SlideShare a Scribd company logo
1 of 20
Download to read offline
M41T0

                                            SERIAL REAL-TIME CLOCK

FEATURES SUMMARY
■   2.0 TO 5.5V CLOCK OPERATING VOLTAGE   Figure 1. 8-pin SOIC Packages
■   COUNTERS FOR SECONDS, MINUTES,
    HOURS, DAY, DATE, MONTH, YEARS, and
    CENTURY                                                 8
■   YEAR 2000 COMPLIANT
                                                                1
■   I2C BUS COMPATIBLE (400kHz)
                                                           SO8 (M)
■   LOW OPERATING CURRENT OF 130µA
■   OPERATING TEMPERATURE OF –40 TO
    85°C
■   AUTOMATIC LEAP YEAR COMPENSATION
■   SPECIAL SOFTWARE PROGRAMMABLE
    OUTPUT                                              TSSOP8 3x3 (DS)
■   OSCILLATOR STOP DETECTION




July 2004                                                                    1/20
M41T0

TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
       Figure 1. 8-pin SOIC Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
       Figure 2.      Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
       Figure 3.      SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
       Table 1.       Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
       Figure 4.      Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
       Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
       Table 3.       Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
       Figure 5.      AC Testing Input/Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
       Table 4.       Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
       Table 5.       DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
       Table 6.       Crystal Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       2-Wire Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Bus not busy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Start data transfer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Stop data transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Data valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
       Figure 6. Serial Bus Data Transfer Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
       Figure 7. Acknowledgement Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
       Figure 8. Bus Timing Requirements Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
       Table 7. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
       READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
       WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
       Figure 9. Slave Address Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
       Figure 10.READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
       Figure 11.Alternate READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
       Figure 12.WRITE Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
       Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
       Oscillator Stop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
       Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
       Table 8. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15




2/20
M41T0

PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
     Figure 13.SO8 – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Drawing16
     Table 9. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 16
     Figure 14.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 17
     Table 10. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 17

PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
     Table 11. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
     Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19




                                                                                                                                            3/20
M41T0

SUMMARY DESCRIPTION
The M41T0 TIMEKEEPER® RAM is a low power                         two-line bi-directional bus. The built-in address
Serial TIMEKEEPER with a built-in 32.768kHz os-                  register is incremented automatically after each
cillator (external crystal controlled). Eight registers          WRITE or READ data byte.
are used for the clock/calendar function and are                 The M41T0 is supplied in 8 lead Plastic Small Out-
configured in binary coded decimal (BCD) format.                 line package.
Addresses and data are transferred serially via a


Figure 2. Logic Diagram                                          Table 1. Signal Names
                         VCC                                       OSCI               Oscillator Input

                                                                   OCSO               Oscillator Output

                                                                   OUT                Output Driver (Open Drain)
       OSCI                                        OSCO
                                                                   SDA                Serial Data Address Input / Output
        SCL                M41T0                   SDA
                                                                   SCL                Serial Clock
                                                   OUT
                                                                   NF(1)              No Function

                                                                   VCC                Supply Voltage

                         VSS                                       VSS                Ground
                                                       AI07028
                                                                 Note: 1. NF pin must be tied to VSS.

Figure 3. SOIC Connections




                               M41T0
               OSCI        1            8        VCC
              OSCO         2            7        OUT
                  (1)      3            6        SCL
               NF
                 VSS       4            5        SDA
                                       AI07029




Note: 1. NF pin must be tied to VSS.




4/20
M41T0

Figure 4. Block Diagram
                                               1 Hz
       OSCI                                             SECONDS
                      OSCILLATOR    DIVIDER
                       32.768 kHz
      OSCO                                               MINUTES

       OUT
                                                      CENTURY/HOURS


       VCC                          CONTROL               DAY
                                     LOGIC
       VSS

                                                          DATE


                                                         MONTH
       SCL
                        SERIAL
                         BUS                              YEAR
                      INTERFACE
                                    ADDRESS
       SDA
                                    REGISTER
                                                        CONTROL




                                                                AI07030




                                                                            5/20
M41T0

MAXIMUM RATING
Stressing the device above the rating listed in the                   not implied. Exposure to Absolute Maximum Rat-
“Absolute Maximum Ratings” table may cause                            ing conditions for extended periods may affect de-
permanent damage to the device. These are                             vice     reliability.  Refer     also   to     the
stress ratings only and operation of the device at                    STMicroelectronics SURE Program and other rel-
these or any other conditions above those indicat-                    evant quality documents.
ed in the Operating sections of this specification is

Table 2. Absolute Maximum Ratings
    Symbol                                   Parameter                                             Value                    Unit
       TSTG        Storage Temperature (VCC Off, Oscillator Off)                                –55 to 125                   °C
        VCC        Supply Voltage                                                                –0.3 to 7                    V

       TSLD(1)     Lead Solder Temperature for 10 Seconds                                           260                      °C

        VIO        Input or Output Voltages                                                 –0.3 to VCC + 0.3                 V
         IO        Output Current                                                                    20                      mA
         PD        Power Dissipation                                                                 1                       W
Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 and 150
         seconds).




6/20
M41T0

DC AND AC PARAMETERS
This section summarizes the operating and mea-                              ment Conditions listed in the relevant tables. De-
surement conditions, as well as the DC and AC                               signers should check that the operating conditions
characteristics of the device. The parameters in                            in their projects match the measurement condi-
the following DC and AC Characteristic tables are                           tions when using the quoted parameters.
derived from tests performed under the Measure-

Table 3. Operating and AC Measurement Conditions
                                   Parameter                                                 M41T0                 Unit
  Supply Voltage (VCC)                                                                      2.0 to 5.5              V
  Ambient Operating Temperature (TA)                                                        –40 to 85              °C
  Load Capacitance (CL)                                                                        100                 pF
  Input Rise and Fall Times                                                                      ≤5                ns
  Input Pulse Voltages                                                                  0.2VCC to 0.8VCC            V

  Input and Output Timing Ref. Voltages                                                 0.3VCC to 0.7VCC            V
Note: Output Hi-Z is defined as the point where data is no longer driven.


Figure 5. AC Testing Input/Output Waveform




   0.8VCC
                                                       0.7VCC

                                                       0.3VCC
   0.2VCC

                                                       AI02568




Table 4. Capacitance
     Symbol                                  Parameter(1,2)                                Min             Max       Unit

        CIN          Input Capacitance (SCL)                                                                7           pF

     COUT(3)         Output Capacitance (SDA, OUT)                                                         10           pF

        tLP          Low-pass filter input time constant (SDA and SCL)                                     50           ns
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.
      2. At 25°C, f = 1MHz.
      3. Outputs deselected.




                                                                                                                             7/20
M41T0

Table 5. DC Characteristics
  Sym                  Parameter                           Test Condition(1)                    Min         Typ             Max      Unit

   ILI        Input Leakage Current                         0V ≤ VIN ≤ VCC                                                   ±1       µA
   ILO        Output Leakage Current                       0V ≤ VOUT ≤ VCC                                                   ±1       µA

                                                                                   3.0V                       35             55       µA
  ICC1        Supply Current                   Frequency (SCL) = 400kHz
                                                                                   5.5V                     130             200       µA

                                                 All inputs = VCC – 0.2V           3.0V                       0.9            1.2      µA
 ICC2(2) Supply Current (Standby)
                                                 Frequency (SCL) = 0Hz             5.5V                                      31       µA
   VIL        Input Low Voltage                                                                –0.3                     0.3 VCC       V

                                                                                                                            VCC +
  VIH         Input High Voltage                                                             0.7 VCC                                  V
                                                                                                                             0.3
              Output Low Voltage                               IOL = 3mA                                                     0.4      V
  VOL         Output Low Voltage (Open
                                                              IOL = 10mA                                                     0.4      V
              Drain)
Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5V (except where noted).
      2. At 25°C.


Table 6. Crystal Electrical Characteristics
   Symbol                             Parameter(1,2)                             Min             Typ                Max             Unit

         fO        Resonant Frequency                                                          32.768                               kHz

         RS        Series Resistance                                                                                60(3)           KΩ

         CL        Load Capacitance                                                             12.5                                pF
Note: 1. These values are externally supplied. STMicroelectronics recommends the KDS DT-38: 1TA/1TC252E127, Tuning Fork Type (thru-
         hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature operations. KDS can be contacted at kou-
         hou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.
      2. Load capacitors are integrated within the M41T0. Circuit board layout considerations for the 32.768kHz crystal of minimum trace
         lengths and isolation from RF generating signals should be taken into account.
      3. RS = 40kΩ when VCC ≤ 2.5V.




8/20
M41T0

OPERATION
The M41T0 clock operates as a slave device on              Data valid. The state of the data line represents
the serial bus. Access is obtained by implementing         valid data when after a start condition, the data line
a start condition followed by the correct slave ad-        is stable for the duration of the High period of the
dress (D0h). The 8 bytes contained in the device           clock signal. The data on the line may be changed
can then be accessed sequentially in the following         during the Low period of the clock signal. There is
order:                                                     one clock pulse per bit of data.
1. Seconds Register                                        Each data transfer is initiated with a start condition
2. Minutes Register                                        and terminated with a stop condition. The number
                                                           of data bytes transferred between the start and
3. Century/Hours Register                                  stop conditions is not limited. The information is
4. Day Register                                            transmitted byte-wide and each receiver acknowl-
5. Date Register                                           edges with a ninth bit.
6. Month Register                                          By definition, a device that gives out a message is
7. Years Register                                          called “transmitter”, the receiving device that gets
                                                           the message is called “receiver”. The device that
8. Control Register                                        controls the message is called “master”. The de-
2-Wire Bus Characteristics                                 vices that are controlled by the master are called
                                                           “slaves”.
This bus is intended for communication between
different ICs. It consists of two lines: one bi-direc-     Acknowledge. Each byte of eight bits is followed
tional for data signals (SDA) and one for clock sig-       by one Acknowledge Bit. This Acknowledge Bit is
nals (SCL). Both the SDA and the SCL lines must            a low level put on the bus by the receiver, whereas
be connected to a positive supply voltage via a            the master generates an extra acknowledge relat-
pull-up resistor.                                          ed clock pulse.
The following protocol has been defined:                   A slave receiver which is addressed is obliged to
                                                           generate an acknowledge after the reception of
– Data transfer may be initiated only when the bus         each byte. Also, a master receiver must generate
   is not busy.                                            an acknowledge after the reception of each byte
– During data transfer, the data line must remain          that has been clocked out of the slave transmitter.
   stable whenever the clock line is High. Changes         The device that acknowledges has to pull down
   in the data line while the clock line is High will be   the SDA line during the acknowledge clock pulse
   interpreted as control signals.                         in such a way that the SDA line is a stable Low dur-
Accordingly, the following bus conditions have             ing the High period of the acknowledge related
been defined:                                              clock pulse. Of course, setup and hold times must
Bus not busy. Both data and clock lines remain             be taken into account. A master receiver must sig-
High.                                                      nal an end-of-data to the slave transmitter by not
Start data transfer. A change in the state of the          generating an acknowledge on the last byte that
data line, from High to Low, while the clock is High,      has been clocked out of the slave. In this case, the
defines the START condition.                               transmitter must leave the data line High to enable
                                                           the master to generate the STOP condition.
Stop data transfer. A change in the state of the
data line, from Low to High, while the clock is High,
defines the STOP condition.




                                                                                                            9/20
M41T0

Figure 6. Serial Bus Data Transfer Sequence


                                             DATA LINE
                                              STABLE
                                             DATA VALID



           CLOCK




           DATA



                        START                            CHANGE OF                          STOP
                      CONDITION                         DATA ALLOWED                      CONDITION


                                                                                                    AI00587




Figure 7. Acknowledgement Sequence

                                                                                        CLOCK PULSE FOR
                               START                                                   ACKNOWLEDGEMENT
        SCLK FROM
                                        1                  2                 8                  9
        MASTER


        DATA OUTPUT
                                       MSB                                   LSB
        BY TRANSMITTER


        DATA OUTPUT
        BY RECEIVER

                                                                                                    AI00601




Figure 8. Bus Timing Requirements Sequence


           SDA

                   tBUF                 tHD:STA                                          tHD:STA

                                        tR         tF

           SCL
                                                  tHIGH
                                                                   tSU:DAT            tSU:STA             tSU:STO
                          P       S             tLOW           tHD:DAT           SR                 P




                                                                                                    AI00589



Note: P = STOP and S = START




10/20
M41T0

Table 7. AC Characteristics
   Symbol                                    Parameter(1)                                      Min          Typ          Max        Unit

     fSCL        SCL Clock Frequency                                                             0                       400        kHz
     tLOW        Clock Low Period                                                               1.3                                  µs
     tHIGH       Clock High Period                                                             600                                   ns
      tR         SDA and SCL Rise Time                                                                                   300         ns
       tF        SDA and SCL Fall Time                                                                                   300         ns
                 START Condition Hold Time
   tHD:STA                                                                                     600                                   ns
                 (after this period the first clock pulse is generated)
                 START Condition Setup Time
   tSU:STA                                                                                     600                                   ns
                 (only relevant for a repeated start condition)
   tSU:DAT       Data Setup Time                                                               100                                   ns

  tHD:DAT(2)     Data Hold Time                                                                  0                                   µs

   tSU:STO       STOP Condition Setup Time                                                     600                                   ns
     tBUF        Time the bus must be free before a new transmission can start                  1.3                                  µs
Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5V (except where noted).
      2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max.) of the falling edge of SCL.




                                                                                                                                    11/20
M41T0

READ Mode
In this mode, the master reads the M41T0 slave                 An alternate READ Mode may also be implement-
after setting the slave address (see Figure 9.). Fol-          ed, whereby the master reads the M41T0 slave
lowing the WRITE Mode Control Bit (R/W = 0) and                without first writing to the (volatile) address point-
the Acknowledge Bit, the word address An is writ-              er. The first address that is read is the last one
ten to the on-chip address pointer. Next the                   stored in the pointer (see Figure 11., page 13).
START condition and slave address are repeated,                WRITE Mode
followed by the READ Mode Control Bit (R/W = 1).
At this point, the master transmitter becomes the              In this mode the master transmitter transmits to
master receiver. The data byte which was ad-                   the M41T0 slave receiver. Bus protocol is shown
dressed will be transmitted and the master receiv-             in Figure 12., page 13. Following the START con-
                                                               dition and slave address, a logic '0' (R/W = 0) is
er will send an Acknowledge Bit to the slave
transmitter. The address pointer is only increment-            placed on the bus and indicates to the addressed
                                                               device that word address An will follow and is to be
ed on reception of an Acknowledge Bit. The
M41T0 slave transmitter will now place the data                written to the on-chip address pointer. The data
                                                               word to be written to the memory is strobed in next
byte at address An+1 on the bus. The master re-
ceiver reads and acknowledges the new byte and                 and the internal address pointer is incremented to
the address pointer is incremented to An+2.                    the next memory location within the RAM on the
                                                               reception of an acknowledge clock. The M41T0
This cycle of reading consecutive addresses will               slave receiver will send an acknowledge clock to
continue until the master receiver sends a STOP                the master transmitter after it has received the
condition to the slave transmitter.                            slave address and again after it has received the
                                                               word address and each data byte (see Figure 9.).

Figure 9. Slave Address Location

                                                                         R/W




                              START                SLAVE ADDRESS               A
                                             MSB




                                                                       LSB




                                             1     1   0   1   0   0    0

                                                                                   AI00602




12/20
M41T0

Figure 10. READ Mode Sequence



                     START




                                                                                                       START
                                                R/W




                                                                                                                                    R/W
  BUS ACTIVITY:
  MASTER

                                                               WORD
  SDA LINE         S                                                                               S                                                  DATA n                 DATA n+1
                                                            ADDRESS (An)




                                                      ACK




                                                                                                 ACK




                                                                                                                                          ACK




                                                                                                                                                                 ACK




                                                                                                                                                                                            ACK
  BUS ACTIVITY:


                              SLAVE                                                                              SLAVE
                             ADDRESS                                                                            ADDRESS

                                                                                       STOP




                                              DATA n+X                             P

                                                                                                                                                                                        AI00899
                                                                              NO ACK




Figure 11. Alternate READ Mode Sequence
                                      START




                                                                                                                                                                                                STOP
                                                                        R/W




             BUS ACTIVITY:
             MASTER


             SDA LINE                 S                                                       DATA n                       DATA n+1                                          DATA n+X           P
                                                                          ACK




                                                                                                                     ACK




                                                                                                                                                ACK




                                                                                                                                                                  ACK




                                                                                                                                                                                           NO ACK
             BUS ACTIVITY:

                                               SLAVE
                                              ADDRESS
                                                                                                                                                                                   AI00895




Figure 12. WRITE Mode Sequence
                             START




                                                                                                                                                                                                             STOP
                                                            R/W




     BUS ACTIVITY:
     MASTER

                                                                           WORD
     SDA LINE                S                                                                                             DATA n                     DATA n+1                  DATA n+X                 P
                                                                        ADDRESS (An)
                                                                  ACK




                                                                                                               ACK




                                                                                                                                                ACK




                                                                                                                                                                       ACK




                                                                                                                                                                                                       ACK




     BUS ACTIVITY:


                                      SLAVE
                                     ADDRESS                                                                                                                                            AI00591




                                                                                                                                                                                                                    13/20
M41T0

CLOCK OPERATION
The M41T0 is driven by a quartz controlled oscilla-          Note: This 250ms delay affects only the clock reg-
tor with a nominal frequency of 32.768kHz. The               ister update and does not alter the actual clock
accuracy of the Real-Time Clock depends on the               time.
frequency of the quartz crystal that is used as the          Output Driver Pin
time-base for the RTC. The M41T0 is tested to
meet ± 35 ppm with nominal crystal. The eight-               The OUT pin is an output driver that reflects the
byte Clock Register (see Table 8., page 15) is               contents of D7 of the Control Register. In other
                                                             words, when D7 of location 7 is a '0' then the OUT
used to both set the clock and to read the date and
time from the clock, in a binary coded decimal for-          pin will be driven low.
mat. Seconds, Minutes, and Hours are contained               Note: The OUT pin is open drain which requires
within the first three registers. Bits D6 and D7 of          an external pull-up resistor.
Clock Register 2 (Hours Register) contain the                Oscillator Stop Detection
CENTURY ENABLE Bit (CEB) and the CENTURY                     If the Oscillator Fail (OF) Bit is internally set to a '1,'
Bit (CB). Setting CEB to a '1' will cause CB to tog-         this indicates that the oscillator has either stopped,
gle, either from '0' to '1' or from '1' to '0' at the turn   or was stopped for some period of time and can be
of the century (depending upon its initial state). If        used to judge the validity of the clock and date da-
CEB is set to a '0', CB will not toggle. Bits D0             ta. This bit will be set to '1' any time the oscillator
through D2 of Register 3 contain the Day (day of             stops. The following conditions can cause the OF
week). Registers 4, 5 and 6 contain the Date (day            Bit to be set:
of month), Month and Years. The final register is
the Control Register. Bit D7 of Register 0 contains          – The first time power is applied (defaults to a '1'
the STOP Bit (ST). Setting this bit to a '1' will cause          on power-up).
the oscillator to stop. If the device is expected to         – The voltage present on VCC is insufficient to
spend a significant amount of time on the shelf, the             support oscillation.
oscillator may be stopped to reduce current drain.           – The ST Bit is set to '1.'
When reset to a '0' the oscillator restarts within           – External interference or removal of the crystal.
four seconds (typically one second).
                                                             This bit will remain set to '1' until written to logic '0.'
The seven clock registers may be read one byte at
a time, or in a sequential block. The Control Reg-           The oscillator must start and have run for at least
ister (Address location 7) may be accessed inde-             4 seconds before attempting to reset the OF Bit to
pendently. Provision has been made to assure                 '0.' This function operates both under normal pow-
that a clock update does not occur while any of the          er and in battery back-up.
seven clock addresses are being read. If a clock             Initial Power-on Defaults
address is being read, an update of the clock reg-           Upon initial application of power to the device, the
isters will be delayed by 250ms to allow the READ            OUT Bit and OF Bit will be set to a '1,' while the ST
to be completed before the update occurs. This               Bit will be set to '0.' All other Register bits will ini-
will prevent a transition of data during the READ.           tially power-on in a random state.




14/20
M41T0

Table 8. Register Map
                                                              Data                                                     Function/Range
 Address
                   D7           D6         D5          D4            D3        D2           D1         D0               BCD Format

      0            ST                10 Seconds                                  Seconds                            Seconds              00-59
      1           OF                  10 Minutes                                    Minutes                          Minutes             00-59

      2         CEB (1)         CB           10 Hours                               Hours                       Century/Hours         0-1/00-23

      3            X            X           X             X          X                      Day                        Day               01-07
      4            X            X               10 Date                              Date                              Date              01-31
      5            X            X           X        10 M.                          Month                             Month              01-12
      6                          10 Years                                           Years                              Year              00-99
      7          OUT            0           X             X          X          X             X         X            Control

Keys: ST = STOP Bit                                                                  CEB = Century Enable Bit
      OUT = Output level                                                             CB = Century Bit
      X = Don’t care                                                                 OF = Oscillator Fail Bit
      0 = Must be set to '0.'
Note: 1. When CEB is set to '1', CB will toggle from '0' to '1' or from '1' to '0' at the turn of the century (dependent upon the initial value set).
         When CEB is set to '0', CB will not toggle.




                                                                                                                                             15/20
M41T0

PACKAGE MECHANICAL INFORMATION

Figure 13. SO8 – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Drawing
                                                                         h x 45˚

             A2                            A
                                                                               C
                    B
                              e                 ddd


                                   D


                          8

                                       E       H
                          1
                                                              A1     α     L



                                                                                    SO-A

Note: Drawing is not to scale.


Table 9. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data
                                           mm                              inches
      Symb
                              Typ          Min        Max    Typ            Min        Max
         A                     –           1.35       1.75    –            0.053      0.069
        A1                     –           0.10       0.25    –            0.004      0.010
         B                     –           0.33       0.51    –            0.013      0.020
         C                     –           0.19       0.25    –            0.007      0.010
         D                     –           4.80       5.00    –            0.189      0.197
        ddd                    –               –      0.10    –                –      0.004
         E                     –           3.80       4.00    –            0.150      0.157
         e                    1.27             –       –     0.050             –           –
         H                     –           5.80       6.20    –            0.228      0.244
         h                     –           0.25       0.50    –            0.010      0.020
         L                     –           0.40       0.90    –            0.016      0.035
         α                     –               0°      8°     –                0°       8°
         N                                     8                               8




16/20
M41T0

Figure 14. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline
                                          D




                                  8            5                                                        c

                                                         E1   E


                                  1            4




                                                                                                   α


                                                                               A1            L
                      A                                  A2
               CP                                                                        L1


                                      b              e
                                                                                        TSSOP8BM

Note: Drawing is not to scale.


Table 10. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data
                                              mm                                     inches
      Symb
                           Typ                Min             Max      Typ             Min         Max
         A                   –                 –              1.10      –               –          0.043
        A1                   –                0.05            0.15      –             0.002        0.006
        A2                 0.85               0.75            0.95     0.034          0.030        0.037
         b                   –                0.25            0.40      –             0.010        0.016
         c                   –                0.13            0.23      –             0.005        0.009
        CP                   –                 –              0.10      –               –          0.004
         D                 3.00               2.90            3.10     0.118          0.114        0.122
         e                 0.65                –                  –    0.026            –              –
         E                 4.90               4.65            5.15     0.193          0.183        0.203
        E1                 3.00               2.90            3.10     0.118          0.114        0.122
         L                 0.55               0.40            0.70     0.022        0.0160.028     0.030
        L1                 0.95                –                  –    0.037            –              –
         α                   –                 0°                 6°    –               0°             6°
         N                                     8                                        8




                                                                                                            17/20
M41T0

PART NUMBERING

Table 11. Ordering Information Scheme
Example:                                               M41T          0          M           6           T


Device Type
M41T


Supply Voltage and Write Protect Voltage
0 = VCC = 2.0 to 5.5V



Package
M = SO8 (150mils width)
DS = TSSOP8


Temperature Range
6 = –40 to 85°C


Shipping Method
blank = Tubes (Not for New Design - Use E)

E = Lead-Free Package (ECO     PACK®), Tubes

F = Lead-Free Package (ECO     PACK®), Tape & Reel
T = Tape & Reel (Not for New Design - Use F)



For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the ST Sales Office nearest to you.




18/20
M41T0

REVISION HISTORY

Table 12. Document Revision History
     Date        Rev. #                                       Revision Details
 February 2003    1.0     First Issue
                          Add Pb-Free information (Table 2., Table 11.); update package information (Figure 1.,
  18-Feb-03       1.1
                          Figure 14.; Table 11.)
   01-Apr-03      1.2     Fix package outline and data (Figure 1., Figure 14., Table 10., Table 11.)
   10-Apr-03      1.3     Revert to previous package (Figure 1., Figure 14., Table 10., Table 11.)
   30-Oct-03      1.4     Remove footnote (Table 2.)
                          Shipping Method options updated and Note 1 removed from Table 11., Ordering
 30-Jun-2004      2.0
                          Information Scheme. Datasheet put in new template.
  23-Jul-2004     3.0     Content corrected from M41T80 to M41T0.




                                                                                                             19/20
M41T0




Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
    authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

                                         The ST logo is a registered trademark of STMicroelectronics.

                                          All other names are the property of their respective owners.

                                                © 2004 STMicroelectronics - All rights reserved

                                                 STMicroelectronics GROUP OF COMPANIES
                        Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -
                             Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -
                                        Spain - Sweden - Switzerland - United Kingdom - United States
                                                                   www.st.com



20/20

More Related Content

What's hot

What's hot (12)

Networkx 0.99
Networkx 0.99Networkx 0.99
Networkx 0.99
 
Latex2e
Latex2eLatex2e
Latex2e
 
R intro
R introR intro
R intro
 
IBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and IntroductionIBM Power 770 and 780 Technical Overview and Introduction
IBM Power 770 and 780 Technical Overview and Introduction
 
R installation and administration
R installation and administrationR installation and administration
R installation and administration
 
60950106 basis-latest-till-interview-questions
60950106 basis-latest-till-interview-questions60950106 basis-latest-till-interview-questions
60950106 basis-latest-till-interview-questions
 
0802 python-tutorial
0802 python-tutorial0802 python-tutorial
0802 python-tutorial
 
Tutorial edit
Tutorial editTutorial edit
Tutorial edit
 
Sap basis r3 hand book
Sap basis r3 hand bookSap basis r3 hand book
Sap basis r3 hand book
 
R Intro
R IntroR Intro
R Intro
 
R intro
R introR intro
R intro
 
foobar
foobarfoobar
foobar
 

Viewers also liked

Itk 2011-kp-lab-yleisposteri-final
Itk 2011-kp-lab-yleisposteri-finalItk 2011-kp-lab-yleisposteri-final
Itk 2011-kp-lab-yleisposteri-finalMerja Bauters
 
Manual tutorial-sql
Manual tutorial-sqlManual tutorial-sql
Manual tutorial-sqlisa_voly
 
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsi
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsiHänen Ihonsa Silkillä Kudon Maailmani EhjäKsi
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsiMerja Bauters
 
Antti Silvast Electricity Supply Risks in a Socio-Semiotic Framework
Antti Silvast Electricity Supply Risks in a Socio-Semiotic FrameworkAntti Silvast Electricity Supply Risks in a Socio-Semiotic Framework
Antti Silvast Electricity Supply Risks in a Socio-Semiotic FrameworkMerja Bauters
 
Worth of experience
 Worth of experience Worth of experience
Worth of experienceMerja Bauters
 
Middleware Sistemi Di Navigazione Upd09 Osm
Middleware Sistemi Di Navigazione Upd09 OsmMiddleware Sistemi Di Navigazione Upd09 Osm
Middleware Sistemi Di Navigazione Upd09 OsmRoberto Navoni
 
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)Arq Jaime Martínez Veloz
 

Viewers also liked (8)

Itk 2011-kp-lab-yleisposteri-final
Itk 2011-kp-lab-yleisposteri-finalItk 2011-kp-lab-yleisposteri-final
Itk 2011-kp-lab-yleisposteri-final
 
Manual tutorial-sql
Manual tutorial-sqlManual tutorial-sql
Manual tutorial-sql
 
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsi
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsiHänen Ihonsa Silkillä Kudon Maailmani EhjäKsi
Hänen Ihonsa Silkillä Kudon Maailmani EhjäKsi
 
Antti Silvast Electricity Supply Risks in a Socio-Semiotic Framework
Antti Silvast Electricity Supply Risks in a Socio-Semiotic FrameworkAntti Silvast Electricity Supply Risks in a Socio-Semiotic Framework
Antti Silvast Electricity Supply Risks in a Socio-Semiotic Framework
 
Worth of experience
 Worth of experience Worth of experience
Worth of experience
 
Gestione mp32
Gestione mp32Gestione mp32
Gestione mp32
 
Middleware Sistemi Di Navigazione Upd09 Osm
Middleware Sistemi Di Navigazione Upd09 OsmMiddleware Sistemi Di Navigazione Upd09 Osm
Middleware Sistemi Di Navigazione Upd09 Osm
 
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)
Universidad Autónoma de Coahuila: Crónica de una Utopía (Jaime Martínez Veloz)
 

Similar to Datasheet

27911 gyroscope appnote2
27911 gyroscope appnote227911 gyroscope appnote2
27911 gyroscope appnote2ssuseraddd15
 
8S003F3_STMicroelectronics.pdf
8S003F3_STMicroelectronics.pdf8S003F3_STMicroelectronics.pdf
8S003F3_STMicroelectronics.pdfqFilipeSilva
 
En.dm00024550 stm8 s003f3p6
En.dm00024550   stm8 s003f3p6En.dm00024550   stm8 s003f3p6
En.dm00024550 stm8 s003f3p6betodias29
 
Engineering symbology-prints-and-drawings-handbook
Engineering symbology-prints-and-drawings-handbookEngineering symbology-prints-and-drawings-handbook
Engineering symbology-prints-and-drawings-handbookIbrahim Khleifat
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsAUTHELECTRONIC
 
B7.2 a1353-ra platform commissioning solaris 2.6
B7.2 a1353-ra platform commissioning solaris 2.6B7.2 a1353-ra platform commissioning solaris 2.6
B7.2 a1353-ra platform commissioning solaris 2.6chungminh1108
 
Data Visualization with RRob Kabacoff2018-09-032
Data Visualization with RRob Kabacoff2018-09-032Data Visualization with RRob Kabacoff2018-09-032
Data Visualization with RRob Kabacoff2018-09-032OllieShoresna
 
Data visualization with r rob kabacoff2018 09-032
Data visualization with r rob kabacoff2018 09-032Data visualization with r rob kabacoff2018 09-032
Data visualization with r rob kabacoff2018 09-032AISHA232980
 
Original audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsOriginal audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsAUTHELECTRONIC
 
A1800 Technical Manual_rev.02.pdf
A1800 Technical Manual_rev.02.pdfA1800 Technical Manual_rev.02.pdf
A1800 Technical Manual_rev.02.pdfMoHsinKh2
 
Simocode dp = manual de parametrização e operação
Simocode dp = manual de parametrização e operaçãoSimocode dp = manual de parametrização e operação
Simocode dp = manual de parametrização e operaçãoconfidencial
 
Team Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedTeam Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedAndrew Daws
 
CSP Report Group E (1)
CSP Report Group E (1)CSP Report Group E (1)
CSP Report Group E (1)Rachit Kansal
 

Similar to Datasheet (20)

27911 gyroscope appnote2
27911 gyroscope appnote227911 gyroscope appnote2
27911 gyroscope appnote2
 
8S003F3_STMicroelectronics.pdf
8S003F3_STMicroelectronics.pdf8S003F3_STMicroelectronics.pdf
8S003F3_STMicroelectronics.pdf
 
digital.pdf
digital.pdfdigital.pdf
digital.pdf
 
En.dm00024550 stm8 s003f3p6
En.dm00024550   stm8 s003f3p6En.dm00024550   stm8 s003f3p6
En.dm00024550 stm8 s003f3p6
 
Engineering symbology-prints-and-drawings-handbook
Engineering symbology-prints-and-drawings-handbookEngineering symbology-prints-and-drawings-handbook
Engineering symbology-prints-and-drawings-handbook
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
 
SPI Concepts.pdf
SPI Concepts.pdfSPI Concepts.pdf
SPI Concepts.pdf
 
Mc68 hc908jl3e
Mc68 hc908jl3eMc68 hc908jl3e
Mc68 hc908jl3e
 
B7.2 a1353-ra platform commissioning solaris 2.6
B7.2 a1353-ra platform commissioning solaris 2.6B7.2 a1353-ra platform commissioning solaris 2.6
B7.2 a1353-ra platform commissioning solaris 2.6
 
Data Visualization with RRob Kabacoff2018-09-032
Data Visualization with RRob Kabacoff2018-09-032Data Visualization with RRob Kabacoff2018-09-032
Data Visualization with RRob Kabacoff2018-09-032
 
Data visualization with r rob kabacoff2018 09-032
Data visualization with r rob kabacoff2018 09-032Data visualization with r rob kabacoff2018 09-032
Data visualization with r rob kabacoff2018 09-032
 
Original audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsOriginal audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronics
 
A1800 Technical Manual_rev.02.pdf
A1800 Technical Manual_rev.02.pdfA1800 Technical Manual_rev.02.pdf
A1800 Technical Manual_rev.02.pdf
 
Bucher lift control guide
Bucher lift control guideBucher lift control guide
Bucher lift control guide
 
100384784c
100384784c100384784c
100384784c
 
Simocode dp = manual de parametrização e operação
Simocode dp = manual de parametrização e operaçãoSimocode dp = manual de parametrização e operação
Simocode dp = manual de parametrização e operação
 
St3300655 lw
St3300655 lwSt3300655 lw
St3300655 lw
 
Cube_Quest_Final_Report
Cube_Quest_Final_ReportCube_Quest_Final_Report
Cube_Quest_Final_Report
 
Team Omni L2 Requirements Revised
Team Omni L2 Requirements RevisedTeam Omni L2 Requirements Revised
Team Omni L2 Requirements Revised
 
CSP Report Group E (1)
CSP Report Group E (1)CSP Report Group E (1)
CSP Report Group E (1)
 

Recently uploaded

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 

Recently uploaded (20)

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 

Datasheet

  • 1. M41T0 SERIAL REAL-TIME CLOCK FEATURES SUMMARY ■ 2.0 TO 5.5V CLOCK OPERATING VOLTAGE Figure 1. 8-pin SOIC Packages ■ COUNTERS FOR SECONDS, MINUTES, HOURS, DAY, DATE, MONTH, YEARS, and CENTURY 8 ■ YEAR 2000 COMPLIANT 1 ■ I2C BUS COMPATIBLE (400kHz) SO8 (M) ■ LOW OPERATING CURRENT OF 130µA ■ OPERATING TEMPERATURE OF –40 TO 85°C ■ AUTOMATIC LEAP YEAR COMPENSATION ■ SPECIAL SOFTWARE PROGRAMMABLE OUTPUT TSSOP8 3x3 (DS) ■ OSCILLATOR STOP DETECTION July 2004 1/20
  • 2. M41T0 TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. 8-pin SOIC Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5. AC Testing Input/Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6. Crystal Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2-Wire Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Bus not busy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Start data transfer.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Stop data transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6. Serial Bus Data Transfer Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7. Acknowledgement Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 8. Bus Timing Requirements Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 7. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 9. Slave Address Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 10.READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11.Alternate READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 12.WRITE Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Oscillator Stop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 8. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/20
  • 3. M41T0 PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 13.SO8 – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Drawing16 Table 9. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 16 Figure 14.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 17 Table 10. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 17 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 11. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3/20
  • 4. M41T0 SUMMARY DESCRIPTION The M41T0 TIMEKEEPER® RAM is a low power two-line bi-directional bus. The built-in address Serial TIMEKEEPER with a built-in 32.768kHz os- register is incremented automatically after each cillator (external crystal controlled). Eight registers WRITE or READ data byte. are used for the clock/calendar function and are The M41T0 is supplied in 8 lead Plastic Small Out- configured in binary coded decimal (BCD) format. line package. Addresses and data are transferred serially via a Figure 2. Logic Diagram Table 1. Signal Names VCC OSCI Oscillator Input OCSO Oscillator Output OUT Output Driver (Open Drain) OSCI OSCO SDA Serial Data Address Input / Output SCL M41T0 SDA SCL Serial Clock OUT NF(1) No Function VCC Supply Voltage VSS VSS Ground AI07028 Note: 1. NF pin must be tied to VSS. Figure 3. SOIC Connections M41T0 OSCI 1 8 VCC OSCO 2 7 OUT (1) 3 6 SCL NF VSS 4 5 SDA AI07029 Note: 1. NF pin must be tied to VSS. 4/20
  • 5. M41T0 Figure 4. Block Diagram 1 Hz OSCI SECONDS OSCILLATOR DIVIDER 32.768 kHz OSCO MINUTES OUT CENTURY/HOURS VCC CONTROL DAY LOGIC VSS DATE MONTH SCL SERIAL BUS YEAR INTERFACE ADDRESS SDA REGISTER CONTROL AI07030 5/20
  • 6. M41T0 MAXIMUM RATING Stressing the device above the rating listed in the not implied. Exposure to Absolute Maximum Rat- “Absolute Maximum Ratings” table may cause ing conditions for extended periods may affect de- permanent damage to the device. These are vice reliability. Refer also to the stress ratings only and operation of the device at STMicroelectronics SURE Program and other rel- these or any other conditions above those indicat- evant quality documents. ed in the Operating sections of this specification is Table 2. Absolute Maximum Ratings Symbol Parameter Value Unit TSTG Storage Temperature (VCC Off, Oscillator Off) –55 to 125 °C VCC Supply Voltage –0.3 to 7 V TSLD(1) Lead Solder Temperature for 10 Seconds 260 °C VIO Input or Output Voltages –0.3 to VCC + 0.3 V IO Output Current 20 mA PD Power Dissipation 1 W Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 and 150 seconds). 6/20
  • 7. M41T0 DC AND AC PARAMETERS This section summarizes the operating and mea- ment Conditions listed in the relevant tables. De- surement conditions, as well as the DC and AC signers should check that the operating conditions characteristics of the device. The parameters in in their projects match the measurement condi- the following DC and AC Characteristic tables are tions when using the quoted parameters. derived from tests performed under the Measure- Table 3. Operating and AC Measurement Conditions Parameter M41T0 Unit Supply Voltage (VCC) 2.0 to 5.5 V Ambient Operating Temperature (TA) –40 to 85 °C Load Capacitance (CL) 100 pF Input Rise and Fall Times ≤5 ns Input Pulse Voltages 0.2VCC to 0.8VCC V Input and Output Timing Ref. Voltages 0.3VCC to 0.7VCC V Note: Output Hi-Z is defined as the point where data is no longer driven. Figure 5. AC Testing Input/Output Waveform 0.8VCC 0.7VCC 0.3VCC 0.2VCC AI02568 Table 4. Capacitance Symbol Parameter(1,2) Min Max Unit CIN Input Capacitance (SCL) 7 pF COUT(3) Output Capacitance (SDA, OUT) 10 pF tLP Low-pass filter input time constant (SDA and SCL) 50 ns Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested. 2. At 25°C, f = 1MHz. 3. Outputs deselected. 7/20
  • 8. M41T0 Table 5. DC Characteristics Sym Parameter Test Condition(1) Min Typ Max Unit ILI Input Leakage Current 0V ≤ VIN ≤ VCC ±1 µA ILO Output Leakage Current 0V ≤ VOUT ≤ VCC ±1 µA 3.0V 35 55 µA ICC1 Supply Current Frequency (SCL) = 400kHz 5.5V 130 200 µA All inputs = VCC – 0.2V 3.0V 0.9 1.2 µA ICC2(2) Supply Current (Standby) Frequency (SCL) = 0Hz 5.5V 31 µA VIL Input Low Voltage –0.3 0.3 VCC V VCC + VIH Input High Voltage 0.7 VCC V 0.3 Output Low Voltage IOL = 3mA 0.4 V VOL Output Low Voltage (Open IOL = 10mA 0.4 V Drain) Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5V (except where noted). 2. At 25°C. Table 6. Crystal Electrical Characteristics Symbol Parameter(1,2) Min Typ Max Unit fO Resonant Frequency 32.768 kHz RS Series Resistance 60(3) KΩ CL Load Capacitance 12.5 pF Note: 1. These values are externally supplied. STMicroelectronics recommends the KDS DT-38: 1TA/1TC252E127, Tuning Fork Type (thru- hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature operations. KDS can be contacted at kou- hou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type. 2. Load capacitors are integrated within the M41T0. Circuit board layout considerations for the 32.768kHz crystal of minimum trace lengths and isolation from RF generating signals should be taken into account. 3. RS = 40kΩ when VCC ≤ 2.5V. 8/20
  • 9. M41T0 OPERATION The M41T0 clock operates as a slave device on Data valid. The state of the data line represents the serial bus. Access is obtained by implementing valid data when after a start condition, the data line a start condition followed by the correct slave ad- is stable for the duration of the High period of the dress (D0h). The 8 bytes contained in the device clock signal. The data on the line may be changed can then be accessed sequentially in the following during the Low period of the clock signal. There is order: one clock pulse per bit of data. 1. Seconds Register Each data transfer is initiated with a start condition 2. Minutes Register and terminated with a stop condition. The number of data bytes transferred between the start and 3. Century/Hours Register stop conditions is not limited. The information is 4. Day Register transmitted byte-wide and each receiver acknowl- 5. Date Register edges with a ninth bit. 6. Month Register By definition, a device that gives out a message is 7. Years Register called “transmitter”, the receiving device that gets the message is called “receiver”. The device that 8. Control Register controls the message is called “master”. The de- 2-Wire Bus Characteristics vices that are controlled by the master are called “slaves”. This bus is intended for communication between different ICs. It consists of two lines: one bi-direc- Acknowledge. Each byte of eight bits is followed tional for data signals (SDA) and one for clock sig- by one Acknowledge Bit. This Acknowledge Bit is nals (SCL). Both the SDA and the SCL lines must a low level put on the bus by the receiver, whereas be connected to a positive supply voltage via a the master generates an extra acknowledge relat- pull-up resistor. ed clock pulse. The following protocol has been defined: A slave receiver which is addressed is obliged to generate an acknowledge after the reception of – Data transfer may be initiated only when the bus each byte. Also, a master receiver must generate is not busy. an acknowledge after the reception of each byte – During data transfer, the data line must remain that has been clocked out of the slave transmitter. stable whenever the clock line is High. Changes The device that acknowledges has to pull down in the data line while the clock line is High will be the SDA line during the acknowledge clock pulse interpreted as control signals. in such a way that the SDA line is a stable Low dur- Accordingly, the following bus conditions have ing the High period of the acknowledge related been defined: clock pulse. Of course, setup and hold times must Bus not busy. Both data and clock lines remain be taken into account. A master receiver must sig- High. nal an end-of-data to the slave transmitter by not Start data transfer. A change in the state of the generating an acknowledge on the last byte that data line, from High to Low, while the clock is High, has been clocked out of the slave. In this case, the defines the START condition. transmitter must leave the data line High to enable the master to generate the STOP condition. Stop data transfer. A change in the state of the data line, from Low to High, while the clock is High, defines the STOP condition. 9/20
  • 10. M41T0 Figure 6. Serial Bus Data Transfer Sequence DATA LINE STABLE DATA VALID CLOCK DATA START CHANGE OF STOP CONDITION DATA ALLOWED CONDITION AI00587 Figure 7. Acknowledgement Sequence CLOCK PULSE FOR START ACKNOWLEDGEMENT SCLK FROM 1 2 8 9 MASTER DATA OUTPUT MSB LSB BY TRANSMITTER DATA OUTPUT BY RECEIVER AI00601 Figure 8. Bus Timing Requirements Sequence SDA tBUF tHD:STA tHD:STA tR tF SCL tHIGH tSU:DAT tSU:STA tSU:STO P S tLOW tHD:DAT SR P AI00589 Note: P = STOP and S = START 10/20
  • 11. M41T0 Table 7. AC Characteristics Symbol Parameter(1) Min Typ Max Unit fSCL SCL Clock Frequency 0 400 kHz tLOW Clock Low Period 1.3 µs tHIGH Clock High Period 600 ns tR SDA and SCL Rise Time 300 ns tF SDA and SCL Fall Time 300 ns START Condition Hold Time tHD:STA 600 ns (after this period the first clock pulse is generated) START Condition Setup Time tSU:STA 600 ns (only relevant for a repeated start condition) tSU:DAT Data Setup Time 100 ns tHD:DAT(2) Data Hold Time 0 µs tSU:STO STOP Condition Setup Time 600 ns tBUF Time the bus must be free before a new transmission can start 1.3 µs Note: 1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.0 to 5.5V (except where noted). 2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max.) of the falling edge of SCL. 11/20
  • 12. M41T0 READ Mode In this mode, the master reads the M41T0 slave An alternate READ Mode may also be implement- after setting the slave address (see Figure 9.). Fol- ed, whereby the master reads the M41T0 slave lowing the WRITE Mode Control Bit (R/W = 0) and without first writing to the (volatile) address point- the Acknowledge Bit, the word address An is writ- er. The first address that is read is the last one ten to the on-chip address pointer. Next the stored in the pointer (see Figure 11., page 13). START condition and slave address are repeated, WRITE Mode followed by the READ Mode Control Bit (R/W = 1). At this point, the master transmitter becomes the In this mode the master transmitter transmits to master receiver. The data byte which was ad- the M41T0 slave receiver. Bus protocol is shown dressed will be transmitted and the master receiv- in Figure 12., page 13. Following the START con- dition and slave address, a logic '0' (R/W = 0) is er will send an Acknowledge Bit to the slave transmitter. The address pointer is only increment- placed on the bus and indicates to the addressed device that word address An will follow and is to be ed on reception of an Acknowledge Bit. The M41T0 slave transmitter will now place the data written to the on-chip address pointer. The data word to be written to the memory is strobed in next byte at address An+1 on the bus. The master re- ceiver reads and acknowledges the new byte and and the internal address pointer is incremented to the address pointer is incremented to An+2. the next memory location within the RAM on the reception of an acknowledge clock. The M41T0 This cycle of reading consecutive addresses will slave receiver will send an acknowledge clock to continue until the master receiver sends a STOP the master transmitter after it has received the condition to the slave transmitter. slave address and again after it has received the word address and each data byte (see Figure 9.). Figure 9. Slave Address Location R/W START SLAVE ADDRESS A MSB LSB 1 1 0 1 0 0 0 AI00602 12/20
  • 13. M41T0 Figure 10. READ Mode Sequence START START R/W R/W BUS ACTIVITY: MASTER WORD SDA LINE S S DATA n DATA n+1 ADDRESS (An) ACK ACK ACK ACK ACK BUS ACTIVITY: SLAVE SLAVE ADDRESS ADDRESS STOP DATA n+X P AI00899 NO ACK Figure 11. Alternate READ Mode Sequence START STOP R/W BUS ACTIVITY: MASTER SDA LINE S DATA n DATA n+1 DATA n+X P ACK ACK ACK ACK NO ACK BUS ACTIVITY: SLAVE ADDRESS AI00895 Figure 12. WRITE Mode Sequence START STOP R/W BUS ACTIVITY: MASTER WORD SDA LINE S DATA n DATA n+1 DATA n+X P ADDRESS (An) ACK ACK ACK ACK ACK BUS ACTIVITY: SLAVE ADDRESS AI00591 13/20
  • 14. M41T0 CLOCK OPERATION The M41T0 is driven by a quartz controlled oscilla- Note: This 250ms delay affects only the clock reg- tor with a nominal frequency of 32.768kHz. The ister update and does not alter the actual clock accuracy of the Real-Time Clock depends on the time. frequency of the quartz crystal that is used as the Output Driver Pin time-base for the RTC. The M41T0 is tested to meet ± 35 ppm with nominal crystal. The eight- The OUT pin is an output driver that reflects the byte Clock Register (see Table 8., page 15) is contents of D7 of the Control Register. In other words, when D7 of location 7 is a '0' then the OUT used to both set the clock and to read the date and time from the clock, in a binary coded decimal for- pin will be driven low. mat. Seconds, Minutes, and Hours are contained Note: The OUT pin is open drain which requires within the first three registers. Bits D6 and D7 of an external pull-up resistor. Clock Register 2 (Hours Register) contain the Oscillator Stop Detection CENTURY ENABLE Bit (CEB) and the CENTURY If the Oscillator Fail (OF) Bit is internally set to a '1,' Bit (CB). Setting CEB to a '1' will cause CB to tog- this indicates that the oscillator has either stopped, gle, either from '0' to '1' or from '1' to '0' at the turn or was stopped for some period of time and can be of the century (depending upon its initial state). If used to judge the validity of the clock and date da- CEB is set to a '0', CB will not toggle. Bits D0 ta. This bit will be set to '1' any time the oscillator through D2 of Register 3 contain the Day (day of stops. The following conditions can cause the OF week). Registers 4, 5 and 6 contain the Date (day Bit to be set: of month), Month and Years. The final register is the Control Register. Bit D7 of Register 0 contains – The first time power is applied (defaults to a '1' the STOP Bit (ST). Setting this bit to a '1' will cause on power-up). the oscillator to stop. If the device is expected to – The voltage present on VCC is insufficient to spend a significant amount of time on the shelf, the support oscillation. oscillator may be stopped to reduce current drain. – The ST Bit is set to '1.' When reset to a '0' the oscillator restarts within – External interference or removal of the crystal. four seconds (typically one second). This bit will remain set to '1' until written to logic '0.' The seven clock registers may be read one byte at a time, or in a sequential block. The Control Reg- The oscillator must start and have run for at least ister (Address location 7) may be accessed inde- 4 seconds before attempting to reset the OF Bit to pendently. Provision has been made to assure '0.' This function operates both under normal pow- that a clock update does not occur while any of the er and in battery back-up. seven clock addresses are being read. If a clock Initial Power-on Defaults address is being read, an update of the clock reg- Upon initial application of power to the device, the isters will be delayed by 250ms to allow the READ OUT Bit and OF Bit will be set to a '1,' while the ST to be completed before the update occurs. This Bit will be set to '0.' All other Register bits will ini- will prevent a transition of data during the READ. tially power-on in a random state. 14/20
  • 15. M41T0 Table 8. Register Map Data Function/Range Address D7 D6 D5 D4 D3 D2 D1 D0 BCD Format 0 ST 10 Seconds Seconds Seconds 00-59 1 OF 10 Minutes Minutes Minutes 00-59 2 CEB (1) CB 10 Hours Hours Century/Hours 0-1/00-23 3 X X X X X Day Day 01-07 4 X X 10 Date Date Date 01-31 5 X X X 10 M. Month Month 01-12 6 10 Years Years Year 00-99 7 OUT 0 X X X X X X Control Keys: ST = STOP Bit CEB = Century Enable Bit OUT = Output level CB = Century Bit X = Don’t care OF = Oscillator Fail Bit 0 = Must be set to '0.' Note: 1. When CEB is set to '1', CB will toggle from '0' to '1' or from '1' to '0' at the turn of the century (dependent upon the initial value set). When CEB is set to '0', CB will not toggle. 15/20
  • 16. M41T0 PACKAGE MECHANICAL INFORMATION Figure 13. SO8 – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Drawing h x 45˚ A2 A C B e ddd D 8 E H 1 A1 α L SO-A Note: Drawing is not to scale. Table 9. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data mm inches Symb Typ Min Max Typ Min Max A – 1.35 1.75 – 0.053 0.069 A1 – 0.10 0.25 – 0.004 0.010 B – 0.33 0.51 – 0.013 0.020 C – 0.19 0.25 – 0.007 0.010 D – 4.80 5.00 – 0.189 0.197 ddd – – 0.10 – – 0.004 E – 3.80 4.00 – 0.150 0.157 e 1.27 – – 0.050 – – H – 5.80 6.20 – 0.228 0.244 h – 0.25 0.50 – 0.010 0.020 L – 0.40 0.90 – 0.016 0.035 α – 0° 8° – 0° 8° N 8 8 16/20
  • 17. M41T0 Figure 14. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline D 8 5 c E1 E 1 4 α A1 L A A2 CP L1 b e TSSOP8BM Note: Drawing is not to scale. Table 10. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data mm inches Symb Typ Min Max Typ Min Max A – – 1.10 – – 0.043 A1 – 0.05 0.15 – 0.002 0.006 A2 0.85 0.75 0.95 0.034 0.030 0.037 b – 0.25 0.40 – 0.010 0.016 c – 0.13 0.23 – 0.005 0.009 CP – – 0.10 – – 0.004 D 3.00 2.90 3.10 0.118 0.114 0.122 e 0.65 – – 0.026 – – E 4.90 4.65 5.15 0.193 0.183 0.203 E1 3.00 2.90 3.10 0.118 0.114 0.122 L 0.55 0.40 0.70 0.022 0.0160.028 0.030 L1 0.95 – – 0.037 – – α – 0° 6° – 0° 6° N 8 8 17/20
  • 18. M41T0 PART NUMBERING Table 11. Ordering Information Scheme Example: M41T 0 M 6 T Device Type M41T Supply Voltage and Write Protect Voltage 0 = VCC = 2.0 to 5.5V Package M = SO8 (150mils width) DS = TSSOP8 Temperature Range 6 = –40 to 85°C Shipping Method blank = Tubes (Not for New Design - Use E) E = Lead-Free Package (ECO PACK®), Tubes F = Lead-Free Package (ECO PACK®), Tape & Reel T = Tape & Reel (Not for New Design - Use F) For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. 18/20
  • 19. M41T0 REVISION HISTORY Table 12. Document Revision History Date Rev. # Revision Details February 2003 1.0 First Issue Add Pb-Free information (Table 2., Table 11.); update package information (Figure 1., 18-Feb-03 1.1 Figure 14.; Table 11.) 01-Apr-03 1.2 Fix package outline and data (Figure 1., Figure 14., Table 10., Table 11.) 10-Apr-03 1.3 Revert to previous package (Figure 1., Figure 14., Table 10., Table 11.) 30-Oct-03 1.4 Remove footnote (Table 2.) Shipping Method options updated and Note 1 removed from Table 11., Ordering 30-Jun-2004 2.0 Information Scheme. Datasheet put in new template. 23-Jul-2004 3.0 Content corrected from M41T80 to M41T0. 19/20
  • 20. M41T0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 20/20