnรฉtica
Inducciรณn electromagnรฉticaDavid A. Baxin Lรณpez
ย 
Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicJeremyLauKarHei
ย 
Eg1108 rectifiers
Eg1108 rectifiersEg1108 rectifiers
Eg1108 rectifiersApik Indrapraja
ย 
Chapter 5: Diode
Chapter 5: DiodeChapter 5: Diode
Chapter 5: DiodeJeremyLauKarHei
ย 
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARSLUIS POWELL
ย 
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim David A. Baxin Lรณpez
ย 
Sinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSachin Mehta
ย 

What's hot (20)

Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosSesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesiรณn de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
ย 
Second order circuits linear circuit analysis
Second order circuits linear circuit analysisSecond order circuits linear circuit analysis
Second order circuits linear circuit analysis
ย 
C hapter 2 diode applications
C hapter 2 diode applicationsC hapter 2 diode applications
C hapter 2 diode applications
ย 
AST 406 Ammeter and Voltmeter
AST 406 Ammeter and VoltmeterAST 406 Ammeter and Voltmeter
AST 406 Ammeter and Voltmeter
ย 
First order circuits
First order circuitsFirst order circuits
First order circuits
ย 
Direct current circuits
Direct current circuitsDirect current circuits
Direct current circuits
ย 
First order circuits linear circuit analysis
First order circuits linear circuit analysisFirst order circuits linear circuit analysis
First order circuits linear circuit analysis
ย 
2 diode applications
2 diode applications2 diode applications
2 diode applications
ย 
Lab - 03
Lab - 03Lab - 03
Lab - 03
ย 
EEE201 LECTURE 3~www.fida.com.bd
EEE201  LECTURE 3~www.fida.com.bdEEE201  LECTURE 3~www.fida.com.bd
EEE201 LECTURE 3~www.fida.com.bd
ย 
Unit2 ac circuits
Unit2 ac circuitsUnit2 ac circuits
Unit2 ac circuits
ย 
Basic laws linear circuit analysis
Basic laws linear circuit analysisBasic laws linear circuit analysis
Basic laws linear circuit analysis
ย 
Inducciรณn electromagnรฉtica
Inducciรณn electromagnรฉticaInducciรณn electromagnรฉtica
Inducciรณn electromagnรฉtica
ย 
Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC Characteristic
ย 
Eg1108 rectifiers
Eg1108 rectifiersEg1108 rectifiers
Eg1108 rectifiers
ย 
Chapter 5: Diode
Chapter 5: DiodeChapter 5: Diode
Chapter 5: Diode
ย 
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARSPROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARS
PROBLEMAS RESUELTOS (93) DE LABORATORIO Nยฐ 2 DE FรSICA II - SEARS
ย 
Diode
DiodeDiode
Diode
ย 
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim
Electrรณnica analรณgica - Rectificaciรณn de onda en Multisim
ย 
Sinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL CircuitsSinusoidal Response of RC & RL Circuits
Sinusoidal Response of RC & RL Circuits
ย 

Similar to Ch03updated

Elec581 chapter 2 - fundamental elements of power eletronics
Elec581   chapter 2 - fundamental elements of power eletronicsElec581   chapter 2 - fundamental elements of power eletronics
Elec581 chapter 2 - fundamental elements of power eletronicsTarek Schehadeih
ย 
Tanya makkar (5003)
Tanya makkar (5003)Tanya makkar (5003)
Tanya makkar (5003)Tanya Makkar
ย 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptxpriyakunduq
ย 
Electronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and TypesElectronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and TypesSk_Group
ย 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodesSirat Mahmood
ย 
PE4MSc_Ch1_SC_devices.pptx
PE4MSc_Ch1_SC_devices.pptxPE4MSc_Ch1_SC_devices.pptx
PE4MSc_Ch1_SC_devices.pptxAddisuMengesha2
ย 
Lecture5 diode circuits (1)
Lecture5 diode circuits (1)Lecture5 diode circuits (1)
Lecture5 diode circuits (1)raaako2255
ย 
basic-analog-electronics
basic-analog-electronicsbasic-analog-electronics
basic-analog-electronicsATTO RATHORE
ย 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptLucasMogaka
ย 
JUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONSJUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONSAsmita Bhagdikar
ย 
basic electronics
 basic   electronics basic   electronics
basic electronicsATTO RATHORE
ย 
Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
ย 
ADE UNIT-I.pptx
ADE UNIT-I.pptxADE UNIT-I.pptx
ADE UNIT-I.pptxKUMARS641064
ย 
fdocuments.in_power-diodes-566723e275eb4.ppt
fdocuments.in_power-diodes-566723e275eb4.pptfdocuments.in_power-diodes-566723e275eb4.ppt
fdocuments.in_power-diodes-566723e275eb4.pptAbhijitBarman20
ย 
Chapter02
Chapter02Chapter02
Chapter02vikram anand
ย 
MATH (PPT).pptx
MATH (PPT).pptxMATH (PPT).pptx
MATH (PPT).pptxKaushalAbc
ย 

Similar to Ch03updated (20)

Elec581 chapter 2 - fundamental elements of power eletronics
Elec581   chapter 2 - fundamental elements of power eletronicsElec581   chapter 2 - fundamental elements of power eletronics
Elec581 chapter 2 - fundamental elements of power eletronics
ย 
Diodes vi characteries
Diodes vi characteriesDiodes vi characteries
Diodes vi characteries
ย 
Zener_diode.pdf
Zener_diode.pdfZener_diode.pdf
Zener_diode.pdf
ย 
Tanya makkar (5003)
Tanya makkar (5003)Tanya makkar (5003)
Tanya makkar (5003)
ย 
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
377275109-Ch-2-Uncontrolled-Rectifiers-Autosaved.pptx
ย 
Electronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and TypesElectronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and Types
ย 
Semiconductor diodes
Semiconductor diodesSemiconductor diodes
Semiconductor diodes
ย 
PE4MSc_Ch1_SC_devices.pptx
PE4MSc_Ch1_SC_devices.pptxPE4MSc_Ch1_SC_devices.pptx
PE4MSc_Ch1_SC_devices.pptx
ย 
Lecture5 diode circuits (1)
Lecture5 diode circuits (1)Lecture5 diode circuits (1)
Lecture5 diode circuits (1)
ย 
basic-analog-electronics
basic-analog-electronicsbasic-analog-electronics
basic-analog-electronics
ย 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.ppt
ย 
Diode
DiodeDiode
Diode
ย 
JUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONSJUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONS
ย 
basic electronics
 basic   electronics basic   electronics
basic electronics
ย 
Chapter 03
Chapter 03Chapter 03
Chapter 03
ย 
ADE UNIT-I.pptx
ADE UNIT-I.pptxADE UNIT-I.pptx
ADE UNIT-I.pptx
ย 
fdocuments.in_power-diodes-566723e275eb4.ppt
fdocuments.in_power-diodes-566723e275eb4.pptfdocuments.in_power-diodes-566723e275eb4.ppt
fdocuments.in_power-diodes-566723e275eb4.ppt
ย 
Cro ppt
Cro pptCro ppt
Cro ppt
ย 
Chapter02
Chapter02Chapter02
Chapter02
ย 
MATH (PPT).pptx
MATH (PPT).pptxMATH (PPT).pptx
MATH (PPT).pptx
ย 

More from Muhammad Saad

Design of analog cmos integrated circuits
Design of analog cmos integrated circuitsDesign of analog cmos integrated circuits
Design of analog cmos integrated circuitsMuhammad Saad
ย 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loopMuhammad Saad
ย 
Differential pair routing_pcb-oct2011
Differential pair routing_pcb-oct2011Differential pair routing_pcb-oct2011
Differential pair routing_pcb-oct2011Muhammad Saad
ย 
0023084227expelectronic
0023084227expelectronic0023084227expelectronic
0023084227expelectronicMuhammad Saad
ย 

More from Muhammad Saad (7)

Rcicc01
Rcicc01Rcicc01
Rcicc01
ย 
Design of analog cmos integrated circuits
Design of analog cmos integrated circuitsDesign of analog cmos integrated circuits
Design of analog cmos integrated circuits
ย 
Phase locked loop
Phase locked loopPhase locked loop
Phase locked loop
ย 
Differential pair routing_pcb-oct2011
Differential pair routing_pcb-oct2011Differential pair routing_pcb-oct2011
Differential pair routing_pcb-oct2011
ย 
550663274
550663274550663274
550663274
ย 
0023084227expelectronic
0023084227expelectronic0023084227expelectronic
0023084227expelectronic
ย 
Satellite
SatelliteSatellite
Satellite
ย 

Recently uploaded

Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...Juli Boned
ย 
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...Sareena Khatun
ย 
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...Angela Justice, PhD
ย 
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...vershagrag
ย 
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabadgargpaaro
ย 
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...gajnagarg
ย 
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...gajnagarg
ย 
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdf
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdfUXPA Boston 2024 Maximize the Client Consultant Relationship.pdf
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdfDan Berlin
ย 
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...vershagrag
ย 
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...ZurliaSoop
ย 
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Service
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts ServiceCall Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Service
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Servicenishakur201
ย 
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...gajnagarg
ย 
K Venkat Naveen Kumar | GCP Data Engineer | CV
K Venkat Naveen Kumar | GCP Data Engineer | CVK Venkat Naveen Kumar | GCP Data Engineer | CV
K Venkat Naveen Kumar | GCP Data Engineer | CVK VENKAT NAVEEN KUMAR
ย 
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdfB.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdfDeepak15CivilEngg
ย 
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...vershagrag
ย 
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X79953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...gajnagarg
ย 
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime MysoreMysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysoremeghakumariji156
ย 
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfDMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfReemaKhan31
ย 

Recently uploaded (20)

Cara Gugurkan Kandungan Awal Kehamilan 1 bulan (087776558899)
Cara Gugurkan Kandungan Awal Kehamilan 1 bulan (087776558899)Cara Gugurkan Kandungan Awal Kehamilan 1 bulan (087776558899)
Cara Gugurkan Kandungan Awal Kehamilan 1 bulan (087776558899)
ย 
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
ย 
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...
Call Girl Service in Ahmednagar { 9332606886 } VVIP NISHA Call Girls Near 5 S...
ย 
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...
Simple, 3-Step Strategy to Improve Your Executive Presence (Even if You Don't...
ย 
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...
Call Girl In Gwalior Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class C...
ย 
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24ร—7 In In Ahmedabad
ย 
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...
Top profile Call Girls In Ratnagiri [ 7014168258 ] Call Me For Genuine Models...
ย 
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Shillong [ 7014168258 ] Call Me For Genuine Models ...
ย 
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdf
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdfUXPA Boston 2024 Maximize the Client Consultant Relationship.pdf
UXPA Boston 2024 Maximize the Client Consultant Relationship.pdf
ย 
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...
Only Cash On Delivery Call Girls Service In Amritsar ๐Ÿ“ž6378878445๐Ÿ“ž Just๐Ÿ“ฒ Call ...
ย 
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
ย 
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Service
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts ServiceCall Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Service
Call Girls In GOA North Goa +91-8588052666 Direct Cash Escorts Service
ย 
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...
Top profile Call Girls In bhubaneswar [ 7014168258 ] Call Me For Genuine Mode...
ย 
K Venkat Naveen Kumar | GCP Data Engineer | CV
K Venkat Naveen Kumar | GCP Data Engineer | CVK Venkat Naveen Kumar | GCP Data Engineer | CV
K Venkat Naveen Kumar | GCP Data Engineer | CV
ย 
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdfB.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf
B.tech Civil Engineering Major Project by Deepak Kumar ppt.pdf
ย 
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service ๐Ÿ‘‰๐Ÿ“ž 6378878445 ๐Ÿ‘‰๐Ÿ“ž Just๐Ÿ“ฒ Call Ruhi Call ...
ย 
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Girls in Aiims Metro (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
ย 
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
ย 
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime MysoreMysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
ย 
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfDMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
ย 

Ch03updated

  • 1. 1 Fundamentals of Microelectronics ๏ƒ˜ CH1 Why Microelectronics? ๏ƒ˜ CH2 Basic Physics of Semiconductors ๏ƒ˜ CH3 Diode Circuits ๏ƒ˜ CH4 Physics of Bipolar Transistors ๏ƒ˜ CH5 Bipolar Amplifiers ๏ƒ˜ CH6 Physics of MOS Transistors ๏ƒ˜ CH7 CMOS Amplifiers ๏ƒ˜ CH8 Operational Amplifier As A Black Box
  • 2. 2 Chapter 3 Diode Circuits ๏ƒ˜ 3.1 Ideal Diode ๏ƒ˜ 3.2 PN Junction as a Diode ๏ƒ˜ 3.3 Applications of Diodes
  • 3. CH3 Diode Circuits 3 Diode Circuits ๏ƒ˜ You know the physics of a diode from EE3310, in EE3311 we will study its behavior as a circuit element and its many applications.
  • 4. CH3 Diode Circuits 4 Diodeโ€™s Application: Cell Phone Charger ๏ƒ˜ An important application of diode is chargers. ๏ƒ˜ Diode acts as the black box (after transformer) that passes only the positive half of the stepped-down sinusoid.
  • 5. CH3 Diode Circuits 5 Diodeโ€™s Action in The Black Box (Ideal Diode) ๏ƒ˜ The diode behaves as a short circuit during the positive half cycle (voltage across it tends to exceed zero), and an open circuit during the negative half cycle (voltage across it is less than zero).
  • 6. CH3 Diode Circuits 6 Ideal Diode ๏ƒ˜ In an ideal diode, if the voltage across it tends to exceed zero, current flows. ๏ƒ˜ It is analogous to a water pipe that allows water to flow in only one direction.
  • 7. CH3 Diode Circuits 7 Diodes in Series ๏ƒ˜ Diodes cannot be connected in series randomly. For the circuits above, only a) can conduct current from A to C.
  • 8. CH3 Diode Circuits 8 IV Characteristics of an Ideal Diode ๏ƒ˜ If the voltage across anode and cathode is greater than zero, the resistance of an ideal diode is zero and current becomes infinite. However, if the voltage is less than zero, the resistance becomes infinite and current is zero. ๏‚ฅ๏€ฝ๏€ฝ๏ƒž๏€ฝ R V IR 0 0๏€ฝ๏€ฝ๏ƒž๏‚ฅ๏€ฝ R V IR
  • 9. CH3 Diode Circuits 9 Anti-Parallel Ideal Diodes ๏ƒ˜ If two diodes are connected in anti-parallel, it acts as a short for all voltages.
  • 10. CH3 Diode Circuits 10 Diode-Resistor Combination ๏ƒ˜ The IV characteristic of this diode-resistor combination is zero for negative voltages and Ohmโ€™s law for positive voltages.
  • 11. CH3 Diode Circuits 11 Diode Implementation of OR Gate ๏ƒ˜ The circuit above shows an example of diode-implemented OR gate. ๏ƒ˜ Vout can only be either VA or VB, not both.
  • 12. CH3 Diode Circuits 12 Input/Output Characteristics ๏ƒ˜ When Vin is less than zero, the diode opens, so Vout = Vin. ๏ƒ˜ When Vin is greater than zero, the diode shorts, so Vout = 0.
  • 13. CH3 Diode Circuits 13 Diodeโ€™s Application: Rectifier ๏ƒ˜ A rectifier is a device that passes positive-half cycle of a sinusoid and blocks the negative half-cycle or vice versa. ๏ƒ˜ When Vin is greater than 0, diode shorts, so Vout = Vin; however, when Vin is less than 0, diode opens, no current flows thru R1, Vout = IยฃR1 = 0.
  • 14. CH3 Diode Circuits 14 Signal Strength Indicator ๏ƒ˜ The averaged value of a rectifier output can be used as a signal strength indicator for the input, since Vout,avg is proportional to Vp, the input signalโ€™s amplitude. ๏ƒ˜ RSSI in WiFi receivers ๏› ๏ ๏ฐ ๏ท ๏ท ๏ท pTp T p T outavgout V t V T tdtV T dttV T V ๏€ฝ๏€ญ๏€ฝ ๏ƒฒ๏€ฝ๏ƒฒ๏€ฝ 2/ 0 2/ 00 , cos 1 sin 1 )( 1 Tt T ๏‚ฃ๏‚ฃ 2 for 2 0 T t ๏‚ฃ๏‚ฃ for0sin ๏€ฝ๏€ฝ tVV pout ๏ท
  • 15. CH3 Diode Circuits 15 Diodeโ€™s application: Limiter ๏ƒ˜ The purpose of a limiter is to force the output to remain below certain value. ๏ƒ˜ In a), the addition of a 1 V battery forces the diode to turn on after V1 has become greater than 1 V.
  • 16. CH3 Diode Circuits 16 Limiter: When Battery Varies ๏ƒ˜ An interesting case occurs when VB (battery) varies. ๏ƒ˜ Rectification fails if VB is greater than the input amplitude.
  • 17. Complex Diode Circuit Examples ๏ƒ˜ Assuming the diodes ideal, find the values of I and V in the circuits above ๏ƒ˜ In these circuits, it may not be obvious at first sight whether none, one, or both diodes are conducting ๏ƒ˜ Make a plausible assumption ๏ƒ  Proceed with the analysis ๏ƒ  Check whether the solution is consistent 17
  • 19. CH2 Basic Physics of Semiconductors 19 Diodeโ€™s Three Operation Regions ๏ƒ˜ In order to understand the operation of a diode, it is necessary to study its three operation regions: equilibrium, reverse bias, and forward bias.
  • 20. Terminal Characteristics of Junction Diodes Two distinct regions 1. VD >0 2. VD<0 Forward Bias ID = IS (exp(VD/VT)-1)ยผ IS exp(VD/VT) IS ๏ƒ  Saturation current (proportional to surface area of pn junction) VT =kT/q๏ƒ  Thermal voltage k ๏ƒ  Boltzmannโ€™s constant=1.38 ยฃ 10-23 joules/Kelvin T ๏ƒ  The absolute temperature in Kelvins =273+ ยฑ C q ๏ƒ  the magnitude of electronic charge = 1.60 ยฃ 10-19 coulomb 20 VT ยผ 26 mV at T=300K The current and voltage relationship of a PN junction is exponential in forward bias region, and relatively constant in reverse bias region.
  • 21. CH2 Basic Physics of Semiconductors 21 IV Characteristic of PN Junction ๏ƒ˜ The current and voltage relationship of a PN junction is exponential in forward bias region, and relatively constant in reverse bias region. )1(exp ๏€ญ๏€ฝ T D SD V V II
  • 22. Temperature Dependence of the Diode Forward Characteristics 22 I = IS exp(q V/(kT)) ๏ƒ˜ Is (saturation current) is also a function of temperature. ๏ƒ˜ At a constant current, there is a decrease of approximately 2mV in diode voltage for every 1ยฑ C degree increase
  • 23. CH3 Diode Circuits 23 Different Models for Diode ๏ƒ˜ Thus far, Diode models include the ideal model of diode, the exponential, and constant voltage models.
  • 24. CH3 Diode Circuits 24 Input/Output Characteristics with Ideal and Constant-Voltage Models ๏ƒ˜ The circuit above shows the difference between the ideal and constant-voltage model; the two models yield two different break points of slope.
  • 25. CH3 Diode Circuits 25 Input/Output Characteristics with a Constant- Voltage Model ๏ƒ˜ When using a constant-voltage model, the voltage drop across the diode is no longer zero but Vd,on when it conducts.
  • 26. CH3 Diode Circuits 26 Another Constant-Voltage Model Example ๏ƒ˜ In this example, since Vin is connected to the cathode, the diode conducts when Vin is very negative. ๏ƒ˜ The break point where the slope changes is when the current across R1 is equal to the current across R2.
  • 27. CH3 Diode Circuits 27 Another Constant-Voltage Model Example ๏ƒ˜ This example shows the importance of good initial guess and careful confirmation.
  • 30. CH3 Diode Circuits 30 Exponential Model ๏ƒ˜ In this example, since the two diodes have different cross- section areas, only exponential model can be used. ๏ƒ˜ The two currents are solved by summing them with Iin, and equating their voltages. 2 1 2 1 2 1 1 1 s s in D s s in D I I I I I I I I ๏€ซ ๏€ฝ ๏€ซ ๏€ฝ
  • 31. Iterative Analysis Using the Exponential Model ๏ƒ˜ Determine the current an the diode voltage VD for the circuit above with VDD=5V and R=1K๏—. Assume that the diode has a current of 1 mA at a voltage of 0.7V. ๏ƒ˜ Apply KVL or KCL as usual ๏ƒ˜ Drive two independent equations between ID and VD ๏ƒ˜ Start with good initial guess for either ID or VD ๏ƒ˜ Iterate between two equations of ID and VD until values of ID or VD is very close. 31
  • 32. How to choose a diode model to utilize? ๏ƒ˜ Utilize the ideal model so as to develop a quick understanding of the circuit ๏ƒ˜ If the ideal model is insufficient, employ the constant-voltage model ๏ƒ˜ For more accurate analysis with smaller signal levels, we need to resort to the exponential model. โ€“ Exponential model is often complicated. โ€“ Thus, we do first approximation to exponential model ๏ƒ  Small-signal model 32 Exp[x] ยผ 1+x +x2/2 + โ€ฆ HOT for abs(x)<<1
  • 33. CH3 Diode Circuits 33 Cell Phone Adapter ๏ƒ˜ Vout = 3VD,on is used to charge cell phones. ๏ƒ˜ However, if Ix changes, iterative method is often needed to obtain a solution, thus motivating a simpler technique. s X T Dout I I V VV ln3 3 ๏€ฝ ๏€ฝ Ix Vad=3V Vout=2.4V, IX=6mA Is=2.602x10-16 A and VT=26mV Vad-> 3.1V
  • 34. Large-Signal and Small-Signal Operations ๏ƒ˜ Large-Signal Operation โ€“ โ€œGeneral Modelโ€ such as exponential I/V characteristics โ€“ Arbitrarily large voltage and current changes โ€“ Complicates the analysis ๏ƒ˜ Small-Signal Operation 34 Exp[x] ยผ 1+x +x2/2 + โ€ฆ HOT for abs(x)<<1
  • 35. CH3 Diode Circuits 35 Small-Signal Analysis ๏ƒ˜ Small-signal analysis is performed around a bias point by perturbing the voltage by a small amount and observing the resulting linear current perturbation. 1D T D I V V I ๏„ ๏€ฝ๏„
  • 36. CH3 Diode Circuits 36 Small-Signal Analysis in Detail ๏ƒ˜ If two points on the IV curve of a diode are close enough, the trajectory connecting the first to the second point is like a line, with the slope being the proportionality factor between change in voltage and change in current. T D T D T s VDVD D D D D V I V I V I dV dI V I 1 1 1 exp | ๏€ฝ ๏€ฝ ๏€ฝ ๏„ ๏„ ๏€ฝ
  • 37. CH3 Diode Circuits 37 Small-Signal Incremental Resistance ๏ƒ˜ Since thereโ€™s a linear relationship between the small signal current and voltage of a diode, the diode can be viewed as a linear resistor when only small changes are of interest. D T d I V r ๏€ฝSmall-signal resistance
  • 38. CH3 Diode Circuits 38 Adapter Example Revisited ๏ƒ˜ With our understanding of small-signal analysis, we can revisit our cell phone charger example and easily solve it with just algebra instead of iterations. mV v rR r v ad d d out 5.11 3 3 1 ๏€ฝ ๏€ซ ๏€ฝ
  • 39. CH3 Diode Circuits 39 Simple is Beautiful ๏ƒ˜ In this example we study the effect of cell phone pulling some current from the diodes. Using small signal analysis, this is easily done. However, imagine the nightmare, if we were to solve it using non-linear equations. mV mA rIV dDout 5.6 )33.43(5.0 )3( ๏€ฝ ๏—๏‚ด๏€ฝ ๏ƒ—๏„๏€ฝ๏„
  • 40. CH3 Diode Circuits 40 Line Regulation VS. Load Regulation ๏ƒ˜ Line regulation is the suppression of change in Vout due to change in Vin (b). ๏ƒ˜ Load regulation is the suppression of change in Vout due to change in load current (c). 121 21 Rrr rr v v DD DD in out ๏€ซ๏€ซ ๏€ซ ๏€ฝ 121 ||)( Rrr i v DD L out ๏€ซ๏€ฝ
  • 41. CH3 Diode Circuits 41 Applications of Diode
  • 42. CH3 Diode Circuits 42 Half-Wave Rectifier ๏ƒ˜ A very common application of diodes is half-wave rectification, where either the positive or negative half of the input is blocked. ๏ƒ˜ But, how do we generate a constant output?
  • 43. CH3 Diode Circuits 43 Diode-Capacitor Circuit: Constant Voltage Model ๏ƒ˜ If the resistor in half-wave rectifier is replaced by a capacitor, a fixed voltage output is obtained since the capacitor (assumed ideal) has no path to discharge.
  • 44. CH3 Diode Circuits 44 Diode-Capacitor Circuit: Ideal Model ๏ƒ˜ Note that (b) is just like Vin, only shifted down. VD1=-Vp+Vp sin wt
  • 45. CH3 Diode Circuits 45 Diode-Capacitor With Load Resistor ๏ƒ˜ A path is available for capacitor to discharge. Therefore, Vout will not be constant and a ripple exists.
  • 46. CH3 Diode Circuits 46 Peak to Peak amplitude of Ripple ๏ƒ˜ The ripple amplitude is the decaying part of the exponential. ๏ƒ˜ Ripple voltage becomes a problem if it goes above 5 to 10% of the output voltage. inL onDpin L onDp R V L onDp onDp L onDpout L onDpout fCR VV C T R VV V C t R VV VV CR t VVtV CR t VVtV R 1 , 1 , 1 , , 1 , 1 , )()1)(()( exp)()( ๏€ญ ๏‚ป๏ƒ— ๏€ญ ๏‚ป ๏€ญ ๏€ญ๏€ญ๏‚ป๏€ญ๏€ญ๏‚ป ๏€ญ ๏€ญ๏€ฝ ๏€ด๏€ด๏€ณ๏€ด๏€ด๏€ฒ๏€ฑ inTt ๏‚ฃ๏‚ฃ0 1for1 ๏€ผ๏€ผ๏€ญ๏‚ป๏€ญ xxe x inTt ๏‚ป
  • 47. CH3 Diode Circuits 47 Behavior for Different Capacitor Values ๏ƒ˜ For large C1, Vout has small ripple.
  • 48. CH3 Diode Circuits 48 Maximum Diode Current ๏ƒ˜ The diode has its maximum current at t1, since thatโ€™s when the slope of Vout is the greatest. ๏ƒ˜ This current has to be carefully controlled so it does not damage the device. )1 2 ( 2 11 ๏€ซ๏‚ป๏€ซ๏‚ป p R inL L p L p p R pinp V V CR R V R V V V VCI ๏ท๏ท L p inpin L pout D inpRp R V twVwC R V dt tdV CtI twVVV ๏€ซ๏€ฝ ๏€ซ๏€ฝ ๏€ฝ๏€ญ 11 11 1 cos )( )( sin This current reaches a peak at t=t1 L p p R pinp R V V V VwCI ๏€ซ ๏ƒท ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ญ๏€ฝ 2 1 11
  • 49. CH3 Diode Circuits 49 Full-Wave Rectifier ๏ƒ˜ A full-wave rectifier passes both the negative and positive half cycles of the input, while inverting the negative half of the input. ๏ƒ˜ As proved later, a full-wave rectifier reduces the ripple by a factor of two.
  • 50. CH3 Diode Circuits 50 The Evolution of Full-Wave Rectifier ๏ƒ˜ Figures (d) and (e) show the topology that inverts the negative half cycle of the input.
  • 51. CH3 Diode Circuits 51 Full-Wave Rectifier: Bridge Rectifier ๏ƒ˜ The figure above shows a full-wave rectifier, where D1 and D2 pass/invert the negative half cycle of input and D3 and D4 pass the positive half cycle.
  • 52. CH3 Diode Circuits 52 Input/Output Characteristics of a Full-Wave Rectifier (Constant-Voltage Model) ๏ƒ˜ The dead-zone around Vin arises because Vin must exceed 2 VD,ON to turn on the bridge.
  • 53. CH3 Diode Circuits 53 Complete Full-Wave Rectifier ๏ƒ˜ Since C1 only gets ยฝ of period to discharge, ripple voltage is decreased by a factor of 2. Also (b) shows that each diode is subjected to approximately one Vp reverse bias drop (versus 2Vp in half-wave rectifier).
  • 54. CH3 Diode Circuits 54 Current Carried by Each Diode in the Full-Wave Rectifier
  • 55. CH3 Diode Circuits 55 Summary of Half and Full-Wave Rectifiers ๏ƒ˜ Full-wave rectifier is more suited to adapter and charger applications.
  • 56. CH3 Diode Circuits 56 Voltage Regulator ๏ƒ˜ The ripple created by the rectifier can be unacceptable to sensitive load; therefore, a regulator is required to obtain a very stable output. ๏ƒ˜ Three diodes operate as a primitive regulator.
  • 57. CH3 Diode Circuits 57 Evolution of AC-DC Converter Operation in The Reverse Breakdown Region โ€“ Zener Diodes zdDzz IrVV ๏€ซ๏€ฝ dr 1 slope๏€ฝ IrV d ๏„๏€ฝ๏„ d Dz r V
  • 58. CH3 Diode Circuits 58 Voltage Regulation With Zener Diode ๏ƒ˜ Voltage regulation can be accomplished with Zener diode. Since rd is small, large change in the input will not be reflected at the output. in D D out V Rr r V ๏„ ๏€ซ ๏€ฝ๏„ 1 outV๏„
  • 59. CH3 Diode Circuits 59 Limiting Circuits ๏ƒ˜ The motivation of having limiting circuits is to keep the signal below a threshold so it will not saturate the entire circuitry. ๏ƒ˜ When a receiver is close to a base station, signals are large and limiting circuits may be required.
  • 60. CH3 Diode Circuits 60 Input/Output Characteristics ๏ƒ˜ Note the clipping of the output voltage.
  • 61. CH3 Diode Circuits 61 Limiting Circuit Using a Diode: Positive Cycle Clipping ๏ƒ˜ As was studied in the past, the combination of resistor- diode creates limiting effect.
  • 62. CH3 Diode Circuits 62 Limiting Circuit Using a Diode: Negative Cycle Clipping
  • 63. CH3 Diode Circuits 63 Limiting Circuit Using a Diode: Positive and Negative Cycle Clipping Anti-parallel configuration
  • 64. CH3 Diode Circuits 64 General Voltage Limiting Circuit ๏ƒ˜ Two batteries in series with the antiparalle diodes control the limiting voltages.
  • 65. CH3 Diode Circuits 65 Non-idealities in Limiting Circuits ๏ƒ˜ The clipping region is not exactly flat since as Vin increases, the currents through diodes change, and so does the voltage drop.
  • 66. CH3 Diode Circuits 66 Capacitive Divider inout VV ๏„๏€ฝ๏„ inout V CC C V ๏„ ๏€ซ ๏€ฝ๏„ 21 1
  • 67. CH3 Diode Circuits 67 Waveform Shifter: Peak at -2Vp ๏ƒ˜ As Vin increases, D1 turns on and Vout is zero. ๏ƒ˜ As Vin decreases, D1 turns off, and Vout drops with Vin from zero. The lowest Vout can go is -2Vp, doubling the voltage.
  • 68. CH3 Diode Circuits 68 Waveform Shifter: Peak at 2Vp ๏ƒ˜ Similarly, when the terminals of the diode are switched, a voltage doubler with peak value at 2Vp can be conceived.
  • 69. CH3 Diode Circuits 69 Voltage Doubler ๏ƒ˜ The output increases by Vp, Vp/2, Vp/4, etc in each input cycle, eventually settling to 2 Vp.
  • 70. CH3 Diode Circuits 70 Current thru D1 in Voltage Doubler
  • 71. CH3 Diode Circuits 71 Another Application: Voltage Shifter
  • 72. CH3 Diode Circuits 72 Voltage Shifter (2VD,ON)
  • 73. CH3 Diode Circuits 73 Diode as Electronic Switch ๏ƒ˜ Diode as a switch finds application in logic circuits and data converters.
  • 74. CH3 Diode Circuits 74 Junction Feedthrough ๏ƒ˜ For the circuit shown in part e) of the previous slide, a small feedthrough from input to output via the junction capacitors exists even if the diodes are reverse biased ๏ƒ˜ Therefore, C1 has to be large enough to minimize this feedthrough. in j j out V CC C V ๏„ ๏€ซ ๏€ฝ๏„ 12/ 2/
  • 75. CH3 Diode Circuits 75 Small Sinusoidal Analysis ๏ƒ˜ If a sinusoidal voltage with small amplitude is applied, the resulting current is also a small sinusoid around a DC value. tV I V V V ItIItI p T T spD ๏ท๏ท cosexpcos)( 0 0 0 ๏€ซ๏€ฝ๏€ซ๏€ฝtVVtV p ๏ทcos)( 0 ๏€ซ๏€ฝ
  • 76. CH3 Diode Circuits 76 Small Sinusoidal Analysis ๏ƒ˜ If a sinusoidal voltage with small amplitude is applied, the resulting current is also a small sinusoid around a DC value. ๏ƒท๏ƒท ๏ƒธ ๏ƒถ ๏ƒง๏ƒง ๏ƒจ ๏ƒฆ ๏€ซ๏€ฝ๏€ซ๏€ฝ tV I V V V ItIItI p T T spD ๏ท๏ท cosexpcos)( 0 0 0tVVtV p ๏ทcos)( 0 ๏€ซ๏€ฝ
  • 77. CH3 Diode Circuits 77 Cause and Effect ๏ƒ˜ In (a), voltage is the cause and current is the effect. In (b), the other way around.