SlideShare a Scribd company logo
1 of 12
Download to read offline
Understanding Corneal Topography
By Dianne Anderson
Corneal topography provides us with a detailed description of various curvature and
shape characteristics of the cornea. This information is very helpful for the illustration of
corneal astigmatism, detection of corneal pathologies and perfection of contact lens fitting.
Becoming familiar with the basics of topography will allow you to choose the appropriate map
for any given patient situation as well as understand the data associated with these maps. This
article explains the different topography map types, how to classify corneal astigmatism and
corneal shapes associated with various pathologies and how to design contact lenses with the
information provided. Even though the image presentations may vary between topographers,
this information is universal.
Types of Topographers
Topographers can be small-cone or large-cone Placido disc systems or slit-scanning devices.
Placido disc systems project a series of concentric rings of light on the anterior corneal surface.
The corneal shape or curvature is directly measured in diopters of curvature along
thousands of points on the rings. Placido disc topography systems do not actually
measure elevation; rather, they derive anterior corneal elevation data by reconstructing
actual anterior curvature measurements via sophisticated algorithms. Small-cone Placido
disc topographers project more rings on the cornea and have a shorter working distance than
large-cone Placido disc topographers. These systems supply a great deal of measurement
points and require a steady hand to ensure accurate image acquisition. The Medmont E300
(Medmont), Scout and Keratron (EyeQuip) and Magellan Mapper (Nidek) are examples of
small-cone topography systems. Large-cone Placido disc systems use a longer working
distance and project fewer rings onto the cornea than small-cone topographers and are more
forgiving when measuring patients with very deep set eyes. Examples of large-cone
topographers are the ATLAS 995 and 9000 (Carl Zeiss Meditec) and ReSeeVit (Veatch
Ophthalmic Instruments). Slit-scanning or elevation devices directly measure the elevation
of both the anterior and posterior cornea via time domain or light-based analysis. These
devices process elevation data along several points on the anterior and posterior corneal
surfaces. This data is then converted into anterior and posterior curvature in diopters as well as
corneal thickness or pachymetry in microns. Examples of elevation devices are the Orbscan
(Bausch & Lomb), Pentacam (Oculus) and Visante OCT (Carl Zeiss Meditec).
Color Scale Settings
Corneal topography maps utilize advanced color scales to identify curvature data. Areas of
steeper curvature are displayed in warm colors such as red and orange, whereas areas of flatter
curvature are illustrated in cool colors such as green and blue. Topographers display color
maps in “absolute” and “normalized” scales. These color scales appear on the left margin of the
map with the flattest curvature at the bottom and the steepest curvature at the top. The
absolute or standard scale displays a fixed range of curvatures selected in the settings of the
topographer regardless of the map selected. The normalized scale displays the range of
curvature or power calculated from the specific map(s) you select. This provides an excellent
general view of the entire cornea, as the scale shows the flattest to steepest readings.
Defining the Maps
Axial Map
The axial map is used most often, since axial curvature is
directly related to corneal power. This allows you to correlate
the anterior surface shape to the patient’s refractive status.
The axial map displays steep areas in hot colors (red) and flat
areas in cool colors (blue).These colors directly correspond
with the curvature data on the scale displayed at the left when
viewing the image.1
A simple example is the axial map of a spherical cornea
(Figure 1). Note the consistent curvature throughout the
pupillary zone (outlined in black) and concentric flattening outward to
the limbus. In this case, the steepest part of the cornea, known as
the apex, is centered on the visual axis. This is a very symmetric cornea. In cases of corneal
pathologies such as keratoconus, the corneal apex is decentered off the visual axis. This
is quite apparent on the axial map, and allows you to diagnose corneal irregularities and
explains why the patient’s vision is subacute.
Tangential Map
This map clearly defines small or “instantaneous” curvature
changes. It calculates each measured point of data at a 90°
“tangent” to its surface. Tangential maps provide a more detailed
description of the corneal shape and provide a clearer view of
the size and shape of the cone in a keratoconus patient, for
instance. The ability to measure the size of the cone is very
helpful in determining the ideal lens design and optic zone size.
Additionally, tangential maps define the position of the treatment
or effect of corneal reshaping and refractive surgery.
Specifically note the red ring of paracentral steepening outside
the blue central area of flattening in this example of myopic
LASIK (Figure 2). Comparing the red ring’s position in relation to
the pupil or visual axis clearly defines the position of the effect.
Figure 2
Figure 1
Refractive Power Map
This map provides an interpretation of the quality of vision a patient may achieve from the
corneal surface throughout the pupillary zone. The more consistent or uniform the refractive
power within the margins of the pupil, the better able the anterior surface of the cornea is to
refract light properly. Practitioners do not commonly employ the refractive map, as it does not
provide information on curvature or size and shape of the corneal surface (for which the axial
and tangential maps are more effective). However, this map can be very effective when used to
interpret the quality of vision achievable from a patient’s corneal surface. For instance, when
comparing pre- vs. post-corneal reshaping results, the refractive map illustrates the extent that
corneal surface changes contribute to the patient’s quality of vision and the position of the effect
of treatment in relation to the pupil. Thus, the refractive power map can aid you in determining
how well the patient sees specifically due to the contribution of the corneal surface to visual
acuity. Additionally, following corneal reshaping or refractive surgery, it can show you how well
or how poorly the effect is positioned.
Elevation Map
The elevation map defines the height of the cornea in
reference to “best fit sphere,” or the radius of curvature that
best matches the average curvature of the map. Placido
disc topography systems do not actually measure
elevation; rather, they gather elevation data by
reconstructing actual curvature measurements via
sophisticated algorithms.2,3
Elevation maps measure
corneal height in microns and have a somewhat
counterintuitive interpretation. Elevation is defined as the
difference between the actual corneal surface and the best-
fit reference sphere as measured in microns.2
Figure 3
Corneal elevation above the reference sphere is measured in positive microns and
appears as red shading on the map. Conversely, blue shading indicates that the corneal
surface is below the reference sphere and is measured in negative microns (Figure 3).
But, the corneal curvature can actually be very steep in these blue areas.4,5
Classic examples
include the periphery of a cornea along the steep meridian in limbal-to-limbal astigmatism and
the inferior periphery of a cornea with oval KC. These maps are especially helpful in determining
the outcome of contact lens fitting by predicting areas of excessive bearing (red/positive
microns) or pooling (blue/negative microns).4,5
This information will guide you in designing the
ideal RGP lens—spherical, aspheric, toric, keratoconic or reverse geometry.
Slit scanning and OCT devices measure the elevation of the front and
back surfaces of the cornea. This is displayed as anterior and posterior
float maps. “Float” refers to the fact that the best fit sphere has no fixed
center, but rather floats. The distance between cornea and reference
body is optimized to be as small as possible and as equal as possible
(Figure 4).
Figure 4
Displays
The Single View display shows a single exam for a selected patient; recommended use is for
baseline screening.
The Difference Display shows two exams for the
same eye and the difference between them.
This highly under-utilized map compares two
corneal maps from one point in time to another,
which can be very helpful when monitoring
corneal changes from one exam to the next. For
example, the difference map can clearly define
the absolute effect of contact lenses, refractive
surgery and corneal reshaping on the corneal
surface. This function subtracts each measured
point from one map to the other. With this map
function, both selected maps will appear with a
third “difference” plot displayed. Areas of the cornea Figure 5
that are now flatter are displayed in cooler colors (blue), and areas of the cornea that are
steeper are represented in warmer colors (red), as with pre- and post-op refractive surgery,
orthokeratology, contact lens-induced changes, keratoconus, etc. The result: You can precisely
measure corneal changes. This map is indispensable if you practice corneal reshaping. 6
When
comparing the overnight changes or monitoring the patient over time, the difference map
indicates the absolute results enacted by the lens. Used in combination, the following
interpretations provide a clear picture of the effect: Employ the axial interpretation to determine
treatment zone position and prescription changes. The tangential map determines the position
of the corneal reshaping lens in the closed eye environment. Lastly, use the refractive power
map to measure the treatment zone size (Figure 5).
The OD/OS Compare display shows two
different views of right and left eye exams for the
same patient on the same display. his display is
recommended for the observation of differences
and similarities between a patient’s corneal
shape; recommended use is for determining the
clinical significance of corneal pathology in one
eye as compared to the other.
The Overview display can show four different
views, in any combination, of the same exam for
the selected patient. This display is a helpful
overview for comprehensive evaluation (Figure 6).
Figure 6
The Trend display shows different
exams of the same eye on different
occasions. This display is especially
helpful for illustrating corneal changes
over time; recommended use is for
monitoring corneal normalization prior to
cataract or refractive surgery (Figure 7).
Figure 7
Classifying Corneal Astigmatism
Axial maps also illustrate the position and type of astigmatism.
Normal astigmatism is symmetric and appears as an
hourglass shape either within the pupil margin (apical) or
extending the entire length of the cornea (limbal-to-limbal).
Symmetric or regular astigmatism is classified with-the-rule
(WTR), against-the-rule (ATR) or oblique. WTR astigmatism is
steeper along the 90 degree meridian, ATR astigmatism is
steeper along the 180 degree meridian and oblique
astigmatism is steeper along meridians between 30 to 60
degrees and 120 and 150 degrees (Figures 8,9 & 10).
Irregular astigmatism is asymmetric in presentation and
occurs in conditions such as keratoconus (KC), pellucid
Figure 8
Figure 9 Figure 10
marginal degeneration(PMD), corneal scarring and post-penetrating keratoplasty. Axial maps of
keratoconus show an area of excessive inferior, mid-peripheral steepening (Figure 11). The
area of steepening is red and can be small (nipple), medium (oval) or large (global) in size.
Typically, a variation greater than 10.00 diopters between the steepest and flattest curvature is
indicative of keratoconus.7
The normalized scale on the left of Figure 11 shows a curvature
range greater than 20 diopters. Axial maps of PMD show a distinctive pattern of ATR inferior
peripheral steepening which resembles “kissing birds”, “crab claws” or “butterfly wings” 8.
(Figure 12). Corneal scars induce flattening and appear as blue areas on an axial map,
whereas tight PKP sutures induce steepening and appear as red areas on the axial map.
Figure 11 Figure 12
Measurements
A. Apical Radius
The apical zone is the area around the corneal apex where the refractive power is MOST
constant. The apex does not always correspond to the geographic center or vertex of the
cornea.
Apical radius (Ro) is defined as the power of the cornea at the apex.
B. Sagittal Height Value
Corneal sagittal height (z-value), which isn’t available on all topographers, is a measurement in
millimeters or microns of the distance between the geometric center of the cornea and the
intersection of a specified chord length (y-value). Check with your RGP lab to obtain information
on the chord length and corresponding sagittal height of a specific lens design. If you send the
lab a copy of the topography map, many times they will be able to recommend the initial lens
parameters.
Because reverse geometry and scleral lenses—fits based on corneal vault rather than base
curve—have a specified chord length and sagittal value, this measurement is very helpful when
fitting either lens on post-surgical or irregular corneas. To effectively fit these difficult corneas,
match the sagittal height of the reverse geometry or scleral lens with the sagittal height of the
cornea, and add 15 microns, as doing so allows for a sufficient tear layer.
C. Horizontal Visible Iris Diameter (HVID)
Most topographers are capable of measuring the corneal diameter and label this value as the
HVID or “white-to-white” measurement. The units are in millimeters and are usually generated
automatically; however, some topographers require manual measurement of HVID. This
measurement is extremely important in determining the sagittal height or depth of the cornea.
Larger diameter corneas will have a greater depth than smaller corneas when measured over a
given chord length. This information is vital in determining the optimal base curve and diameter
of a contact lens. For example, a cornea with an apical radius of 42D and an HVID of 12mm will
have a greater depth than a cornea with an apical radius of 42D and an HVID of 11mm. The
12mm cornea will fit better with a steeper base curve and/or larger diameter lens than the 11mm
cornea.
D. Pupil Size
Topographers automatically generate a pupil diameter measurement. However, not all
instruments offer both photopic (with light) and scotopic (without light) measurements.
Indices
A. Eccentricity
There are several mathematical interpretations of corneal shape. One of these, eccentricity,
measures the rate of corneal flattening from the apex to the periphery along a specific chord
and axis. Corneas that flatten at a greater rate from the center outward are assigned high e-
values, and those that flatten at a lesser rate have low e-values. Spherical corneas have low e-
values as compared to keratoconic corneas, which have a much steeper apex and flatten at a
greater rate toward the periphery. The e-value is also an indicator of corneal sagittal height.
Corneas with lower e-values are more spherical and have a greater sagittal height, while
corneas with higher e-values are more elliptical and have a lower sagittal height.9
B. Shape Factor
Shape factor is a measure of corneal asphericity and a derivative of eccentricity. It is identified
as e2
(e squared).2,10
Shape factor differs from eccentricity; it is possible to assign prolate
cornea positive values and oblate corneas low positive or negative values.2,10
In a normal
cornea, the steepest radius (hottest color) is near the center, while the flattest curvature (coolest
color) is toward the limbus. Patients with KC have highly prolate corneas with high shape factor
values.
C. I-S Index
The inferior/superior (I-S) index is a measure of the difference between the average inferior
power and average superior power on the cornea.11
The ratio difference between these two
measurements is the I-S value, expressed in diopters. A positive value is common and signifies
that the inferior cornea is steeper. This positive value will be higher in cases of corneal ectasia,
and an I-S value over 1.2 is characteristic of KC.11
Negative I-S values are less common
and indicate that the superior cornea is steeper than the inferior cornea.
Simulated Fluorescein Patterns
The simulated fluorescein (NaFl) pattern enables you to
visualize the effects of the base curve, diameter and edge
lift changes on the lens fit (Figure 13). Specifically, it
appears over a given topography map, allowing you to
evaluate the tear layer clearance beneath a specified RGP
on that cornea. As a result, when you use the simulated
NaFl pattern as a guide to achieving the optimal tear layer
Figure 13 clearance, you have an excellent chance of designing the
best RGP for any given cornea. Keep in mind, however, that the simulated NaFl pattern has
limitations, as it does not take into consideration the effects of lid tension, corneal tilt and the
tendency of a lens to gravitate toward the cornel apex (which may not be at the geometric
center of the cornea). Each of these factors can cause a lens to decenter away from the
geometric center of the cornea. The bottomline: The simulated fluorescein pattern allows you to
more accurately pick the initial trial lens, which you then evaluate on the eye. The trial lens then
enables you to consider the effects of lid tension, etc.
Topography and Contact Lens Designs
The following contact lens designs rely on corneal topography to determine the final custom
lens parameters:
A. Toric
In order to minimize rotation and ensure stability, toric lenses must be fit with the optimal base
curve and diameter. As previously mentioned, corneal diameter and sagittal height are
determining factors in base curve selection. Larger corneas require steeper base curves than
smaller corneas. A toric lens with too flat a base curve will rotate and result in fluctuating acuity.
Steepening the base curve and/or increasing the diameter is the key to fitting success
with soft toric lenses that rotate excessively. Compensating for rotation by adjusting the axis
will not resolve the instability.
B. Multifocals
It is imperative that multifocal lenses be centered over the patient’s pupil for optimal acuity at
distance. Aspheric multifocal lenses have distance correction in the center and near correction
in the periphery. Patients with large pupils may experience haloes and glare with this type of
multifocal design as the peripheral near addition induces spherical aberration. Multifocals that
have a center near addition create simultaneous vision. Patient’s with large pupils will
experience less aberration from simultaneous vision lenses as the periphery is all distance
correction. A topography map prior to fitting multifocals is helpful in determining the patient’s
pupil size. A topography map over the multifocal lens will show you where the lens sits in
relation to the patient’s pupil. If the pupils are very small or the lens decenters, the patient will
not be capable of experiencing the multifocal properties and should be fit in monovision rather
than multifocal lenses.
C. Keratoconus
In keratoconus, the cone apex is decentered inferiorly and may not be measured accurately with
standard keratometry. Having a topography map helps you to streamline the fitting process on
these irregular corneas by providing you with curvature readings over the entire cornea. The
axial map provides an accurate curvature value of the cone, the tangential map provides a clear
picture of the location and size of the cone, and the elevation map indicates the height of the
cone. This information enables you to choose a base curve that will result in apical clearance
rather than bearing.
D. Reverse Geometry
These lenses have a flatter central base curve with a steeper mid-peripheral curve and are
designed for;
1. Orthokeratology
When fitting these designs, corneal topography enables you to monitor the centration and
dioptric effect of the treatment zone, regardless of the fitting method and lens design.
2. Post-Refractive Surgery
You can design reverse geometry lenses for post-RK and myopic LASIK patients empirically by
sending a copy of the topography map along with the spectacle prescription to your lab. The lab
assesses the color differences—an indication of curvature changes—to determine the base
curve, paracentral fitting curve and peripheral edge configuration. The topography map allows
you to determine the optimal fitting curve which is based on the corneal curvature beyond the
central 3mm measured by standard keratometry. These oblate corneas are steeper in the
periphery than centrally, so using the central keratometry reading will result in a lens that is
much too flat.
3. Advanced Keratoconus
In cases of advanced keratoconus where it is difficult to get an accurate topography map and
difficult to fit standard keratoconus lenses, specially designed reverse geometry lenses are
needed to cover the cone apex. These lenses are based on corneal height rather than curvature
and a diagnostic fitting set must be used to ensure acceptable results. If this is not achievable, a
corneal transplant is recommended.
Topography vs. Keratometry
While keratometers measure only the central 3 mm of the cornea, topographers measure out to
9 or 10mm of the cornea. This gives us a picture of the overall shape and identifies areas of
asymmetry or irregularity beyond the central cornea.
There is no one “best” map with which to evaluate corneal topography. A thorough evaluation of
the cornea depends on your knowledge of all topographic displays—curvature, height and
power. When examined together, they provide a more comprehensive picture of the cornea,
which allows you to better and more accurately diagnose and care for your patients.
References
1.Anderson D, Kojima R. Topography: A clinical pearl. Optom Manag 2007 Feb;42(2):35.
2. McKay T. A Clinical Guide to the Humphrey Corneal Topography System. Dublin, CA:
Humphrey; 1998.
3. Mack C, Merchea M. Advanced Corneal Imaging and Interpretation in the Diagnosis
and Treatment of Corneal Disease. AAO lecture. 2006; Denver.
4. Roberts C. A Practical Guide to the Interpretation of Corneal Topography. CL
Spectrum 1998 Mar;13(3):25-33.
5. Caroline P, Andre M. Elevating our Knowledge of the Corneal Surface. CL Spectrum 2001
Apr;16(4):56.
6. Mountford J, Noack D. Corneal Topography and Orthokeratology: Post-Fit Assessment.
Available at www.beretainer.com/downloads/content/articles/cornealtopo2.pdf.
(Accessed June 2009)
7. Tang M, Shekhar R, Miranda D, Huang D. Characteristics of keratoconus and pellucid
marginal degeneration in mean curvature maps. Am J Ophthalmol 2005 Dec; 140(6):993-1001.
8. Shovlin JP. Do I see Keratoconus or PMD? Rev Optom 2005 Apr;142(4):91.
9. Mountford J, Caroline P, Noack D. Corneal Topography and Orthokeratology: Pre-
Fitting Evaluation. Available at: www.beretainer. com/downloads/content/
articles/cornealtopo1.pdf. (Accessed June 2009)
10. Medmont International Pty Ltd. Medmont E300 Corneal Topographer User Manual.
Australia: Medmont Intl; 2006 Mar:43.
RCCL
11. Feder R, Kshettry P. Noninflammatory Ectatic Disorders. In: Krachmer J, Mannis M,
Holland E, eds. Cornea 2nd ed; vol 1. Philadelphia: Elsevier Mosby; 2005:955-968.
“Understanding Corneal Topography”
To receive one hour of continuing education credit, you must be an AOA Associate member
and must answer nine of the twelve questions successfully. This exam is comprised of
multiple-choice questions designed to quiz your level of understanding of the material
covered in the continuing education article, “Understanding Corneal Topography”.
To receive continuing education credit, complete the information below and mail with your $10
processing fee, $10 per hour of CE before December 31st
of this year to the:
AOA Paraoptometric Resource Center, 243 N. Lindbergh Blvd, St. Louis, MO 63141-7881
Name __________________________________ Member ID number _______________
Address_________________________________________________________________
City _____________________________ State _________ ZIP Code ________________
Phone __________________________________________________________________
E-mail Address ___________________________________________________________
Card Type ______________________ Exp. Date _______________________________
Card Holder Name ________________________________________________________
Credit Card Number ______________________________ 3 Digit Security Code _____
Authorized Signature______________________________________________________
Select the option that best answers the question.
1. Placido-disc topographers directly measure
a. Anterior corneal curvature
b. Posterior corneal curvature
c. Corneal Elevation
d. Corneal thickness
2. Slit scanning devices directly measure
a. Anterior and posterior corneal curvature
b. Anterior and posterior corneal elevation
c. Corneal thickness
d. b and c
3. The normalized color scale setting displays the range of curvature
a. For normal corneas only
b. For irregular corneas only
c. Specific to the map you have selected
d. In a standard range regardless of the map selected
4 .The axial map displays
a. Steep areas in RED
b. Flat areas in BLUE
c. Apical radius
d. All of the above
5. The elevation map displays
a. Corneal height in microns
b. Areas above the reference sphere in RED
c. Areas below the reference sphere in BLUE
d. All of the above
6. Difference maps are especially helpful for
a. Monitoring corneal normalization prior to cataract or refractive surgery
b. Monitoring corneal changes after refractive surgery and corneal reshaping
c. Neither a nor b
d. Both a & b
7. Apical radius is
a. A measurement of the most constant power of the cornea
b. Used to determine corneal depth when combined with HVID
c. A measurement of the corneal power along the visual axis
d. a & b
8. HVID is an important measurement for determining
a. The steepest portion of the cornea
b. The diameter of a contact lens
c. Central corneal curvature
d. Corneal thickness
9. In with-the-rule astigmatism, the cornea
a. Is steeper along the 90 degree meridian
b. Is steeper along the 180 degree meridian
c. Is steeper along meridians between 30 to 60 degrees and 120 and 150 degrees
d. None of the above
10. The difference between keratoconus and pellucid marginal degeneration is
a. Keratoconus is an asymmetric mid-peripheral steepening of the cornea
b. Pellucid marginal degeneration is an asymmetric peripheral steepening of the cornea
c. a & b
d. There is no difference between keratoconus and pellucid marginal degeneration
11. To minimize rotation and ensure stabilization of a toric lens
a. You must adjust the axis orientation
b. You must adjust the cylinder power
c. You must steepen the base curve and/or increase the lens diameter
d. All of the above
12. Reverse geometry lenses are designed for
a. Orthokeratology
b. Post-RK and myopic LASIK fitting
c. Advanced keratoconus
d. All of the above
Did this article meet your educational needs? Yes No
Comments: ______________________________________________________________________
Do you have suggestions for future topics? _____________________________________________

More Related Content

What's hot

pentacam
pentacampentacam
pentacamnrvdad
 
Corneal topography
Corneal topographyCorneal topography
Corneal topographyKuraisha Pari
 
fixation disparity
fixation disparityfixation disparity
fixation disparityHossein Mirzaie
 
Objective refraction
Objective refractionObjective refraction
Objective refractionMOHAMMEDJN
 
Prelasik evaluation
Prelasik evaluationPrelasik evaluation
Prelasik evaluationAmr Mounir
 
Iol power And IOL power calculation
Iol power And IOL power calculationIol power And IOL power calculation
Iol power And IOL power calculationmdalbanuddin
 
progressive addition lenses- optics, designs and performances
progressive addition lenses- optics, designs and performancesprogressive addition lenses- optics, designs and performances
progressive addition lenses- optics, designs and performancessabina paudel
 
Tele-ophthalmology: the new normal in current times
Tele-ophthalmology: the new normal in current timesTele-ophthalmology: the new normal in current times
Tele-ophthalmology: the new normal in current timesObaidur Rehman
 
Spherical RGP contact lens fitting and prescribing
Spherical RGP contact lens fitting and prescribingSpherical RGP contact lens fitting and prescribing
Spherical RGP contact lens fitting and prescribingPabita Dhungel
 
Corneal Topography
Corneal TopographyCorneal Topography
Corneal TopographyRaman Gupta
 
Orthoptics Introduction test
Orthoptics  Introduction testOrthoptics  Introduction test
Orthoptics Introduction testPratyush Dhakal
 
Pentacam
PentacamPentacam
PentacamSimiAfroz2
 
Corneal topographic reports
Corneal topographic reportsCorneal topographic reports
Corneal topographic reportsAl Amin
 
Corneal topography by suraj
Corneal topography by surajCorneal topography by suraj
Corneal topography by surajSuraj Chhetri
 

What's hot (20)

pentacam
pentacampentacam
pentacam
 
Corneal topography
Corneal topographyCorneal topography
Corneal topography
 
Corneal topography
Corneal topographyCorneal topography
Corneal topography
 
fixation disparity
fixation disparityfixation disparity
fixation disparity
 
Objective refraction
Objective refractionObjective refraction
Objective refraction
 
Hrt II
Hrt IIHrt II
Hrt II
 
Prelasik evaluation
Prelasik evaluationPrelasik evaluation
Prelasik evaluation
 
Iol power And IOL power calculation
Iol power And IOL power calculationIol power And IOL power calculation
Iol power And IOL power calculation
 
progressive addition lenses- optics, designs and performances
progressive addition lenses- optics, designs and performancesprogressive addition lenses- optics, designs and performances
progressive addition lenses- optics, designs and performances
 
Tele-ophthalmology: the new normal in current times
Tele-ophthalmology: the new normal in current timesTele-ophthalmology: the new normal in current times
Tele-ophthalmology: the new normal in current times
 
Spherical RGP contact lens fitting and prescribing
Spherical RGP contact lens fitting and prescribingSpherical RGP contact lens fitting and prescribing
Spherical RGP contact lens fitting and prescribing
 
Pentacam
Pentacam Pentacam
Pentacam
 
Corneal Topography
Corneal TopographyCorneal Topography
Corneal Topography
 
Keratometer
Keratometer Keratometer
Keratometer
 
IOL Master
IOL MasterIOL Master
IOL Master
 
Rose K lens.pptx
Rose K lens.pptxRose K lens.pptx
Rose K lens.pptx
 
Orthoptics Introduction test
Orthoptics  Introduction testOrthoptics  Introduction test
Orthoptics Introduction test
 
Pentacam
PentacamPentacam
Pentacam
 
Corneal topographic reports
Corneal topographic reportsCorneal topographic reports
Corneal topographic reports
 
Corneal topography by suraj
Corneal topography by surajCorneal topography by suraj
Corneal topography by suraj
 

Similar to Understanding corneal-topography

Topography presentation
Topography presentationTopography presentation
Topography presentationSalehAlghamdi7
 
Corneal topography and wavefront imaging
Corneal topography and wavefront imagingCorneal topography and wavefront imaging
Corneal topography and wavefront imagingSocrates Narvaez
 
ELEVATION BASED CORNEAL TOPOGRAPHY.pptx
ELEVATION BASED  CORNEAL TOPOGRAPHY.pptxELEVATION BASED  CORNEAL TOPOGRAPHY.pptx
ELEVATION BASED CORNEAL TOPOGRAPHY.pptxBipin Koirala
 
cornealtopography-160313115425.pdf
cornealtopography-160313115425.pdfcornealtopography-160313115425.pdf
cornealtopography-160313115425.pdfanju468752
 
Corneal topography
Corneal topographyCorneal topography
Corneal topographySatish Jeria
 
Corneal topography...ppt
Corneal topography...pptCorneal topography...ppt
Corneal topography...pptrameshbhandari32
 
FR and the astigmatism after penetrating keratoplasty
FR and the astigmatism after penetrating keratoplastyFR and the astigmatism after penetrating keratoplasty
FR and the astigmatism after penetrating keratoplastyFerrara Ophthalmics
 
Galilei corneal imaging
Galilei corneal imagingGalilei corneal imaging
Galilei corneal imagingMehdi Khanlari
 
Corneal topography
Corneal topographyCorneal topography
Corneal topographySanaa1993
 
13 influence of corneal volume
13 influence of corneal volume13 influence of corneal volume
13 influence of corneal volumeFerrara Ophthalmics
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Pentacam demystified 2016
Pentacam demystified 2016Pentacam demystified 2016
Pentacam demystified 2016DINESH and SONALEE
 
Keratometry & autorefraction
Keratometry & autorefractionKeratometry & autorefraction
Keratometry & autorefractionDr.Siddharth Gautam
 
ANALOG RADIOGRAPHY SEM1.pptx
ANALOG RADIOGRAPHY SEM1.pptxANALOG RADIOGRAPHY SEM1.pptx
ANALOG RADIOGRAPHY SEM1.pptxMeghaKachari
 

Similar to Understanding corneal-topography (20)

Topography presentation
Topography presentationTopography presentation
Topography presentation
 
Corneal topography and wavefront imaging
Corneal topography and wavefront imagingCorneal topography and wavefront imaging
Corneal topography and wavefront imaging
 
ELEVATION BASED CORNEAL TOPOGRAPHY.pptx
ELEVATION BASED  CORNEAL TOPOGRAPHY.pptxELEVATION BASED  CORNEAL TOPOGRAPHY.pptx
ELEVATION BASED CORNEAL TOPOGRAPHY.pptx
 
cornealtopography-160313115425.pdf
cornealtopography-160313115425.pdfcornealtopography-160313115425.pdf
cornealtopography-160313115425.pdf
 
Corneal topography
Corneal topographyCorneal topography
Corneal topography
 
Corneal topography...ppt
Corneal topography...pptCorneal topography...ppt
Corneal topography...ppt
 
Defending
DefendingDefending
Defending
 
Synoptophore Information Guide
Synoptophore Information GuideSynoptophore Information Guide
Synoptophore Information Guide
 
GDx
GDxGDx
GDx
 
FR and the astigmatism after penetrating keratoplasty
FR and the astigmatism after penetrating keratoplastyFR and the astigmatism after penetrating keratoplasty
FR and the astigmatism after penetrating keratoplasty
 
Galilei corneal imaging
Galilei corneal imagingGalilei corneal imaging
Galilei corneal imaging
 
Biometery
BiometeryBiometery
Biometery
 
Corneal topography
Corneal topographyCorneal topography
Corneal topography
 
13 influence of corneal volume
13 influence of corneal volume13 influence of corneal volume
13 influence of corneal volume
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Pentacam demystified 2016
Pentacam demystified 2016Pentacam demystified 2016
Pentacam demystified 2016
 
TOPOGRAPHY .pdf
TOPOGRAPHY                             .pdfTOPOGRAPHY                             .pdf
TOPOGRAPHY .pdf
 
Keratometry & autorefraction
Keratometry & autorefractionKeratometry & autorefraction
Keratometry & autorefraction
 
ANALOG RADIOGRAPHY SEM1.pptx
ANALOG RADIOGRAPHY SEM1.pptxANALOG RADIOGRAPHY SEM1.pptx
ANALOG RADIOGRAPHY SEM1.pptx
 
EVALUATION OF ANTERIOR SEGMENT IMAGING TECHNIQUES IN DIAGNOSIS OF KERATOCONUS
EVALUATION OF ANTERIOR SEGMENT IMAGING TECHNIQUES IN DIAGNOSIS OF KERATOCONUSEVALUATION OF ANTERIOR SEGMENT IMAGING TECHNIQUES IN DIAGNOSIS OF KERATOCONUS
EVALUATION OF ANTERIOR SEGMENT IMAGING TECHNIQUES IN DIAGNOSIS OF KERATOCONUS
 

Recently uploaded

Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabad
Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service HyderabadCall Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabad
Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabaddelhimodelshub1
 
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171Call Girls Service Gurgaon
 
Basics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxBasics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxAyush Gupta
 
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...Niamh verma
 
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591adityaroy0215
 
Hot Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In Chandigarh
Hot  Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In ChandigarhHot  Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In Chandigarh
Hot Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In ChandigarhVip call girls In Chandigarh
 
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana TulsiHigh Profile Call Girls Chandigarh Aarushi
 
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...delhimodelshub1
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Call Girls Noida
 
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girls Service Gurgaon
 
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in LucknowRussian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknowgragteena
 
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...delhimodelshub1
 
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...soniya singh
 
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...delhimodelshub1
 
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...High Profile Call Girls Chandigarh Aarushi
 
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...Call Girls Noida
 
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabad
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service HyderabadCall Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabad
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabaddelhimodelshub1
 
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service Dehradun
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service DehradunDehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service Dehradun
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service DehradunNiamh verma
 

Recently uploaded (20)

VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service LucknowVIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
VIP Call Girls Lucknow Isha 🔝 9719455033 🔝 🎶 Independent Escort Service Lucknow
 
Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabad
Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service HyderabadCall Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabad
Call Girl Hyderabad Madhuri 9907093804 Independent Escort Service Hyderabad
 
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171VIP Call Girl Sector 32 Noida Just Book Me 9711199171
VIP Call Girl Sector 32 Noida Just Book Me 9711199171
 
Basics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptxBasics of Anatomy- Language of Anatomy.pptx
Basics of Anatomy- Language of Anatomy.pptx
 
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...
Call Girls Service Chandigarh Gori WhatsApp ❤9115573837 VIP Call Girls Chandi...
 
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
VIP Call Girl Sector 25 Gurgaon Just Call Me 9899900591
 
Hot Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In Chandigarh
Hot  Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In ChandigarhHot  Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In Chandigarh
Hot Call Girl In Chandigarh 👅🥵 9053'900678 Call Girls Service In Chandigarh
 
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsiindian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
indian Call Girl Panchkula ❤️🍑 9907093804 Low Rate Call Girls Ludhiana Tulsi
 
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...
Russian Call Girls in Hyderabad Ishita 9907093804 Independent Escort Service ...
 
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
Vip sexy Call Girls Service In Sector 137,9999965857 Young Female Escorts Ser...
 
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service GurgaonCall Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
Call Girl Gurgaon Saloni 9711199012 Independent Escort Service Gurgaon
 
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in LucknowRussian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
Russian Escorts Aishbagh Road * 9548273370 Naughty Call Girls Service in Lucknow
 
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...
Russian Call Girls Hyderabad Saloni 9907093804 Independent Escort Service Hyd...
 
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...
Gurgaon iffco chowk 🔝 Call Girls Service 🔝 ( 8264348440 ) unlimited hard sex ...
 
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
Russian Call Girls in Dehradun Komal 🔝 7001305949 🔝 📍 Independent Escort Serv...
 
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...
College Call Girls Hyderabad Sakshi 9907093804 Independent Escort Service Hyd...
 
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
Russian Call Girls in Chandigarh Ojaswi ❤️🍑 9907093804 👄🫦 Independent Escort ...
 
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...
pOOJA sexy Call Girls In Sector 49,9999965857 Young Female Escorts Service In...
 
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabad
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service HyderabadCall Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabad
Call Girls in Hyderabad Lavanya 9907093804 Independent Escort Service Hyderabad
 
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service Dehradun
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service DehradunDehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service Dehradun
Dehradun Call Girls Service ❤️🍑 9675010100 👄🫦Independent Escort Service Dehradun
 

Understanding corneal-topography

  • 1. Understanding Corneal Topography By Dianne Anderson Corneal topography provides us with a detailed description of various curvature and shape characteristics of the cornea. This information is very helpful for the illustration of corneal astigmatism, detection of corneal pathologies and perfection of contact lens fitting. Becoming familiar with the basics of topography will allow you to choose the appropriate map for any given patient situation as well as understand the data associated with these maps. This article explains the different topography map types, how to classify corneal astigmatism and corneal shapes associated with various pathologies and how to design contact lenses with the information provided. Even though the image presentations may vary between topographers, this information is universal. Types of Topographers Topographers can be small-cone or large-cone Placido disc systems or slit-scanning devices. Placido disc systems project a series of concentric rings of light on the anterior corneal surface. The corneal shape or curvature is directly measured in diopters of curvature along thousands of points on the rings. Placido disc topography systems do not actually measure elevation; rather, they derive anterior corneal elevation data by reconstructing actual anterior curvature measurements via sophisticated algorithms. Small-cone Placido disc topographers project more rings on the cornea and have a shorter working distance than large-cone Placido disc topographers. These systems supply a great deal of measurement points and require a steady hand to ensure accurate image acquisition. The Medmont E300 (Medmont), Scout and Keratron (EyeQuip) and Magellan Mapper (Nidek) are examples of small-cone topography systems. Large-cone Placido disc systems use a longer working distance and project fewer rings onto the cornea than small-cone topographers and are more forgiving when measuring patients with very deep set eyes. Examples of large-cone topographers are the ATLAS 995 and 9000 (Carl Zeiss Meditec) and ReSeeVit (Veatch Ophthalmic Instruments). Slit-scanning or elevation devices directly measure the elevation of both the anterior and posterior cornea via time domain or light-based analysis. These devices process elevation data along several points on the anterior and posterior corneal surfaces. This data is then converted into anterior and posterior curvature in diopters as well as corneal thickness or pachymetry in microns. Examples of elevation devices are the Orbscan (Bausch & Lomb), Pentacam (Oculus) and Visante OCT (Carl Zeiss Meditec).
  • 2. Color Scale Settings Corneal topography maps utilize advanced color scales to identify curvature data. Areas of steeper curvature are displayed in warm colors such as red and orange, whereas areas of flatter curvature are illustrated in cool colors such as green and blue. Topographers display color maps in “absolute” and “normalized” scales. These color scales appear on the left margin of the map with the flattest curvature at the bottom and the steepest curvature at the top. The absolute or standard scale displays a fixed range of curvatures selected in the settings of the topographer regardless of the map selected. The normalized scale displays the range of curvature or power calculated from the specific map(s) you select. This provides an excellent general view of the entire cornea, as the scale shows the flattest to steepest readings. Defining the Maps Axial Map The axial map is used most often, since axial curvature is directly related to corneal power. This allows you to correlate the anterior surface shape to the patient’s refractive status. The axial map displays steep areas in hot colors (red) and flat areas in cool colors (blue).These colors directly correspond with the curvature data on the scale displayed at the left when viewing the image.1 A simple example is the axial map of a spherical cornea (Figure 1). Note the consistent curvature throughout the pupillary zone (outlined in black) and concentric flattening outward to the limbus. In this case, the steepest part of the cornea, known as the apex, is centered on the visual axis. This is a very symmetric cornea. In cases of corneal pathologies such as keratoconus, the corneal apex is decentered off the visual axis. This is quite apparent on the axial map, and allows you to diagnose corneal irregularities and explains why the patient’s vision is subacute. Tangential Map This map clearly defines small or “instantaneous” curvature changes. It calculates each measured point of data at a 90° “tangent” to its surface. Tangential maps provide a more detailed description of the corneal shape and provide a clearer view of the size and shape of the cone in a keratoconus patient, for instance. The ability to measure the size of the cone is very helpful in determining the ideal lens design and optic zone size. Additionally, tangential maps define the position of the treatment or effect of corneal reshaping and refractive surgery. Specifically note the red ring of paracentral steepening outside the blue central area of flattening in this example of myopic LASIK (Figure 2). Comparing the red ring’s position in relation to the pupil or visual axis clearly defines the position of the effect. Figure 2 Figure 1
  • 3. Refractive Power Map This map provides an interpretation of the quality of vision a patient may achieve from the corneal surface throughout the pupillary zone. The more consistent or uniform the refractive power within the margins of the pupil, the better able the anterior surface of the cornea is to refract light properly. Practitioners do not commonly employ the refractive map, as it does not provide information on curvature or size and shape of the corneal surface (for which the axial and tangential maps are more effective). However, this map can be very effective when used to interpret the quality of vision achievable from a patient’s corneal surface. For instance, when comparing pre- vs. post-corneal reshaping results, the refractive map illustrates the extent that corneal surface changes contribute to the patient’s quality of vision and the position of the effect of treatment in relation to the pupil. Thus, the refractive power map can aid you in determining how well the patient sees specifically due to the contribution of the corneal surface to visual acuity. Additionally, following corneal reshaping or refractive surgery, it can show you how well or how poorly the effect is positioned. Elevation Map The elevation map defines the height of the cornea in reference to “best fit sphere,” or the radius of curvature that best matches the average curvature of the map. Placido disc topography systems do not actually measure elevation; rather, they gather elevation data by reconstructing actual curvature measurements via sophisticated algorithms.2,3 Elevation maps measure corneal height in microns and have a somewhat counterintuitive interpretation. Elevation is defined as the difference between the actual corneal surface and the best- fit reference sphere as measured in microns.2 Figure 3 Corneal elevation above the reference sphere is measured in positive microns and appears as red shading on the map. Conversely, blue shading indicates that the corneal surface is below the reference sphere and is measured in negative microns (Figure 3). But, the corneal curvature can actually be very steep in these blue areas.4,5 Classic examples include the periphery of a cornea along the steep meridian in limbal-to-limbal astigmatism and the inferior periphery of a cornea with oval KC. These maps are especially helpful in determining the outcome of contact lens fitting by predicting areas of excessive bearing (red/positive microns) or pooling (blue/negative microns).4,5 This information will guide you in designing the ideal RGP lens—spherical, aspheric, toric, keratoconic or reverse geometry.
  • 4. Slit scanning and OCT devices measure the elevation of the front and back surfaces of the cornea. This is displayed as anterior and posterior float maps. “Float” refers to the fact that the best fit sphere has no fixed center, but rather floats. The distance between cornea and reference body is optimized to be as small as possible and as equal as possible (Figure 4). Figure 4 Displays The Single View display shows a single exam for a selected patient; recommended use is for baseline screening. The Difference Display shows two exams for the same eye and the difference between them. This highly under-utilized map compares two corneal maps from one point in time to another, which can be very helpful when monitoring corneal changes from one exam to the next. For example, the difference map can clearly define the absolute effect of contact lenses, refractive surgery and corneal reshaping on the corneal surface. This function subtracts each measured point from one map to the other. With this map function, both selected maps will appear with a third “difference” plot displayed. Areas of the cornea Figure 5 that are now flatter are displayed in cooler colors (blue), and areas of the cornea that are steeper are represented in warmer colors (red), as with pre- and post-op refractive surgery, orthokeratology, contact lens-induced changes, keratoconus, etc. The result: You can precisely measure corneal changes. This map is indispensable if you practice corneal reshaping. 6 When comparing the overnight changes or monitoring the patient over time, the difference map indicates the absolute results enacted by the lens. Used in combination, the following interpretations provide a clear picture of the effect: Employ the axial interpretation to determine treatment zone position and prescription changes. The tangential map determines the position of the corneal reshaping lens in the closed eye environment. Lastly, use the refractive power map to measure the treatment zone size (Figure 5).
  • 5. The OD/OS Compare display shows two different views of right and left eye exams for the same patient on the same display. his display is recommended for the observation of differences and similarities between a patient’s corneal shape; recommended use is for determining the clinical significance of corneal pathology in one eye as compared to the other. The Overview display can show four different views, in any combination, of the same exam for the selected patient. This display is a helpful overview for comprehensive evaluation (Figure 6). Figure 6 The Trend display shows different exams of the same eye on different occasions. This display is especially helpful for illustrating corneal changes over time; recommended use is for monitoring corneal normalization prior to cataract or refractive surgery (Figure 7). Figure 7 Classifying Corneal Astigmatism Axial maps also illustrate the position and type of astigmatism. Normal astigmatism is symmetric and appears as an hourglass shape either within the pupil margin (apical) or extending the entire length of the cornea (limbal-to-limbal). Symmetric or regular astigmatism is classified with-the-rule (WTR), against-the-rule (ATR) or oblique. WTR astigmatism is steeper along the 90 degree meridian, ATR astigmatism is steeper along the 180 degree meridian and oblique astigmatism is steeper along meridians between 30 to 60 degrees and 120 and 150 degrees (Figures 8,9 & 10). Irregular astigmatism is asymmetric in presentation and occurs in conditions such as keratoconus (KC), pellucid Figure 8
  • 6. Figure 9 Figure 10 marginal degeneration(PMD), corneal scarring and post-penetrating keratoplasty. Axial maps of keratoconus show an area of excessive inferior, mid-peripheral steepening (Figure 11). The area of steepening is red and can be small (nipple), medium (oval) or large (global) in size. Typically, a variation greater than 10.00 diopters between the steepest and flattest curvature is indicative of keratoconus.7 The normalized scale on the left of Figure 11 shows a curvature range greater than 20 diopters. Axial maps of PMD show a distinctive pattern of ATR inferior peripheral steepening which resembles “kissing birds”, “crab claws” or “butterfly wings” 8. (Figure 12). Corneal scars induce flattening and appear as blue areas on an axial map, whereas tight PKP sutures induce steepening and appear as red areas on the axial map. Figure 11 Figure 12 Measurements A. Apical Radius The apical zone is the area around the corneal apex where the refractive power is MOST constant. The apex does not always correspond to the geographic center or vertex of the cornea. Apical radius (Ro) is defined as the power of the cornea at the apex. B. Sagittal Height Value Corneal sagittal height (z-value), which isn’t available on all topographers, is a measurement in millimeters or microns of the distance between the geometric center of the cornea and the intersection of a specified chord length (y-value). Check with your RGP lab to obtain information on the chord length and corresponding sagittal height of a specific lens design. If you send the lab a copy of the topography map, many times they will be able to recommend the initial lens parameters. Because reverse geometry and scleral lenses—fits based on corneal vault rather than base curve—have a specified chord length and sagittal value, this measurement is very helpful when
  • 7. fitting either lens on post-surgical or irregular corneas. To effectively fit these difficult corneas, match the sagittal height of the reverse geometry or scleral lens with the sagittal height of the cornea, and add 15 microns, as doing so allows for a sufficient tear layer. C. Horizontal Visible Iris Diameter (HVID) Most topographers are capable of measuring the corneal diameter and label this value as the HVID or “white-to-white” measurement. The units are in millimeters and are usually generated automatically; however, some topographers require manual measurement of HVID. This measurement is extremely important in determining the sagittal height or depth of the cornea. Larger diameter corneas will have a greater depth than smaller corneas when measured over a given chord length. This information is vital in determining the optimal base curve and diameter of a contact lens. For example, a cornea with an apical radius of 42D and an HVID of 12mm will have a greater depth than a cornea with an apical radius of 42D and an HVID of 11mm. The 12mm cornea will fit better with a steeper base curve and/or larger diameter lens than the 11mm cornea. D. Pupil Size Topographers automatically generate a pupil diameter measurement. However, not all instruments offer both photopic (with light) and scotopic (without light) measurements. Indices A. Eccentricity There are several mathematical interpretations of corneal shape. One of these, eccentricity, measures the rate of corneal flattening from the apex to the periphery along a specific chord and axis. Corneas that flatten at a greater rate from the center outward are assigned high e- values, and those that flatten at a lesser rate have low e-values. Spherical corneas have low e- values as compared to keratoconic corneas, which have a much steeper apex and flatten at a greater rate toward the periphery. The e-value is also an indicator of corneal sagittal height. Corneas with lower e-values are more spherical and have a greater sagittal height, while corneas with higher e-values are more elliptical and have a lower sagittal height.9 B. Shape Factor Shape factor is a measure of corneal asphericity and a derivative of eccentricity. It is identified as e2 (e squared).2,10 Shape factor differs from eccentricity; it is possible to assign prolate cornea positive values and oblate corneas low positive or negative values.2,10 In a normal cornea, the steepest radius (hottest color) is near the center, while the flattest curvature (coolest color) is toward the limbus. Patients with KC have highly prolate corneas with high shape factor values. C. I-S Index The inferior/superior (I-S) index is a measure of the difference between the average inferior power and average superior power on the cornea.11 The ratio difference between these two measurements is the I-S value, expressed in diopters. A positive value is common and signifies that the inferior cornea is steeper. This positive value will be higher in cases of corneal ectasia, and an I-S value over 1.2 is characteristic of KC.11 Negative I-S values are less common and indicate that the superior cornea is steeper than the inferior cornea.
  • 8. Simulated Fluorescein Patterns The simulated fluorescein (NaFl) pattern enables you to visualize the effects of the base curve, diameter and edge lift changes on the lens fit (Figure 13). Specifically, it appears over a given topography map, allowing you to evaluate the tear layer clearance beneath a specified RGP on that cornea. As a result, when you use the simulated NaFl pattern as a guide to achieving the optimal tear layer Figure 13 clearance, you have an excellent chance of designing the best RGP for any given cornea. Keep in mind, however, that the simulated NaFl pattern has limitations, as it does not take into consideration the effects of lid tension, corneal tilt and the tendency of a lens to gravitate toward the cornel apex (which may not be at the geometric center of the cornea). Each of these factors can cause a lens to decenter away from the geometric center of the cornea. The bottomline: The simulated fluorescein pattern allows you to more accurately pick the initial trial lens, which you then evaluate on the eye. The trial lens then enables you to consider the effects of lid tension, etc. Topography and Contact Lens Designs The following contact lens designs rely on corneal topography to determine the final custom lens parameters: A. Toric In order to minimize rotation and ensure stability, toric lenses must be fit with the optimal base curve and diameter. As previously mentioned, corneal diameter and sagittal height are determining factors in base curve selection. Larger corneas require steeper base curves than smaller corneas. A toric lens with too flat a base curve will rotate and result in fluctuating acuity. Steepening the base curve and/or increasing the diameter is the key to fitting success with soft toric lenses that rotate excessively. Compensating for rotation by adjusting the axis will not resolve the instability. B. Multifocals It is imperative that multifocal lenses be centered over the patient’s pupil for optimal acuity at distance. Aspheric multifocal lenses have distance correction in the center and near correction in the periphery. Patients with large pupils may experience haloes and glare with this type of multifocal design as the peripheral near addition induces spherical aberration. Multifocals that have a center near addition create simultaneous vision. Patient’s with large pupils will experience less aberration from simultaneous vision lenses as the periphery is all distance correction. A topography map prior to fitting multifocals is helpful in determining the patient’s pupil size. A topography map over the multifocal lens will show you where the lens sits in relation to the patient’s pupil. If the pupils are very small or the lens decenters, the patient will not be capable of experiencing the multifocal properties and should be fit in monovision rather than multifocal lenses. C. Keratoconus In keratoconus, the cone apex is decentered inferiorly and may not be measured accurately with standard keratometry. Having a topography map helps you to streamline the fitting process on these irregular corneas by providing you with curvature readings over the entire cornea. The axial map provides an accurate curvature value of the cone, the tangential map provides a clear picture of the location and size of the cone, and the elevation map indicates the height of the
  • 9. cone. This information enables you to choose a base curve that will result in apical clearance rather than bearing. D. Reverse Geometry These lenses have a flatter central base curve with a steeper mid-peripheral curve and are designed for; 1. Orthokeratology When fitting these designs, corneal topography enables you to monitor the centration and dioptric effect of the treatment zone, regardless of the fitting method and lens design. 2. Post-Refractive Surgery You can design reverse geometry lenses for post-RK and myopic LASIK patients empirically by sending a copy of the topography map along with the spectacle prescription to your lab. The lab assesses the color differences—an indication of curvature changes—to determine the base curve, paracentral fitting curve and peripheral edge configuration. The topography map allows you to determine the optimal fitting curve which is based on the corneal curvature beyond the central 3mm measured by standard keratometry. These oblate corneas are steeper in the periphery than centrally, so using the central keratometry reading will result in a lens that is much too flat. 3. Advanced Keratoconus In cases of advanced keratoconus where it is difficult to get an accurate topography map and difficult to fit standard keratoconus lenses, specially designed reverse geometry lenses are needed to cover the cone apex. These lenses are based on corneal height rather than curvature and a diagnostic fitting set must be used to ensure acceptable results. If this is not achievable, a corneal transplant is recommended. Topography vs. Keratometry While keratometers measure only the central 3 mm of the cornea, topographers measure out to 9 or 10mm of the cornea. This gives us a picture of the overall shape and identifies areas of asymmetry or irregularity beyond the central cornea. There is no one “best” map with which to evaluate corneal topography. A thorough evaluation of the cornea depends on your knowledge of all topographic displays—curvature, height and power. When examined together, they provide a more comprehensive picture of the cornea, which allows you to better and more accurately diagnose and care for your patients.
  • 10. References 1.Anderson D, Kojima R. Topography: A clinical pearl. Optom Manag 2007 Feb;42(2):35. 2. McKay T. A Clinical Guide to the Humphrey Corneal Topography System. Dublin, CA: Humphrey; 1998. 3. Mack C, Merchea M. Advanced Corneal Imaging and Interpretation in the Diagnosis and Treatment of Corneal Disease. AAO lecture. 2006; Denver. 4. Roberts C. A Practical Guide to the Interpretation of Corneal Topography. CL Spectrum 1998 Mar;13(3):25-33. 5. Caroline P, Andre M. Elevating our Knowledge of the Corneal Surface. CL Spectrum 2001 Apr;16(4):56. 6. Mountford J, Noack D. Corneal Topography and Orthokeratology: Post-Fit Assessment. Available at www.beretainer.com/downloads/content/articles/cornealtopo2.pdf. (Accessed June 2009) 7. Tang M, Shekhar R, Miranda D, Huang D. Characteristics of keratoconus and pellucid marginal degeneration in mean curvature maps. Am J Ophthalmol 2005 Dec; 140(6):993-1001. 8. Shovlin JP. Do I see Keratoconus or PMD? Rev Optom 2005 Apr;142(4):91. 9. Mountford J, Caroline P, Noack D. Corneal Topography and Orthokeratology: Pre- Fitting Evaluation. Available at: www.beretainer. com/downloads/content/ articles/cornealtopo1.pdf. (Accessed June 2009) 10. Medmont International Pty Ltd. Medmont E300 Corneal Topographer User Manual. Australia: Medmont Intl; 2006 Mar:43. RCCL 11. Feder R, Kshettry P. Noninflammatory Ectatic Disorders. In: Krachmer J, Mannis M, Holland E, eds. Cornea 2nd ed; vol 1. Philadelphia: Elsevier Mosby; 2005:955-968.
  • 11. “Understanding Corneal Topography” To receive one hour of continuing education credit, you must be an AOA Associate member and must answer nine of the twelve questions successfully. This exam is comprised of multiple-choice questions designed to quiz your level of understanding of the material covered in the continuing education article, “Understanding Corneal Topography”. To receive continuing education credit, complete the information below and mail with your $10 processing fee, $10 per hour of CE before December 31st of this year to the: AOA Paraoptometric Resource Center, 243 N. Lindbergh Blvd, St. Louis, MO 63141-7881 Name __________________________________ Member ID number _______________ Address_________________________________________________________________ City _____________________________ State _________ ZIP Code ________________ Phone __________________________________________________________________ E-mail Address ___________________________________________________________ Card Type ______________________ Exp. Date _______________________________ Card Holder Name ________________________________________________________ Credit Card Number ______________________________ 3 Digit Security Code _____ Authorized Signature______________________________________________________ Select the option that best answers the question. 1. Placido-disc topographers directly measure a. Anterior corneal curvature b. Posterior corneal curvature c. Corneal Elevation d. Corneal thickness 2. Slit scanning devices directly measure a. Anterior and posterior corneal curvature b. Anterior and posterior corneal elevation c. Corneal thickness d. b and c 3. The normalized color scale setting displays the range of curvature a. For normal corneas only b. For irregular corneas only c. Specific to the map you have selected d. In a standard range regardless of the map selected 4 .The axial map displays a. Steep areas in RED b. Flat areas in BLUE c. Apical radius d. All of the above
  • 12. 5. The elevation map displays a. Corneal height in microns b. Areas above the reference sphere in RED c. Areas below the reference sphere in BLUE d. All of the above 6. Difference maps are especially helpful for a. Monitoring corneal normalization prior to cataract or refractive surgery b. Monitoring corneal changes after refractive surgery and corneal reshaping c. Neither a nor b d. Both a & b 7. Apical radius is a. A measurement of the most constant power of the cornea b. Used to determine corneal depth when combined with HVID c. A measurement of the corneal power along the visual axis d. a & b 8. HVID is an important measurement for determining a. The steepest portion of the cornea b. The diameter of a contact lens c. Central corneal curvature d. Corneal thickness 9. In with-the-rule astigmatism, the cornea a. Is steeper along the 90 degree meridian b. Is steeper along the 180 degree meridian c. Is steeper along meridians between 30 to 60 degrees and 120 and 150 degrees d. None of the above 10. The difference between keratoconus and pellucid marginal degeneration is a. Keratoconus is an asymmetric mid-peripheral steepening of the cornea b. Pellucid marginal degeneration is an asymmetric peripheral steepening of the cornea c. a & b d. There is no difference between keratoconus and pellucid marginal degeneration 11. To minimize rotation and ensure stabilization of a toric lens a. You must adjust the axis orientation b. You must adjust the cylinder power c. You must steepen the base curve and/or increase the lens diameter d. All of the above 12. Reverse geometry lenses are designed for a. Orthokeratology b. Post-RK and myopic LASIK fitting c. Advanced keratoconus d. All of the above Did this article meet your educational needs? Yes No Comments: ______________________________________________________________________ Do you have suggestions for future topics? _____________________________________________