SlideShare a Scribd company logo
1 of 68
Topic 6 The T Cell Antigen Receptor Complex © Dr. Colin R.A. Hewitt [email_address]
• Each clone of T cells expresses a single TcR specificity • How the TcR was discovered • The similarities and differences between TcR and antibodies • The structure and organisation of the TcR genes • Somatic recombination in TcR genes • Generation of diversity in TcR • Structure function relationship of TcR • Why TcR do not undergo somatic mutation What you should know by the end of this lecture
Discovery of the T cell antigen receptor (TcR) Polyclonal T cells from an immunised strain A mouse Monoclonal (cloned) T cells In vitro “clonal selection” means each daughter cell has the same antigen specificity as the parent cell Most molecules present on the monoclonal T cells will be identical to the polyclonal T cells  EXCEPT   for the antigen combining site of the T cell antigen receptor Grow and clone a single antigen-specific T cell in-vitro with antigen, IL-2 and antigen presenting cells
Making anti- clonotypic TcR antibodies The strain A mouse will not make antibodies to the hundreds of different molecules associated with strain A T cells due to self tolerance BUT The naïve mouse has never raised T cells with the specificity of the T cell clone, SO the only antigen in the immunisation that the A strain mouse has never seen will be the antigen receptor of the monoclonal T cells  T cell clone from a strain A mouse Naïve strain A mouse Make monoclonal antibodies by hybridisation of the spleen cells with a myeloma cell line
Anti-TcR Abs that recognise only one clone of T cells are   CLONOTYPIC Hypothesise that anti-clonotype Abs recognise the antigen receptor Screen the supernatant of each cloned hybridoma against a panel of T cell clones of different specificity (i.e.cells with subtly different antigen-binding structures) Making anti- clonotypic TcR antibodies Y Y Y Y Y Y Y Y Y Y Y Y Monoclonal antibodies T cell clones Clone used for  immunisation
Lyse cells and add anti-clonotype Ab that binds to unique T cell structures Elute Ag from Ab and analyse the clonotypically-expresssed  proteins biochemically Principal component was a heterodimeric 90kDa protein composed of a 40kDa and a 50kDa molecule (   and    chains) Several other molecules were co-immunoprecipitated. Discovery of the T cell antigen receptor (TcR) Y Y Y Y Capture anti-clonotype Ab-Ag complex on insoluble support IMMUNOPRECIPITATION Wash away unbound protein Y Y Y Y Y Y Y Y Y Y Y Y Y
Structure of the TcR polypeptides Cyanogen bromide digestion of the    and    proteins Biochemical analysis of digestion products Polypeptides contain a variable, clone-dependent pattern of digestion fragments and a fragment common to all TcR Intact TcR chain polypeptides T cell clone A T cell clone B T cell clone C C C C V V V
Cloning of the TcR genes ,[object Object],[object Object],[object Object],[object Object],B T
Isolate non-hybridising material specific to T cells  Cloning of TcR genes by subtractive hybridisation Digest unhybridised B cell mRNA AAAAA AAAAA T cell single stranded cDNA B T AAAAA AAAAA mRNA Discard hybrids AAAAA Clone and sequence T cell- specific genes Hybridise the  cDNA and mRNA shared between T and B cells AAAAA
Analysis of T cell-specific genes Of the T cell-specific genes cloned, which cDNA encoded the TcR? Assumptions made after the analysis of Ig genes: TcR genes rearrange from germline configuration Find two restriction sites that flank the TcR region Ig gene probes can be used as TcR genes will be homologous to Ig genes Cut the T cell cDNA and placental (i.e. germline) DNA and Southern blot the fragments GERMLINE DNA V D J C 32 P V D J C REARRANGED DNA Restriction enzyme sites 32 P
Placenta B T Size of digested genomic DNA Gel electrophoresis followed by Southern blot using a TcR probe The TcR genes rearrange, but are not immunoglobulin genes Rearranged allele
The T cell antigen receptor V  V  C  C  Carbohydrates Hinge Monovalent Resembles an Ig Fab fragment No alternative constant regions Never secreted Domain structure: Ig gene superfamily Heterodimeric, chains are disuphide-bonded Very short intracytoplasmic tail + + + Positively charged amino acids in the TM region Antigen combining site Antigen combining site made of juxtaposed V   and V   regions 30,000 identical specificity TcR per cell Fab V H V L Fc C L C H V L V H C H C L C H C H C H C H Transmembrane region Cytoplasmic tail
C H  C L  V H  V L of Ig C   C    V   V  of the TcR
View structures
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],T cell antigen receptor diversity
Generation of diversity in the TcR COMBINATORIAL DIVERSITY Multiple germline segments In the human TcR Variable (V) segments: ~70  , 52  Diversity (D) segments: 0  , 2  Joining (J) segments: 61  , 13  The need to pair    and    chains to form a binding site doubles the potential for diversity JUNCTIONAL DIVERSITY Addition of non-template encoded (N) and palindromic (P) nucleotides at imprecise joints made between V-D-J elements SOMATIC MUTATION IS NOT USED TO GENERATE DIVERSITY IN TcR
Organisation of TcR genes TcR genes segmented into V, (D), J & C elements (VARIABLE, DIVERSITY, JOINING & CONSTANT) Closely resemble Ig genes (  ~IgL and   ~IgH) This example shows the mouse TcR locus TcR   L & V x70-80 C TcR   D  1 J  1 x 6 C  1 D  2 J  2 x 7 C  2 J x 61 L & V x52
TcR    gene rearrangement by SOMATIC RECOMBINATION Spliced TcR   mRNA Rearrangement very similar to the IgL chains Germline TcR   V  n J C V  2 V  1 Rearranged TcR  1° transcript
TcR    gene rearrangement  RESCUE PATHWAY There is only a 1:3 chance of the join between the V and J region being in frame  chain tries for a second time to make a productive join using new V and J elements V  n J C V  2 V  1 V  n+1 Productively rearranged TcR  1° transcript
Rearranged TcR   1° transcript Spliced TcR   mRNA TcR    gene rearrangement SOMATIC RECOMBINATION D-J Joining V-DJ joining C-VDJ joining L & V  x52 D  1 J C  1 D  2 J C  2 Germline TcR  
TcR    gene rearrangement  RESCUE PATHWAY There is a 1:3 chance of productive D-J rearrangement and a 1:3 chance of productive D-J rearrangement (i.e only a 1:9 chance of a productive    chain rearrangement) Use (DJC)  2 elements D  1 J C  1 D  2 J C  2 Germline TcR   D-J Joining V-DJ joining V 2 nd  chance at V-DJ joining Need to remove non productive rearrangement
V, D, J flanking sequences Sequencing upstream and downstream of V, D and J elements revealed conserved sequences of 7, 23, 9 and 12 nucleotides. V  7 23 9 J  7 12 9 D  7 12 9 7 12 9 V  7 23 9 J  7 23 9
Recombination signal sequences (RSS) 12-23 RULE – A gene segment flanked by a 23mer RSS can only be linked to a segment flanked by a 12mer RSS V  7 23 9 D  7 12 9 7 12 9 J  7 23 9 HEPTAMER - Always contiguous with coding sequence NONAMER - Separated from the heptamer by a 12 or 23 nucleotide spacer V  7 23 9 D  7 12 9 7 12 9 J  7 23 9 √ √
Molecular explanation of the 12-23 rule 23-mer = two turns 12-mer = one turn Intervening DNA of any length 23 V  9 7 12 D  J  7 9
Loop of intervening DNA is excised ,[object Object],Molecular explanation of the 12-23 rule 23-mer 12-mer ,[object Object],[object Object],7 9 9 7 V1 V2 V3 V4 V8 V7 V6 V5 V9 D J V1 D J V2 V3 V4 V8 V7 V6 V5 V9
Imprecise and random events that occur when the DNA breaks and rejoins allows new nucleotides to be inserted or lost from the sequence at and around the coding joint. Junctional diversity Mini-circle of DNA is permanently lost from the genome V D J 7 12 9 7 23 9 7 12 9 7 23 9 V D J Signal joint Coding joint
Non-deletional recombination V1 V2 V3 V4 V9 D J Looping out works if all V genes are in the same transcriptional orientation V1 V2 V3 V9 D J D J 7 12 9 V4 7 23 9 V1 7 23 9 D 7 12 9 J How does recombination occur when a V gene is in opposite orientation to the DJ region? V4
Non-deletional recombination D J 7 12 9 V4 7 23 9 V4 and DJ in opposite transcriptional orientations D J 7 12 9 V4 7 23 9 1. D J 7 12 9 V4 7 23 9 3. D J 7 12 9 V4 7 23 9 2. D J 7 12 9 V4 7 23 9 4.
D J 7 12 9 V4 7 23 9 1. D J V4 7 12 9 7 23 9 3. V to DJ ligation - coding joint formation D J 7 12 9 V4 7 23 9 2. Heptamer ligation - signal joint formation D J V4 7 12 9 7 23 9 Fully recombined VDJ regions in same transcriptional orientation No DNA is deleted 4.
Recombination activating gene products, (RAG1 & RAG 2) and ‘high mobility group proteins’ bind to the RSS The two RAG1/RAG 2 complexes bind to each other and bring the V region adjacent to the DJ region ,[object Object],[object Object],[object Object],Steps of TcR gene recombination V 7 23 9 D 7 12 9 J V 7 23 9 7 23 9 7 12 9 D 7 12 9 J 7 23 9 7 12 9 V D J
A number of other proteins, (Ku70:Ku80, XRCC4 and DNA dependent protein kinases) bind to the hairpins and the heptamer ends.  Steps of TcR gene recombination V D J 7 23 9 7 12 9 V D J The hairpins at the end of the V and D regions are opened, and exonucleases and transferases remove or add random nucleotides to the gap between the V and D region V D J 7 23 9 7 12 9 DNA ligase IV joins the ends of the V and D region to form the coding joint and the two heptamers to form the signal joint.
Junctional diversity: P nucleotide additions The recombinase complex makes single stranded nicks at random sites close to the ends of the V and D region DNA. The 2nd strand is cleaved and hairpins form between the complimentary bases at ends of the V and D region. 7 D 12 9 J 7 V 23 9 D 7 12 9 J V 7 23 9 TC   CACAGTG AG   GTGTCAC AT  GTGACAC TA  CACTGTG 7 D 12 9 J 7 V 23 9 CACAGTG GTGTCAC GTGACAC CACTGTG TC AG AT TA D J V TC AG AT TA U U
Heptamers are ligated by DNA ligase IV V and D regions juxtaposed V2 V3 V4 V8 V7 V6 V5 V9 7 23 9 CACAGTG GTGTCAC 7 12 9 GTGACAC CACTGTG V TC AG U D J AT TA U V TC AG U D J AT TA U
Endonuclease cleaves single strand at random sites in V and D segment Generation of the palindromic sequence In terms of G to C and T to A pairing, the ‘new’ nucleotides are palindromic. The nucleotides   GA  and  TA  were not in the genomic sequence and introduce diversity of sequence at the V to D join. The nicked strand ‘flips’ out  V TC AG U D J AT TA U V TC~ GA AG D J AT TA ~TA The nucleotides that flip out, become part of the complementary DNA strand V TC AG U D J AT TA U Regions to be joined are juxtaposed
Junctional Diversity – N nucleotide additions Terminal deoxynucleotidyl transferase (TdT) adds nucleotides randomly to the P nucleotide ends of the single-stranded V and D segment DNA CACTCCTTA TTCTTGCAA V TC ~ GA AG D J AT TA ~ TA V TC ~ GA AG D J AT TA ~ TA CACACCTTA TTCT T GCAA Complementary bases anneal V D J DNA polymerases fill in the gaps with complementary nucleotides and DNA ligase IV joins the strands TC ~ GA AG AT TA ~TA CACACCTTA TTCT T GCAA D J TA ~ TA Exonucleases nibble back free ends V TC ~ GA CACACCTTA TTCT T GCAA V TC D TA GTT   AT  AT AG  C
Junctional Diversity TTTTT TTTTT TTTTT Germline-encoded nucleotides Palindromic (P) nucleotides - not in the germline Non-template (N) encoded nucleotides - not in the germline Creates an essentially random sequence between the V region, D region and J region in beta chains and the V region and J region in alpha chains. V D J TC GA CGTT AT AT AG CT GCAA TA TA
How does somatic recombination work? ,[object Object],[object Object],[object Object],[object Object],[object Object]
Why do V regions not join to J or C regions? IF  the elements of the TcR did not assemble in the correct order, diversity of specificity would be severely compromised Full potential of the beta chain for diversity needs V-D-J-C joining - in the correct order Were V-J joins allowed in the beta chain, diversity would be reduced due to loss of the imprecise join between the V and D regions DIVERSITY 2x DIVERSITY 1x V  D  J  C
V-D Join D-J join TcR    chain V-J Join TcR    chain Location of junctional diversity Amino acid No. of TcR chain Variability CDR2 CDR = Complemantarity determining region CDR1 CDR3
Location of junctional diversity in TcR TcRV   monomer TcR   chain 2 1 3 2 1 3 CDR’s
MHC class I and TcR V  /V  MHC class II TcR   /  The trimolecular complex
V   and V   of TcR recognising a peptide from MHC class I ribbon plot    TcR recognising a peptide from MHC class II ribbon plot
V   and V   of TcR recognising a peptide from MHC class I wire  plot showing amino acid sidechains    TcR recognising a peptide from MHC class II wire plot showing amino acid sidechains Turn through 90 º
TcR contact and anchor residue side chains interact with side chains of TcR
Hypervariable loops - CDRs  /  3  /  3  /  2  /  2  /  2  /  2 The most variable loops of the TcR - the CDR3 interact with the most variable part of the MHC-peptide complex CDR’s 1 and 2 interact largely with the MHC molecule
View structures
T cell co-receptor molecules   CD8 MHC Class I MHC Class II  3  2 TcR TcR CD4 Lck PTK Lck PTK CD4 and CD8 can increase the sensitivity of T cells to peptide antigen MHC complexes by ~100 fold
CD8 and CD4 contact points on MHC class I and class II MHC class II CD8 binding site MHC class I CD8 binding site
TcR-CD3 complex The intracytoplasmic region of the TcR chain is too short to transduce a signal Signalling is initiated by aggregation of TcR by MHC-peptide complexes on APC The CD3  or   (zeta)  chains are required for cell surface expression of the TcR-CD3 complex and signalling through the TcR        TcR         CD3 CD3
Transduction of signals by the TcR The cytoplasmic domains of the CD3 complex contain 10 Immunoreceptor Tyrosine -based Activation Motifs (ITAMS) - 2 tyrosine residues separated by 9-12 amino acids -  Y XX[L/V]X 6-9 Y XX[L/V] As with B cell receptors, immunoreceptor tyrosine-based activation motifs (ITAMs) are involved in the transmission of the signals from the receptor and require clustering of TcR/CD3 and the CD4 or CD8 co-receptors       CD3 ITAMs
[object Object],[object Object],[object Object],[object Object],Phosphorylation by Src kinases Kinase domain Unique region SH3 domain SH2   domain Enzyme domain that phosphorylates tyrosine residues (to give phosphotyrosine) Phosphotyrosine receptor domain Adaptor protein recruitment domain ITAM binding domain
Regulation of Src kinases SH2 domain Phosphorylation of ‘Activating Tyrosine’ stimulates kinase activity Phosphorylation of ‘Inhibitory Tyrosine’ inhibits kinase activity by blocking access to the Activating Tyrosine Residue Kinase domain Unique region SH3 domain Activating tyrosine residue Inhibitory tyrosine residue Kinase domain Unique region SH3 domain SH2 domain
Early T cell activation Lck Fyn Zap-70 Receptor associated kinases accumulate under the membrane in close proximity to the cytoplasmic domains of the TcR -CD3 complex CD4 MHC II MHC II CD45 As the T cell antigen receptor binds the MHC-peptide antigen, the phosphatase CD45 activates kinases such as Fyn This mechanism of activation is similar to the used to activate Syk in B cells P
Fyn phosphorylates the ITAMs of CD3  ,   ,    and    ITAMS T cell activation The tyrosine kinase ZAP-70 binds to the phosphorylated ITAMs of CD3   - further activation requires ligation of the co-receptor, CD4  Zap-70 Lck Fyn CD4 CD45 P MHC II
T cell activation Binding of CD4 co-receptor to MHC class II brings Lck into the complex, which then phosphorylates and activates ZAP-70  Lck Fyn P MHC II Zap-70 Tyrosine rich cell membrane associated  Linker of Activation in T cells (LAT) and SLP-76 associate with cholesterol-rich lipid rafts LAT SLP-76 Activated ZAP-70 phosphorylates LAT & SLP-76 P P P P ZAP-70 phosphorylates LAT and SLP-76
T cell activation PLC-   cleaves phosphotidylinositol bisphosphate (PIP 2 ) to yield diacylglycerol ( DAG ) and inositol trisphosphate ( IP 3 ) Activated ZAP-70 phosphorylates  Guanine-nucleotide exchange factors (GEFS) that in turn activate the small GTP binding protein Ras Ras activates the  MAP kinase  cascade Lck Fyn P MHC II Zap-70 LAT SLP-76 P P P P SLP76 binds Tec kinases and activates phospholipase C-    (PLC-  ) Tec Tec
Transmission of signals from the cell surface to the nucleus ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Almost identical to transmission in B cells
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],The activated transcription factors AP-1, NFAT and NF  B induce B cell proliferation, differentiation and effector mechanisms  Simplified scheme linking antigen recognition with transcription of T cell-specific genes
Element Immunoglobulin    TcR Variable segments Diversity segments D segments in all 3 frames Joining segments Joints with N & P nucleotides No. of V gene pairs Junctional diversity Total diversity H    40 27 Yes 6 2 2360 3640 ~10 13 ~10 13 ~10 16** ~10 16 59 0 - 9 (1)* 52 ~70 2 0 Yes - 13 61 2 1 * Only half of human    chains have N & P regions **No of distinct receptors increased further by somatic hypermutation Estimate of the number of human TcR and Ig Excluding somatic hypermutation
Affinity maturation due to somatic mutation  Why do TcR not undergo somatic mutation? Self Antigen Foreign antigen APC Y T Antigen presentation Y B T cell help Y T Anergy or deletion of anti-self cells Y B No T cell help Antibody
Why do TcR not undergo somatic mutation? Y B Occasional B cell that somatically mutates to become self reactive Y B Affinity maturation due to somatic mutation  Y B Y B Y B Y B Y B
T cell that doesn’t mutate can not help the self reactive B cell T cell that mutates can may help the self reactive B cell The lack of somatic mutation in TcR helps to prevent autoimmunity Y B Occasional B cell that somatically mutates to become self reactive Y T X No T cell help Y T T cell help Autoantibody production
If TcR  did  undergo somatic mutation: TcR interacts with  entire  top surface of MHC-peptide antigen complex Somatic mutation in the TcR  could  mutate amino acids that interact with the MHC molecule causing a complete loss of peptide-MHC recognition
If TcR  did  undergo somatic mutation: TcR-MHC interaction is one of many between the T cell and APC On-off rate of TcR determines rate of ‘firing’ to give qualitatively different outcomes Must be of relatively low affinity as cells with high affinity TcR are deleted to prevent self reactivity. If TcR underwent affinity maturation, they would be deleted
Why do B cell receptors need to mutate? Neutralisation of bacterial toxins Ab-Ag interaction must be of high affinity to capture and neutralise toxins in extracellular fluids There is a powerful selective advantage to B cells that can somatically mutate their receptors to increase affinity SOMATIC MUTATION Y ` ` Y ` ` Toxin binding blocked Prevents toxicity
An alternative TcR:   Discovered as Ig-homologous, rearranging genes in non    TcR T cells The    locus is located between the V   and J   regions V   to J   rearrangement deletes D  , J  and C  TcR   cells can not express   TcR Few V regions, but considerable junctional diversity as    chain can use 2 D regions Human    locus 3x D  3x J  1x C  3x J  C  1 2x J  C  2 12x V  1 V  V  V  V  V  J  C 
   T cells Distinct lineage of cells with unknown functions 1-5% of peripheral blood T cells In the gut and epidermis of mice, most T cells express    TcR  Ligands of    TcR are unknown Possibly recognise: Antigens without involvement of MHC antigens - CD1 Class IB genes
• The TcR was discovered using clonotypic antibodies • Antibodies and TcR share many similarities, but there are  significant differences in structure and function • The structure and organisation of the TcR genes is similar to the Ig  genes • Somatic recombination in TcR genes is similar to that in Ig genes • The molecular mechanisms that account for the diversity of TcR  include combinatorial and junctional diversity • TcR do not somatically mutate • The highly variable CDR loops map to the distal end of the TcR • The most variable part of the TcR interacts with the peptide Summary

More Related Content

What's hot

Antibody diversity presentation
Antibody diversity presentationAntibody diversity presentation
Antibody diversity presentationFaris K
 
Antigen Presenting cells(APCs)
Antigen Presenting cells(APCs)Antigen Presenting cells(APCs)
Antigen Presenting cells(APCs)Azhar's Biology
 
Somatic hypermutation and affinity maturation
Somatic hypermutation and affinity maturationSomatic hypermutation and affinity maturation
Somatic hypermutation and affinity maturationMiriya Johnson
 
B cell generation-activation_and_differentiation
B cell generation-activation_and_differentiationB cell generation-activation_and_differentiation
B cell generation-activation_and_differentiationDUSHYANT KUMAR
 
Major histocompatibility complex
Major histocompatibility complexMajor histocompatibility complex
Major histocompatibility complexJyoti Sharma
 
Antigen processing and presentation
Antigen processing and presentationAntigen processing and presentation
Antigen processing and presentationRajpal Choudhary
 
Major Histocompatibility complex & Antigen Presentation and Processing
Major Histocompatibility complex & Antigen Presentation and ProcessingMajor Histocompatibility complex & Antigen Presentation and Processing
Major Histocompatibility complex & Antigen Presentation and ProcessingSreeraj Thamban
 
Immunologic tolerance
Immunologic toleranceImmunologic tolerance
Immunologic toleranceRobin Gulati
 
T and B cell activation
T  and B cell activationT  and B cell activation
T and B cell activationyashi jain
 
Genetic basis of antibody diversity
Genetic basis of antibody diversityGenetic basis of antibody diversity
Genetic basis of antibody diversityRekha Warrier
 
clonal selection theory.PPTX
clonal selection theory.PPTXclonal selection theory.PPTX
clonal selection theory.PPTXakshyhari
 
MHC MOLECULES
MHC MOLECULESMHC MOLECULES
MHC MOLECULESpreeti337
 

What's hot (20)

Antibody diversity presentation
Antibody diversity presentationAntibody diversity presentation
Antibody diversity presentation
 
Antigen Presenting cells(APCs)
Antigen Presenting cells(APCs)Antigen Presenting cells(APCs)
Antigen Presenting cells(APCs)
 
Somatic hypermutation and affinity maturation
Somatic hypermutation and affinity maturationSomatic hypermutation and affinity maturation
Somatic hypermutation and affinity maturation
 
Mhc
MhcMhc
Mhc
 
B cell generation-activation_and_differentiation
B cell generation-activation_and_differentiationB cell generation-activation_and_differentiation
B cell generation-activation_and_differentiation
 
Major histocompatibility complex
Major histocompatibility complexMajor histocompatibility complex
Major histocompatibility complex
 
Antibody diversity
Antibody diversityAntibody diversity
Antibody diversity
 
MHC
MHC MHC
MHC
 
T-cell activation
T-cell activationT-cell activation
T-cell activation
 
Cytokines
CytokinesCytokines
Cytokines
 
Antigen processing and presentation
Antigen processing and presentationAntigen processing and presentation
Antigen processing and presentation
 
Major Histocompatibility complex & Antigen Presentation and Processing
Major Histocompatibility complex & Antigen Presentation and ProcessingMajor Histocompatibility complex & Antigen Presentation and Processing
Major Histocompatibility complex & Antigen Presentation and Processing
 
Immunologic tolerance
Immunologic toleranceImmunologic tolerance
Immunologic tolerance
 
T cell development, maturation, activation and differentiation
T cell development, maturation, activation and differentiationT cell development, maturation, activation and differentiation
T cell development, maturation, activation and differentiation
 
T and B cell activation
T  and B cell activationT  and B cell activation
T and B cell activation
 
Genetic basis of antibody diversity
Genetic basis of antibody diversityGenetic basis of antibody diversity
Genetic basis of antibody diversity
 
T cells and b-cells
T cells and b-cellsT cells and b-cells
T cells and b-cells
 
clonal selection theory.PPTX
clonal selection theory.PPTXclonal selection theory.PPTX
clonal selection theory.PPTX
 
MHC MOLECULES
MHC MOLECULESMHC MOLECULES
MHC MOLECULES
 
BCR
BCR BCR
BCR
 

Similar to T Cell Antigen Receptor

T Cell Antigen Receptor
T Cell Antigen ReceptorT Cell Antigen Receptor
T Cell Antigen Receptorraj kumar
 
Diversity in receptor and Immunoglobulin [Autosaved].pptx
Diversity in receptor and Immunoglobulin [Autosaved].pptxDiversity in receptor and Immunoglobulin [Autosaved].pptx
Diversity in receptor and Immunoglobulin [Autosaved].pptxaksilentkiller51
 
Antibody diversity with special emphasis on v(d)j recombination
Antibody diversity with special emphasis on v(d)j recombinationAntibody diversity with special emphasis on v(d)j recombination
Antibody diversity with special emphasis on v(d)j recombinationsourinadhikary
 
The Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of ImmunoglobulinsThe Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of Immunoglobulinsraj kumar
 
The Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of ImmunoglobulinsThe Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of Immunoglobulinsraj kumar
 
Chapter 5 Immunology
Chapter 5 ImmunologyChapter 5 Immunology
Chapter 5 ImmunologySarah Davies
 
4. Nature of T cell B cell receptors.pptx
4. Nature of T cell  B cell receptors.pptx4. Nature of T cell  B cell receptors.pptx
4. Nature of T cell B cell receptors.pptxssuserf90b9b
 
V(D)J rearrangements and Antigen Antibody interactions
V(D)J rearrangements and Antigen Antibody interactionsV(D)J rearrangements and Antigen Antibody interactions
V(D)J rearrangements and Antigen Antibody interactionsTathagat Sah
 
blue white selection
blue white selectionblue white selection
blue white selectiontejondaru
 
Mechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversityMechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversityKayeen Vadakkan
 
Generation of Antibody Diversity- Quick revision from Kuby through presentation
Generation of Antibody Diversity- Quick revision from Kuby through presentationGeneration of Antibody Diversity- Quick revision from Kuby through presentation
Generation of Antibody Diversity- Quick revision from Kuby through presentationSharmistaChaitali
 
6-Nucleic-acids-MED.ppt
6-Nucleic-acids-MED.ppt6-Nucleic-acids-MED.ppt
6-Nucleic-acids-MED.pptBryarKalary
 
vdocuments.net_.....b-cell-activation.ppt
vdocuments.net_.....b-cell-activation.pptvdocuments.net_.....b-cell-activation.ppt
vdocuments.net_.....b-cell-activation.pptssuser06f49d
 
Use the information below for the next four 4 questions T.pdf
Use the information below for the next four 4 questions T.pdfUse the information below for the next four 4 questions T.pdf
Use the information below for the next four 4 questions T.pdfaceautomate
 
Normal development of t and b cells
Normal development of t and b cellsNormal development of t and b cells
Normal development of t and b cellsSaurabh Goswami
 
Organization and expression of Ig genes
Organization and expression of Ig genesOrganization and expression of Ig genes
Organization and expression of Ig genesDevika1612
 

Similar to T Cell Antigen Receptor (20)

T Cell Antigen Receptor
T Cell Antigen ReceptorT Cell Antigen Receptor
T Cell Antigen Receptor
 
Diversity in receptor and Immunoglobulin [Autosaved].pptx
Diversity in receptor and Immunoglobulin [Autosaved].pptxDiversity in receptor and Immunoglobulin [Autosaved].pptx
Diversity in receptor and Immunoglobulin [Autosaved].pptx
 
Antibody diversity with special emphasis on v(d)j recombination
Antibody diversity with special emphasis on v(d)j recombinationAntibody diversity with special emphasis on v(d)j recombination
Antibody diversity with special emphasis on v(d)j recombination
 
The Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of ImmunoglobulinsThe Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of Immunoglobulins
 
Biology of T lymphocytes.pdf
Biology of T lymphocytes.pdfBiology of T lymphocytes.pdf
Biology of T lymphocytes.pdf
 
The Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of ImmunoglobulinsThe Molecular Genetics Of Immunoglobulins
The Molecular Genetics Of Immunoglobulins
 
Chapter 5 Immunology
Chapter 5 ImmunologyChapter 5 Immunology
Chapter 5 Immunology
 
4. Nature of T cell B cell receptors.pptx
4. Nature of T cell  B cell receptors.pptx4. Nature of T cell  B cell receptors.pptx
4. Nature of T cell B cell receptors.pptx
 
T and b cells
T and b cellsT and b cells
T and b cells
 
V(D)J rearrangements and Antigen Antibody interactions
V(D)J rearrangements and Antigen Antibody interactionsV(D)J rearrangements and Antigen Antibody interactions
V(D)J rearrangements and Antigen Antibody interactions
 
blue white selection
blue white selectionblue white selection
blue white selection
 
Mechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversityMechanism of vd(j) recombination and generation of antibody diversity
Mechanism of vd(j) recombination and generation of antibody diversity
 
Generation of Antibody Diversity- Quick revision from Kuby through presentation
Generation of Antibody Diversity- Quick revision from Kuby through presentationGeneration of Antibody Diversity- Quick revision from Kuby through presentation
Generation of Antibody Diversity- Quick revision from Kuby through presentation
 
T.docx
T.docxT.docx
T.docx
 
6-Nucleic-acids-MED.ppt
6-Nucleic-acids-MED.ppt6-Nucleic-acids-MED.ppt
6-Nucleic-acids-MED.ppt
 
tcelldebasish.ppt
tcelldebasish.ppttcelldebasish.ppt
tcelldebasish.ppt
 
vdocuments.net_.....b-cell-activation.ppt
vdocuments.net_.....b-cell-activation.pptvdocuments.net_.....b-cell-activation.ppt
vdocuments.net_.....b-cell-activation.ppt
 
Use the information below for the next four 4 questions T.pdf
Use the information below for the next four 4 questions T.pdfUse the information below for the next four 4 questions T.pdf
Use the information below for the next four 4 questions T.pdf
 
Normal development of t and b cells
Normal development of t and b cellsNormal development of t and b cells
Normal development of t and b cells
 
Organization and expression of Ig genes
Organization and expression of Ig genesOrganization and expression of Ig genes
Organization and expression of Ig genes
 

More from raj kumar

The umbilical cord
The umbilical cordThe umbilical cord
The umbilical cordraj kumar
 
The placenta
The placentaThe placenta
The placentaraj kumar
 
The foetal membranes
The foetal membranesThe foetal membranes
The foetal membranesraj kumar
 
Physiology of reproduction
Physiology of reproductionPhysiology of reproduction
Physiology of reproductionraj kumar
 
Minor complaints during pregnancy
Minor complaints during pregnancyMinor complaints during pregnancy
Minor complaints during pregnancyraj kumar
 
Diagnosis of pregnancy
Diagnosis of pregnancyDiagnosis of pregnancy
Diagnosis of pregnancyraj kumar
 
Antenatal care
Antenatal careAntenatal care
Antenatal careraj kumar
 
Postpartum mood disorders
Postpartum mood disordersPostpartum mood disorders
Postpartum mood disordersraj kumar
 
Normal and abnormal puerperium
Normal and abnormal puerperiumNormal and abnormal puerperium
Normal and abnormal puerperiumraj kumar
 
Vacuum extraction (ventouse)
Vacuum extraction (ventouse)Vacuum extraction (ventouse)
Vacuum extraction (ventouse)raj kumar
 
Symphysiotomy
SymphysiotomySymphysiotomy
Symphysiotomyraj kumar
 
Forceps delivery
Forceps deliveryForceps delivery
Forceps deliveryraj kumar
 
Caesarean section
Caesarean sectionCaesarean section
Caesarean sectionraj kumar
 
Normal labour
Normal labourNormal labour
Normal labourraj kumar
 
Anatomy of the foetal skull
Anatomy of the foetal skullAnatomy of the foetal skull
Anatomy of the foetal skullraj kumar
 
Anatomy of the female pelvis
Anatomy of the female pelvisAnatomy of the female pelvis
Anatomy of the female pelvisraj kumar
 
Active management of normal labour
Active management of normal labourActive management of normal labour
Active management of normal labourraj kumar
 
Thyrotoxicosis in pregnancy
Thyrotoxicosis in pregnancyThyrotoxicosis in pregnancy
Thyrotoxicosis in pregnancyraj kumar
 

More from raj kumar (20)

The umbilical cord
The umbilical cordThe umbilical cord
The umbilical cord
 
The placenta
The placentaThe placenta
The placenta
 
The foetal membranes
The foetal membranesThe foetal membranes
The foetal membranes
 
Physiology of reproduction
Physiology of reproductionPhysiology of reproduction
Physiology of reproduction
 
Minor complaints during pregnancy
Minor complaints during pregnancyMinor complaints during pregnancy
Minor complaints during pregnancy
 
Diagnosis of pregnancy
Diagnosis of pregnancyDiagnosis of pregnancy
Diagnosis of pregnancy
 
Antenatal care
Antenatal careAntenatal care
Antenatal care
 
Postpartum mood disorders
Postpartum mood disordersPostpartum mood disorders
Postpartum mood disorders
 
Normal and abnormal puerperium
Normal and abnormal puerperiumNormal and abnormal puerperium
Normal and abnormal puerperium
 
Version
VersionVersion
Version
 
Vacuum extraction (ventouse)
Vacuum extraction (ventouse)Vacuum extraction (ventouse)
Vacuum extraction (ventouse)
 
Symphysiotomy
SymphysiotomySymphysiotomy
Symphysiotomy
 
Forceps delivery
Forceps deliveryForceps delivery
Forceps delivery
 
Episiotomy
EpisiotomyEpisiotomy
Episiotomy
 
Caesarean section
Caesarean sectionCaesarean section
Caesarean section
 
Normal labour
Normal labourNormal labour
Normal labour
 
Anatomy of the foetal skull
Anatomy of the foetal skullAnatomy of the foetal skull
Anatomy of the foetal skull
 
Anatomy of the female pelvis
Anatomy of the female pelvisAnatomy of the female pelvis
Anatomy of the female pelvis
 
Active management of normal labour
Active management of normal labourActive management of normal labour
Active management of normal labour
 
Thyrotoxicosis in pregnancy
Thyrotoxicosis in pregnancyThyrotoxicosis in pregnancy
Thyrotoxicosis in pregnancy
 

T Cell Antigen Receptor

  • 1. Topic 6 The T Cell Antigen Receptor Complex © Dr. Colin R.A. Hewitt [email_address]
  • 2. • Each clone of T cells expresses a single TcR specificity • How the TcR was discovered • The similarities and differences between TcR and antibodies • The structure and organisation of the TcR genes • Somatic recombination in TcR genes • Generation of diversity in TcR • Structure function relationship of TcR • Why TcR do not undergo somatic mutation What you should know by the end of this lecture
  • 3. Discovery of the T cell antigen receptor (TcR) Polyclonal T cells from an immunised strain A mouse Monoclonal (cloned) T cells In vitro “clonal selection” means each daughter cell has the same antigen specificity as the parent cell Most molecules present on the monoclonal T cells will be identical to the polyclonal T cells EXCEPT for the antigen combining site of the T cell antigen receptor Grow and clone a single antigen-specific T cell in-vitro with antigen, IL-2 and antigen presenting cells
  • 4. Making anti- clonotypic TcR antibodies The strain A mouse will not make antibodies to the hundreds of different molecules associated with strain A T cells due to self tolerance BUT The naïve mouse has never raised T cells with the specificity of the T cell clone, SO the only antigen in the immunisation that the A strain mouse has never seen will be the antigen receptor of the monoclonal T cells T cell clone from a strain A mouse Naïve strain A mouse Make monoclonal antibodies by hybridisation of the spleen cells with a myeloma cell line
  • 5. Anti-TcR Abs that recognise only one clone of T cells are CLONOTYPIC Hypothesise that anti-clonotype Abs recognise the antigen receptor Screen the supernatant of each cloned hybridoma against a panel of T cell clones of different specificity (i.e.cells with subtly different antigen-binding structures) Making anti- clonotypic TcR antibodies Y Y Y Y Y Y Y Y Y Y Y Y Monoclonal antibodies T cell clones Clone used for immunisation
  • 6. Lyse cells and add anti-clonotype Ab that binds to unique T cell structures Elute Ag from Ab and analyse the clonotypically-expresssed proteins biochemically Principal component was a heterodimeric 90kDa protein composed of a 40kDa and a 50kDa molecule (  and  chains) Several other molecules were co-immunoprecipitated. Discovery of the T cell antigen receptor (TcR) Y Y Y Y Capture anti-clonotype Ab-Ag complex on insoluble support IMMUNOPRECIPITATION Wash away unbound protein Y Y Y Y Y Y Y Y Y Y Y Y Y
  • 7. Structure of the TcR polypeptides Cyanogen bromide digestion of the  and  proteins Biochemical analysis of digestion products Polypeptides contain a variable, clone-dependent pattern of digestion fragments and a fragment common to all TcR Intact TcR chain polypeptides T cell clone A T cell clone B T cell clone C C C C V V V
  • 8.
  • 9. Isolate non-hybridising material specific to T cells Cloning of TcR genes by subtractive hybridisation Digest unhybridised B cell mRNA AAAAA AAAAA T cell single stranded cDNA B T AAAAA AAAAA mRNA Discard hybrids AAAAA Clone and sequence T cell- specific genes Hybridise the cDNA and mRNA shared between T and B cells AAAAA
  • 10. Analysis of T cell-specific genes Of the T cell-specific genes cloned, which cDNA encoded the TcR? Assumptions made after the analysis of Ig genes: TcR genes rearrange from germline configuration Find two restriction sites that flank the TcR region Ig gene probes can be used as TcR genes will be homologous to Ig genes Cut the T cell cDNA and placental (i.e. germline) DNA and Southern blot the fragments GERMLINE DNA V D J C 32 P V D J C REARRANGED DNA Restriction enzyme sites 32 P
  • 11. Placenta B T Size of digested genomic DNA Gel electrophoresis followed by Southern blot using a TcR probe The TcR genes rearrange, but are not immunoglobulin genes Rearranged allele
  • 12. The T cell antigen receptor V  V  C  C  Carbohydrates Hinge Monovalent Resembles an Ig Fab fragment No alternative constant regions Never secreted Domain structure: Ig gene superfamily Heterodimeric, chains are disuphide-bonded Very short intracytoplasmic tail + + + Positively charged amino acids in the TM region Antigen combining site Antigen combining site made of juxtaposed V  and V  regions 30,000 identical specificity TcR per cell Fab V H V L Fc C L C H V L V H C H C L C H C H C H C H Transmembrane region Cytoplasmic tail
  • 13. C H C L V H V L of Ig C  C  V  V  of the TcR
  • 15.
  • 16. Generation of diversity in the TcR COMBINATORIAL DIVERSITY Multiple germline segments In the human TcR Variable (V) segments: ~70  , 52  Diversity (D) segments: 0  , 2  Joining (J) segments: 61  , 13  The need to pair  and  chains to form a binding site doubles the potential for diversity JUNCTIONAL DIVERSITY Addition of non-template encoded (N) and palindromic (P) nucleotides at imprecise joints made between V-D-J elements SOMATIC MUTATION IS NOT USED TO GENERATE DIVERSITY IN TcR
  • 17. Organisation of TcR genes TcR genes segmented into V, (D), J & C elements (VARIABLE, DIVERSITY, JOINING & CONSTANT) Closely resemble Ig genes (  ~IgL and  ~IgH) This example shows the mouse TcR locus TcR  L & V x70-80 C TcR  D  1 J  1 x 6 C  1 D  2 J  2 x 7 C  2 J x 61 L & V x52
  • 18. TcR  gene rearrangement by SOMATIC RECOMBINATION Spliced TcR  mRNA Rearrangement very similar to the IgL chains Germline TcR  V  n J C V  2 V  1 Rearranged TcR  1° transcript
  • 19. TcR  gene rearrangement RESCUE PATHWAY There is only a 1:3 chance of the join between the V and J region being in frame  chain tries for a second time to make a productive join using new V and J elements V  n J C V  2 V  1 V  n+1 Productively rearranged TcR  1° transcript
  • 20. Rearranged TcR  1° transcript Spliced TcR  mRNA TcR  gene rearrangement SOMATIC RECOMBINATION D-J Joining V-DJ joining C-VDJ joining L & V  x52 D  1 J C  1 D  2 J C  2 Germline TcR 
  • 21. TcR  gene rearrangement RESCUE PATHWAY There is a 1:3 chance of productive D-J rearrangement and a 1:3 chance of productive D-J rearrangement (i.e only a 1:9 chance of a productive  chain rearrangement) Use (DJC)  2 elements D  1 J C  1 D  2 J C  2 Germline TcR  D-J Joining V-DJ joining V 2 nd chance at V-DJ joining Need to remove non productive rearrangement
  • 22. V, D, J flanking sequences Sequencing upstream and downstream of V, D and J elements revealed conserved sequences of 7, 23, 9 and 12 nucleotides. V  7 23 9 J  7 12 9 D  7 12 9 7 12 9 V  7 23 9 J  7 23 9
  • 23. Recombination signal sequences (RSS) 12-23 RULE – A gene segment flanked by a 23mer RSS can only be linked to a segment flanked by a 12mer RSS V  7 23 9 D  7 12 9 7 12 9 J  7 23 9 HEPTAMER - Always contiguous with coding sequence NONAMER - Separated from the heptamer by a 12 or 23 nucleotide spacer V  7 23 9 D  7 12 9 7 12 9 J  7 23 9 √ √
  • 24. Molecular explanation of the 12-23 rule 23-mer = two turns 12-mer = one turn Intervening DNA of any length 23 V  9 7 12 D  J  7 9
  • 25.
  • 26. Imprecise and random events that occur when the DNA breaks and rejoins allows new nucleotides to be inserted or lost from the sequence at and around the coding joint. Junctional diversity Mini-circle of DNA is permanently lost from the genome V D J 7 12 9 7 23 9 7 12 9 7 23 9 V D J Signal joint Coding joint
  • 27. Non-deletional recombination V1 V2 V3 V4 V9 D J Looping out works if all V genes are in the same transcriptional orientation V1 V2 V3 V9 D J D J 7 12 9 V4 7 23 9 V1 7 23 9 D 7 12 9 J How does recombination occur when a V gene is in opposite orientation to the DJ region? V4
  • 28. Non-deletional recombination D J 7 12 9 V4 7 23 9 V4 and DJ in opposite transcriptional orientations D J 7 12 9 V4 7 23 9 1. D J 7 12 9 V4 7 23 9 3. D J 7 12 9 V4 7 23 9 2. D J 7 12 9 V4 7 23 9 4.
  • 29. D J 7 12 9 V4 7 23 9 1. D J V4 7 12 9 7 23 9 3. V to DJ ligation - coding joint formation D J 7 12 9 V4 7 23 9 2. Heptamer ligation - signal joint formation D J V4 7 12 9 7 23 9 Fully recombined VDJ regions in same transcriptional orientation No DNA is deleted 4.
  • 30.
  • 31. A number of other proteins, (Ku70:Ku80, XRCC4 and DNA dependent protein kinases) bind to the hairpins and the heptamer ends. Steps of TcR gene recombination V D J 7 23 9 7 12 9 V D J The hairpins at the end of the V and D regions are opened, and exonucleases and transferases remove or add random nucleotides to the gap between the V and D region V D J 7 23 9 7 12 9 DNA ligase IV joins the ends of the V and D region to form the coding joint and the two heptamers to form the signal joint.
  • 32. Junctional diversity: P nucleotide additions The recombinase complex makes single stranded nicks at random sites close to the ends of the V and D region DNA. The 2nd strand is cleaved and hairpins form between the complimentary bases at ends of the V and D region. 7 D 12 9 J 7 V 23 9 D 7 12 9 J V 7 23 9 TC CACAGTG AG GTGTCAC AT GTGACAC TA CACTGTG 7 D 12 9 J 7 V 23 9 CACAGTG GTGTCAC GTGACAC CACTGTG TC AG AT TA D J V TC AG AT TA U U
  • 33. Heptamers are ligated by DNA ligase IV V and D regions juxtaposed V2 V3 V4 V8 V7 V6 V5 V9 7 23 9 CACAGTG GTGTCAC 7 12 9 GTGACAC CACTGTG V TC AG U D J AT TA U V TC AG U D J AT TA U
  • 34. Endonuclease cleaves single strand at random sites in V and D segment Generation of the palindromic sequence In terms of G to C and T to A pairing, the ‘new’ nucleotides are palindromic. The nucleotides GA and TA were not in the genomic sequence and introduce diversity of sequence at the V to D join. The nicked strand ‘flips’ out V TC AG U D J AT TA U V TC~ GA AG D J AT TA ~TA The nucleotides that flip out, become part of the complementary DNA strand V TC AG U D J AT TA U Regions to be joined are juxtaposed
  • 35. Junctional Diversity – N nucleotide additions Terminal deoxynucleotidyl transferase (TdT) adds nucleotides randomly to the P nucleotide ends of the single-stranded V and D segment DNA CACTCCTTA TTCTTGCAA V TC ~ GA AG D J AT TA ~ TA V TC ~ GA AG D J AT TA ~ TA CACACCTTA TTCT T GCAA Complementary bases anneal V D J DNA polymerases fill in the gaps with complementary nucleotides and DNA ligase IV joins the strands TC ~ GA AG AT TA ~TA CACACCTTA TTCT T GCAA D J TA ~ TA Exonucleases nibble back free ends V TC ~ GA CACACCTTA TTCT T GCAA V TC D TA GTT AT AT AG C
  • 36. Junctional Diversity TTTTT TTTTT TTTTT Germline-encoded nucleotides Palindromic (P) nucleotides - not in the germline Non-template (N) encoded nucleotides - not in the germline Creates an essentially random sequence between the V region, D region and J region in beta chains and the V region and J region in alpha chains. V D J TC GA CGTT AT AT AG CT GCAA TA TA
  • 37.
  • 38. Why do V regions not join to J or C regions? IF the elements of the TcR did not assemble in the correct order, diversity of specificity would be severely compromised Full potential of the beta chain for diversity needs V-D-J-C joining - in the correct order Were V-J joins allowed in the beta chain, diversity would be reduced due to loss of the imprecise join between the V and D regions DIVERSITY 2x DIVERSITY 1x V  D  J  C
  • 39. V-D Join D-J join TcR  chain V-J Join TcR  chain Location of junctional diversity Amino acid No. of TcR chain Variability CDR2 CDR = Complemantarity determining region CDR1 CDR3
  • 40. Location of junctional diversity in TcR TcRV  monomer TcR  chain 2 1 3 2 1 3 CDR’s
  • 41. MHC class I and TcR V  /V  MHC class II TcR  /  The trimolecular complex
  • 42. V  and V  of TcR recognising a peptide from MHC class I ribbon plot  TcR recognising a peptide from MHC class II ribbon plot
  • 43. V  and V  of TcR recognising a peptide from MHC class I wire plot showing amino acid sidechains  TcR recognising a peptide from MHC class II wire plot showing amino acid sidechains Turn through 90 º
  • 44. TcR contact and anchor residue side chains interact with side chains of TcR
  • 45. Hypervariable loops - CDRs  /  3  /  3  /  2  /  2  /  2  /  2 The most variable loops of the TcR - the CDR3 interact with the most variable part of the MHC-peptide complex CDR’s 1 and 2 interact largely with the MHC molecule
  • 47. T cell co-receptor molecules   CD8 MHC Class I MHC Class II  3  2 TcR TcR CD4 Lck PTK Lck PTK CD4 and CD8 can increase the sensitivity of T cells to peptide antigen MHC complexes by ~100 fold
  • 48. CD8 and CD4 contact points on MHC class I and class II MHC class II CD8 binding site MHC class I CD8 binding site
  • 49. TcR-CD3 complex The intracytoplasmic region of the TcR chain is too short to transduce a signal Signalling is initiated by aggregation of TcR by MHC-peptide complexes on APC The CD3  or  (zeta)  chains are required for cell surface expression of the TcR-CD3 complex and signalling through the TcR        TcR         CD3 CD3
  • 50. Transduction of signals by the TcR The cytoplasmic domains of the CD3 complex contain 10 Immunoreceptor Tyrosine -based Activation Motifs (ITAMS) - 2 tyrosine residues separated by 9-12 amino acids - Y XX[L/V]X 6-9 Y XX[L/V] As with B cell receptors, immunoreceptor tyrosine-based activation motifs (ITAMs) are involved in the transmission of the signals from the receptor and require clustering of TcR/CD3 and the CD4 or CD8 co-receptors       CD3 ITAMs
  • 51.
  • 52. Regulation of Src kinases SH2 domain Phosphorylation of ‘Activating Tyrosine’ stimulates kinase activity Phosphorylation of ‘Inhibitory Tyrosine’ inhibits kinase activity by blocking access to the Activating Tyrosine Residue Kinase domain Unique region SH3 domain Activating tyrosine residue Inhibitory tyrosine residue Kinase domain Unique region SH3 domain SH2 domain
  • 53. Early T cell activation Lck Fyn Zap-70 Receptor associated kinases accumulate under the membrane in close proximity to the cytoplasmic domains of the TcR -CD3 complex CD4 MHC II MHC II CD45 As the T cell antigen receptor binds the MHC-peptide antigen, the phosphatase CD45 activates kinases such as Fyn This mechanism of activation is similar to the used to activate Syk in B cells P
  • 54. Fyn phosphorylates the ITAMs of CD3  ,  ,  and  ITAMS T cell activation The tyrosine kinase ZAP-70 binds to the phosphorylated ITAMs of CD3  - further activation requires ligation of the co-receptor, CD4 Zap-70 Lck Fyn CD4 CD45 P MHC II
  • 55. T cell activation Binding of CD4 co-receptor to MHC class II brings Lck into the complex, which then phosphorylates and activates ZAP-70 Lck Fyn P MHC II Zap-70 Tyrosine rich cell membrane associated Linker of Activation in T cells (LAT) and SLP-76 associate with cholesterol-rich lipid rafts LAT SLP-76 Activated ZAP-70 phosphorylates LAT & SLP-76 P P P P ZAP-70 phosphorylates LAT and SLP-76
  • 56. T cell activation PLC-  cleaves phosphotidylinositol bisphosphate (PIP 2 ) to yield diacylglycerol ( DAG ) and inositol trisphosphate ( IP 3 ) Activated ZAP-70 phosphorylates Guanine-nucleotide exchange factors (GEFS) that in turn activate the small GTP binding protein Ras Ras activates the MAP kinase cascade Lck Fyn P MHC II Zap-70 LAT SLP-76 P P P P SLP76 binds Tec kinases and activates phospholipase C-  (PLC-  ) Tec Tec
  • 57.
  • 58.
  • 59. Element Immunoglobulin  TcR Variable segments Diversity segments D segments in all 3 frames Joining segments Joints with N & P nucleotides No. of V gene pairs Junctional diversity Total diversity H    40 27 Yes 6 2 2360 3640 ~10 13 ~10 13 ~10 16** ~10 16 59 0 - 9 (1)* 52 ~70 2 0 Yes - 13 61 2 1 * Only half of human  chains have N & P regions **No of distinct receptors increased further by somatic hypermutation Estimate of the number of human TcR and Ig Excluding somatic hypermutation
  • 60. Affinity maturation due to somatic mutation Why do TcR not undergo somatic mutation? Self Antigen Foreign antigen APC Y T Antigen presentation Y B T cell help Y T Anergy or deletion of anti-self cells Y B No T cell help Antibody
  • 61. Why do TcR not undergo somatic mutation? Y B Occasional B cell that somatically mutates to become self reactive Y B Affinity maturation due to somatic mutation Y B Y B Y B Y B Y B
  • 62. T cell that doesn’t mutate can not help the self reactive B cell T cell that mutates can may help the self reactive B cell The lack of somatic mutation in TcR helps to prevent autoimmunity Y B Occasional B cell that somatically mutates to become self reactive Y T X No T cell help Y T T cell help Autoantibody production
  • 63. If TcR did undergo somatic mutation: TcR interacts with entire top surface of MHC-peptide antigen complex Somatic mutation in the TcR could mutate amino acids that interact with the MHC molecule causing a complete loss of peptide-MHC recognition
  • 64. If TcR did undergo somatic mutation: TcR-MHC interaction is one of many between the T cell and APC On-off rate of TcR determines rate of ‘firing’ to give qualitatively different outcomes Must be of relatively low affinity as cells with high affinity TcR are deleted to prevent self reactivity. If TcR underwent affinity maturation, they would be deleted
  • 65. Why do B cell receptors need to mutate? Neutralisation of bacterial toxins Ab-Ag interaction must be of high affinity to capture and neutralise toxins in extracellular fluids There is a powerful selective advantage to B cells that can somatically mutate their receptors to increase affinity SOMATIC MUTATION Y ` ` Y ` ` Toxin binding blocked Prevents toxicity
  • 66. An alternative TcR:  Discovered as Ig-homologous, rearranging genes in non  TcR T cells The  locus is located between the V  and J  regions V  to J  rearrangement deletes D  , J  and C  TcR  cells can not express  TcR Few V regions, but considerable junctional diversity as  chain can use 2 D regions Human  locus 3x D  3x J  1x C  3x J  C  1 2x J  C  2 12x V  1 V  V  V  V  V  J  C 
  • 67.  T cells Distinct lineage of cells with unknown functions 1-5% of peripheral blood T cells In the gut and epidermis of mice, most T cells express  TcR Ligands of  TcR are unknown Possibly recognise: Antigens without involvement of MHC antigens - CD1 Class IB genes
  • 68. • The TcR was discovered using clonotypic antibodies • Antibodies and TcR share many similarities, but there are significant differences in structure and function • The structure and organisation of the TcR genes is similar to the Ig genes • Somatic recombination in TcR genes is similar to that in Ig genes • The molecular mechanisms that account for the diversity of TcR include combinatorial and junctional diversity • TcR do not somatically mutate • The highly variable CDR loops map to the distal end of the TcR • The most variable part of the TcR interacts with the peptide Summary