Location Doesn\'t Matter

390 views

Published on

Presentation for SiRF FastPitch @ CTIA 2009

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
390
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Location Doesn\'t Matter

  1. 1. Location Doesn’t Matter<br />From lng/lat to context<br />October 2009<br />SiRF Fast Pitch Presentation, San Diego<br />
  2. 2. Urban Mapping Overview<br />Founded in 2006<br />San Francisco-based<br />Profitable<br />Focus on high-quality, difficult to collect geographic data:<br />Neighborhood boundaries<br />Mass transit data<br />Enhanced parking<br />Enhanced shopping mall data<br />Geotargeting<br />On-demand 24/7 hosted geo-services via API<br />Reverse geocoding to neighborhoods<br />Mass transit routing and real time alerts<br />Search for parking/rate calculation<br />Dynamic delivery of geospatial content<br />October 2009<br />Proprietary & Confidential<br />
  3. 3. Urban Mapping Overview<br />Founded in 2006<br />San Francisco-based<br />Profitable<br />Focus on high-quality, difficult to collect geographic data:<br />Neighborhood boundaries<br />Mass transit data<br />Enhanced parking<br />Enhanced shopping mall data<br />Geotargeting<br />On-demand 24/7 hosted geo-services via API<br />Reverse geocoding to neighborhoods<br />Mass transit routing and real time alerts<br />Search for parking/rate calculation<br />Dynamic delivery of geospatial content<br />October 2009<br />Proprietary & Confidential<br />
  4. 4. UMI Customers/Partners<br />October 2009<br />Proprietary & Confidential<br />Representative Customers<br />Partners<br />
  5. 5. Location Doesn’t Matter<br />October 2009<br />Proprietary & Confidential<br /><ul><li>Location-based services have become a commodity
  6. 6. Pulling location accomplished through various methods
  7. 7. Cell-id
  8. 8. GPS
  9. 9. A-GPS
  10. 10. IP lookup
  11. 11. WiFi
  12. 12. Browser-based
  13. 13. Value-added services must provide context and relationships:
  14. 14. Absent context, the low cost provider will win</li></li></ul><li>Location Doesn’t Matter<br />October 2009<br />Proprietary & Confidential<br /><ul><li>Location-based services have become a commodity
  15. 15. Pulling location accomplished through various methods
  16. 16. Cell-id
  17. 17. GPS
  18. 18. A-GPS
  19. 19. IP lookup
  20. 20. WiFi
  21. 21. Browser-based
  22. 22. Value-added services must provide context and relationships:
  23. 23. Absent context, the low cost provider will win</li></li></ul><li>c<br />Building a Geo-hierarchy<br />October 2009<br />Proprietary & Confidential<br />Mapfluenceis a blazing fast, highly scalable geocoder that associates and ‘rolls up’ data at all levels within a geographic hierarchy, ie, <br /><ul><li>Address
  24. 24. Cross Street
  25. 25. City
  26. 26. ZIP
  27. 27. School District
  28. 28. Congressional District
  29. 29. FedEx Delivery Zones
  30. 30. DMA
  31. 31. NOAA Climate Regions
  32. 32. State</li></ul>County<br />ZIP<br />Neighborhood<br />Block Group<br />Cross Street<br />
  33. 33. c<br />Data Sourcing<br />October 2009<br />Proprietary & Confidential<br />Mapfluencemaintains a data catalog of 1000s of geographic data sets—some are UMI-sourced and others are licensed third-party content. Examples include:<br /><ul><li>School ratings/performance
  34. 34. Natural hazards
  35. 35. Health care quality
  36. 36. Mass transit proximity
  37. 37. Regional economic indicators
  38. 38. Parcel data
  39. 39. Consumer segmentation/expenditures
  40. 40. Election returns
  41. 41. Crime
  42. 42. Bankruptcy filings</li></ul>Crime<br />Transportation<br />Health<br />ZIP<br />Real Estate<br />Economic<br />Demographics<br />Environmental<br />Education<br />
  43. 43. c<br />Temporal Association<br />TheMapfluencedata catalog maintains a temporal component, allowing for time series analysis of individual data sets<br />1500 1800 1900 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15…<br />ZIP<br />October 2009<br />Proprietary & Confidential<br />
  44. 44. c<br />‘Data Cube’<br />October 2009<br />Proprietary & Confidential<br />Geo-hierarchical<br />Temporal<br />Thematic<br />
  45. 45. c<br />Millions of ‘Data Cubes’<br />October 2009<br />Proprietary & Confidential<br />
  46. 46. c<br />Adding Value to Location<br />October 2009<br />Proprietary & Confidential<br />LBS provider passes location, service performed, ‘enhanced location’ returned<br />cellid<br />GPS<br />WiFi<br />
  47. 47. c<br />Data Precompiling<br />October 2009<br />Proprietary & Confidential<br />Mapfluenceprocesses ‘cubed data’ sets for client application<br />Data Sources<br />Real Time<br />Proprietary<br />Public<br />“Wildfire”<br />Engine<br />
  48. 48. c<br />Data Serving<br />October 2009<br />Proprietary & Confidential<br />Via API, render thematic mapping, charts and tables, on the fly spatial analysis<br />API <br />
  49. 49. c<br />From Location to Context<br />October 2009<br />Proprietary & Confidential<br />IP<br />HTTP<br />(NPA) NXX<br />ZIP<br />API <br />cellid<br />GPS<br />Data Sources<br />WiFi<br />Real Time<br />Proprietary<br />Public<br />GeoRelevance<br />Engine<br />
  50. 50. Mapfluence<br />October 2009<br />Proprietary & Confidential<br /><ul><li>Blazing fast enhanced geocoder
  51. 51. Highly-scalable, cloud infrastructure
  52. 52. Data on demand: 1000s of high-value data sets available for use
  53. 53. Millions of pre computed data cubes
  54. 54. Javascript API: easy developer integration, platform agnostic
  55. 55. Managed admin/billing</li></li></ul><li>Coordinates<br />October 2009<br />Proprietary & Confidential<br />Urban Mapping, Inc<br />690 Fifth Street<br />San Francisco, CA<br />Ian White<br />ian@urbanmapping.com<br />

×