SlideShare a Scribd company logo
1 of 11
Euler-Fermat theorem
Dr. Kuparala Venkata
Vidyasagar
Lecturer in Mathematics
SVLNS Govt. Degree
College,
Bheemunipatnam
LEARNING OUTCOMES
๏ƒผFermatโ€™s theorem
๏ƒผCorollary ON Fermatโ€™s theorem
๏ƒผSet of residues modulo ๐‘š
๏ƒผReduced set of residues modulo ๐‘š
๏ƒผTheorems based on residue modulo m
๏ƒผEuler's theorem or Euler's generalization of
Fermat's theorem
๏ƒผFermat's theorem from Euler's theorem
๏ƒผExamples
Fermatโ€™s theorem
Statement: If. ๐‘ƒ is a prime and (๐‘Ž, ๐‘) = 1 then ๐‘Ž๐‘โˆ’1 โ‰ก
1 mod๐‘
proof. Given that ๐‘ is a prime and (๐‘Ž, ๐‘) = 1
claim: ๐‘Ž๐‘โˆ’1
โ‰ก 1(mod๐‘)
Since (๐‘Ž, ๐‘) = 1 By known theorem
When the numbers ๐‘Ž, 2๐‘Ž, 3๐‘Ž โ€ฆ (๐‘ โˆ’ 1)๐‘Ž are derided by p,
remainders are 1,2,3,โ€ฆ.. p-1 not necessarily in this order
๐ฟ๐‘’๐‘ก ๐‘Ž โ‰ก ๐‘Ÿ1(mod๐‘)
2๐‘Ž โ‰ก ๐‘Ÿ2(mod๐‘)
(๐‘ โˆ’ 1)๐‘Ž โ‰ก ๐‘Ÿ๐‘โˆ’1(mod๐‘)
But ๐›พ1, ๐›พ2; ๐‘Ÿ๐‘โˆ’1 are also remainders obtained by dividing
๐‘Ž, 2๐‘Ž, โ‹ฏ (๐‘ โˆ’ 1)๐‘Ž by ๐‘
โˆด ๐›พ1, ๐‘Ÿ2, โ‹ฏ ๐‘Ÿ๐‘ƒโˆ’1 โ‰ก 1 โ‹… 2 โ‹… 3 โ‹ฏ (๐‘ƒ โˆ’ 1) โŸถ (1)
From the above congruent relations
But ๐›พ1, ๐›พ2; ๐‘Ÿ๐‘โˆ’1 are also remainders obtained by dividing
๐‘Ž, 2๐‘Ž, โ‹ฏ (๐‘ โˆ’ 1)๐‘Ž by ๐‘
โˆด ๐›พ1, ๐‘Ÿ2, โ‹ฏ ๐‘Ÿ๐‘ƒโˆ’1 โ‰ก 1 โ‹… 2 โ‹… 3 โ‹ฏ (๐‘ƒ โˆ’ 1) โŸถ (1)
From the above congruent relations
(๐‘ƒ โˆ’ 1)! ๐‘‘๐‘โˆ’1 โ‰ก (๐‘ โˆ’ 1)! (modp)
Since, ๐‘ƒ is prime
(๐‘ƒ, 1) = 1, (๐‘ƒ, 2) = 1 โ€ฆ (๐‘ƒ, ๐‘ƒ โˆ’ 1) = 1
โ‡’ (๐‘ƒ, (๐‘ƒ โˆ’ 1)!) = 1
๐‘Žโˆ’1 โ‰ก 1(mod๐‘)
Hence the proof
If ๐‘ƒ is a prime and a is any integer then
๐‘Ž๐‘
โ‰ก ๐‘Ž(mod๐‘)
Case (i). Let (๐‘Ž, ๐‘) โ‰  1
โ‡’ ๐‘ โˆฃ ๐‘Ž and
๐‘Ž โ‰ก 0 mod๐‘
โ„Ž๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘ƒ
โ‰ก 0(mod๐‘)
and 0 โ‰ก ๐‘Ž(mod๐‘)
By Transitive property
๐‘Ž๐‘
โ‰ก ๐‘Ž ๐‘š๐‘œ๐‘‘ ๐‘
case(ii):
Let (๐‘Ž, ๐‘) = 1
By Fermat's theorem
๐‘Ž๐‘โˆ’1
โ‰ก 1(mod๐‘)
๐‘Ž๐‘
โ‹…
1
๐‘Ž
โ‰ก 1(mod๐‘)
๐‘Ž๐‘
โ‰ก ๐‘Ž(mod๐‘)
Hence the proof
โ†’ If ๐‘ƒ is prime and (๐‘Ž, ๐‘) = 1 then ๐‘Ž๐‘โˆ’1 โˆ’ 1 = ๐‘€(๐‘ƒ)
Definition1.: A Set of integers ๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ ๐‘ฅ๐‘šโˆ’1 is
called a set of residues modulo ๐‘š if each ๐‘ฅ๐‘–(๐‘– =
0,1,2, โ‹ฏ ๐‘š โˆ’ 1) belongs to one and only one residue class
modulo.
Definition2.: A Set of integers ๐‘ฅ1, ๐‘ฅ2 โ€ฆ , ๐‘ฅ๐œ™๐‘š) is called a
reduced set of residues modulo ๐‘š if exactly one of them,
lies in each, residue class relatively prime to ๐‘š,
Eg: {1,5} is a reduced set of residues modulo 6
= {0,1,2,3,4,5}
(โˆต (1,6) = 1, (5; 6) = 1)
โ†’ ๐œ™(๐‘š) is the number of elements in every reduced Set
of residues modulo ๐‘š.
THEOREM: If ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š), is a set of reduced residue modulo ๐‘š
and (๐‘Ž, ๐‘š) = 1 then ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š) is also a set of reduced
residue modulo ๐‘š.
Given that ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š) is a set of
reduced residue modulo ๐‘š and
(๐‘Ž, ๐‘š) = 1
The
set ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š,} โ„Ž๐‘Ž๐‘  ๐œ™(๐‘š)
elements
Since ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š}, is a reduced
Set of residues modulo ๐‘š.
โ‡’ Each ๐›พ๐‘–(๐‘– = 1,2, โ€ฆ โˆ’ ๐œ™(๐‘š)) is
relatively prime to ๐‘š
i.e. ๐‘Ÿ๐‘–, ๐‘š = 1 for ๐‘– = 1,2 โ€ฆ ๐œ™(๐‘š)
Since ๐‘Ž, ๐‘š = 1, ๐‘Ÿ๐‘–, ๐‘š = 1
โ‡’ ๐‘Ž๐‘Ÿ๐‘–
, ๐‘š = 1 for ๐‘– = 1,2, โ€ฆ ๐œ™(๐‘š)
โˆด Each a๐‘Ÿ๐‘– is relatively prime to ๐‘š
Suppose two of the numbers
๐‘Ž๐‘Ÿ๐‘–
, ๐‘Ž๐‘Ÿ๐‘— are Congruent
๐‘Ž๐‘Ÿ๐‘– โ‰ก ๐‘Ž๐‘Ÿ
๐‘—(mod๐‘š)
โ‡’ ๐‘Ÿ๐‘– โ‰ก ๐‘Ÿ
๐‘—(mod๐‘š) (โˆต (๐‘Ž, ๐‘š) = 1)
This is impossible
โˆต ๐›พ๐‘–, ๐›พ๐‘— are two members of
reduced Set of residues modulo m
{they are incongruent)
no two elements a๐‘Ÿ๐‘–, a๐‘Ÿ
๐‘— are
congruent
Hence ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ar ๐œ™(๐‘›1 is also reduced set of residues modulo m.
Euler's theorem (Euler's generalization of Fermat's theorem)
Statement: If (๐‘Ž, ๐‘š) = 1 then ๐‘Ž โ‰ก
๐œ™(๐‘š)
1(mod๐‘š)
Proof: Given that (๐‘Ž, ๐‘š) = 1
Claim: ๐‘Ž โ‰ก
๐œ™(๐‘š)
1(mod๐‘š)
Let ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐›พ๐œ™(๐‘š,๐‘— be a
reduced set of
residues modulo ๐‘š
Since(๐‘Ž, ๐‘š) = 1,
By known theorem
๐‘Ž๐‘Ÿ, ๐‘Ž๐‘Ÿ2, โ€ฆ ar๐œ™(๐‘š}
is also reduced set
of residues modulo ๐‘š.
โˆด Each a๐‘Ÿi is congruent modulo ๐‘š
to one and only one ๐›พ๐‘—
๐ฟ๐‘’๐‘ก ๐‘Ž๐‘Ÿ1
โ‰ก ๐‘ฅ1(modm)
๐‘Ž๐‘Ÿ2 โ‰ก ๐‘ฅ2(modm)
โˆ’โˆ’โˆ’โˆ’ โˆ’
๐‘Ž๐‘Ÿ๐œ™(๐‘š) โ‰ก ๐‘ฅ๐œ™(๐‘š)(modm)
Multiplying the above congruence
๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2 โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š) โ‰ก ๐‘ฅ1 โ‹… ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐œ™(๐‘š)(modm)
โ‡’ ๐‘Ÿ1 โ‹… ๐‘Ÿ2 โ‹ฏ ๐‘Ÿ๐œ™ ๐‘š โ‹… a^๐œ™(๐‘š) โ‰ก ๐‘ฅ1 โ‹… ๐‘ฅ2 โ€ฆ ๐‘ฅ๐œ™(๐‘š(modm)
โ‡’ ๐›พ1 โ‹… ๐›พ2 โ€ฆ ๐›พโˆ… ๐‘š a^๐œ™(๐‘š) โ‰ก ๐›พ1๐›พ2 โ€ฆ ๐›พ๐œ™(๐‘š)(modm)
โˆต ๐‘Ÿ1, ๐‘Ÿ2; ๐‘Ÿ๐œ™(๐‘š), are precisely numbers ๐‘ฅ1 โ‹… ๐‘ฅ2 โ€ฆ ๐‘ฅ๐œ™(๐‘š)
โ‡’ a โ‰ก
๐œ™(๐‘š)
1(mod ๐‘š)
โˆต ๐‘Ÿ1, ๐‘Ÿ2 โ€ฆ ๐‘Ÿ๐œ™ ๐‘š , 1 = 1
Hence the proof
Derive Fermat's theorem from Euler's
theorem
corollary: If ๐‘š = ๐‘ and ๐‘Ž โ‰ก
๐œ™(๐‘š)
(mod๐‘) Then
๐‘Ž๐‘โˆ’1
โ‰ก 1(mod๐‘)
proof:
If ๐‘š = ๐‘ is a prime
๐œ™(๐‘) = ๐‘ โˆ’ 1
Since ๐‘Ž
๐œ™(๐‘š)
โ‰ก 1(modp)(๐ต๐‘ฆ Euler's theorem)
โ‡’ ๐‘Ž๐‘โˆ’1
โ‰ก 1(mod๐‘)
Hence the proof
Question: What is the last digit in the ordinary decimal
representation of 3400
?
Solution: The last digit in the ordinary decimal representation of
3400
is the remainders when 3400
is divided by 10
By division algorithm 3400 โ‰ก 10q + ๐‘Ÿ where q, ๐‘Ÿ โˆˆ ๐‘ and 0 โฉฝ
๐‘Ÿ < 10
โˆด ๐‘Ÿ is the last digit such that
3400 = 10q + ๐‘Ÿ
3400
โ‰ก ๐‘Ÿ(mod10)
We have to find ๐‘Ÿ such that
3400 โ‰ก ๐‘Ÿ(mod10)
Since 5 is prime (3,5) = 1
By Fermat's theorem
35โˆ’1
โ‰ก 1(mod5)
34 โ‰ก 1(mod5) โˆ’ (1)
Since 2 is prime and (3,2) = 1
By fermat' theorem
32โˆ’1
โ‰ก 1(mod2)
31 โ‰ก 1(mod2)
34 โ‰ก 14(mod2) โˆ’ (2)
From (1) & (2) , 34
โ‰ก 1 (mod of
L.C.M of 5,2 )
)
34
โ‰ก 1(mod 10
34 100
โ‰ก 1100
(mod10)
3400
โ‰ก 1(mod10)
๐‘Ÿ = 1
Hence the last digit =1.
Euler-Fermat theorem.pptx

More Related Content

What's hot

diophantine equation and congruence puzzles
diophantine equation and congruence puzzlesdiophantine equation and congruence puzzles
diophantine equation and congruence puzzlesanonymous
ย 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and IntegrationMeenakshisundaram N
ย 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of MatricesAmenahGondal1
ย 
Arithmetic sequences
Arithmetic sequencesArithmetic sequences
Arithmetic sequencesDreams4school
ย 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolationayush raj
ย 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
ย 
21 simpson's rule
21 simpson's rule21 simpson's rule
21 simpson's ruleSalah Mahmood
ย 
Eulers totient
Eulers totientEulers totient
Eulers totientSampadaZalte
ย 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equationsEmdadul Haque Milon
ย 
Laplace transform
Laplace transformLaplace transform
Laplace transformBassit Ali Khan
ย 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential EquationShrey Patel
ย 
Numerical method
Numerical methodNumerical method
Numerical methodKumar Gaurav
ย 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equationPratik Sudra
ย 
Sequences and Series (Mathematics)
Sequences and Series (Mathematics) Sequences and Series (Mathematics)
Sequences and Series (Mathematics) Dhrumil Maniar
ย 
Initial Value Problems
Initial Value ProblemsInitial Value Problems
Initial Value ProblemsMohammad Tawfik
ย 
Complex number
Complex numberComplex number
Complex numberNang Saruni
ย 
recurence solutions
recurence solutionsrecurence solutions
recurence solutionssoumya8396
ย 

What's hot (20)

1532 fourier series
1532 fourier series1532 fourier series
1532 fourier series
ย 
Analytic function
Analytic functionAnalytic function
Analytic function
ย 
diophantine equation and congruence puzzles
diophantine equation and congruence puzzlesdiophantine equation and congruence puzzles
diophantine equation and congruence puzzles
ย 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
ย 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
ย 
Arithmetic sequences
Arithmetic sequencesArithmetic sequences
Arithmetic sequences
ย 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
ย 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
ย 
21 simpson's rule
21 simpson's rule21 simpson's rule
21 simpson's rule
ย 
Eulers totient
Eulers totientEulers totient
Eulers totient
ย 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
ย 
Laplace transform
Laplace transformLaplace transform
Laplace transform
ย 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
ย 
Numerical method
Numerical methodNumerical method
Numerical method
ย 
Linear differential equation
Linear differential equationLinear differential equation
Linear differential equation
ย 
Sequences and Series (Mathematics)
Sequences and Series (Mathematics) Sequences and Series (Mathematics)
Sequences and Series (Mathematics)
ย 
Initial Value Problems
Initial Value ProblemsInitial Value Problems
Initial Value Problems
ย 
Ring
RingRing
Ring
ย 
Complex number
Complex numberComplex number
Complex number
ย 
recurence solutions
recurence solutionsrecurence solutions
recurence solutions
ย 

Similar to Euler-Fermat theorem.pptx

MAT-314 Relations and Functions
MAT-314 Relations and FunctionsMAT-314 Relations and Functions
MAT-314 Relations and FunctionsKevin Johnson
ย 
Section 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsSection 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsKevin Johnson
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
ย 
Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxKuparala Vidyasagar
ย 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
ย 
Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal SubgroupsKevin Johnson
ย 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation Lossian Barbosa Bacelar Miranda
ย 
Monotone likelihood ratio test
Monotone likelihood ratio testMonotone likelihood ratio test
Monotone likelihood ratio testSohel rana
ย 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docxGetachew Mulaw
ย 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIESMANISH KUMAR
ย 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
ย 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalSOUMYADAS230727
ย 
Number Theory.pptx
Number Theory.pptxNumber Theory.pptx
Number Theory.pptxFlorenceCaceres
ย 
Definition of statistical efficiency
Definition of statistical efficiencyDefinition of statistical efficiency
Definition of statistical efficiencyRuhulAmin339
ย 

Similar to Euler-Fermat theorem.pptx (20)

MAT-314 Relations and Functions
MAT-314 Relations and FunctionsMAT-314 Relations and Functions
MAT-314 Relations and Functions
ย 
Section 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & CosetsSection 9: Equivalence Relations & Cosets
Section 9: Equivalence Relations & Cosets
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
ย 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
Linear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptxLinear Congruences, reduced residue systems.pptx
Linear Congruences, reduced residue systems.pptx
ย 
publisher in research
publisher in researchpublisher in research
publisher in research
ย 
Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal Subgroups
ย 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
ย 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
ย 
Monotone likelihood ratio test
Monotone likelihood ratio testMonotone likelihood ratio test
Monotone likelihood ratio test
ย 
lec37.ppt
lec37.pptlec37.ppt
lec37.ppt
ย 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
ย 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
ย 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
ย 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_final
ย 
Number Theory.pptx
Number Theory.pptxNumber Theory.pptx
Number Theory.pptx
ย 
Definition of statistical efficiency
Definition of statistical efficiencyDefinition of statistical efficiency
Definition of statistical efficiency
ย 

Recently uploaded

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
ย 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
ย 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
ย 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
ย 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
ย 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationNeilDeclaro1
ย 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
ย 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
ย 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
ย 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactisticshameyhk98
ย 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
ย 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
ย 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
ย 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
ย 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
ย 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
ย 

Recently uploaded (20)

General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
ย 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
ย 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
ย 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
ย 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
ย 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
ย 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
ย 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
ย 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
ย 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
ย 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
ย 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
ย 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
ย 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
ย 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
ย 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
ย 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
ย 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
ย 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
ย 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
ย 

Euler-Fermat theorem.pptx

  • 1. Euler-Fermat theorem Dr. Kuparala Venkata Vidyasagar Lecturer in Mathematics SVLNS Govt. Degree College, Bheemunipatnam
  • 2. LEARNING OUTCOMES ๏ƒผFermatโ€™s theorem ๏ƒผCorollary ON Fermatโ€™s theorem ๏ƒผSet of residues modulo ๐‘š ๏ƒผReduced set of residues modulo ๐‘š ๏ƒผTheorems based on residue modulo m ๏ƒผEuler's theorem or Euler's generalization of Fermat's theorem ๏ƒผFermat's theorem from Euler's theorem ๏ƒผExamples
  • 3. Fermatโ€™s theorem Statement: If. ๐‘ƒ is a prime and (๐‘Ž, ๐‘) = 1 then ๐‘Ž๐‘โˆ’1 โ‰ก 1 mod๐‘ proof. Given that ๐‘ is a prime and (๐‘Ž, ๐‘) = 1 claim: ๐‘Ž๐‘โˆ’1 โ‰ก 1(mod๐‘) Since (๐‘Ž, ๐‘) = 1 By known theorem When the numbers ๐‘Ž, 2๐‘Ž, 3๐‘Ž โ€ฆ (๐‘ โˆ’ 1)๐‘Ž are derided by p, remainders are 1,2,3,โ€ฆ.. p-1 not necessarily in this order ๐ฟ๐‘’๐‘ก ๐‘Ž โ‰ก ๐‘Ÿ1(mod๐‘) 2๐‘Ž โ‰ก ๐‘Ÿ2(mod๐‘) (๐‘ โˆ’ 1)๐‘Ž โ‰ก ๐‘Ÿ๐‘โˆ’1(mod๐‘) But ๐›พ1, ๐›พ2; ๐‘Ÿ๐‘โˆ’1 are also remainders obtained by dividing ๐‘Ž, 2๐‘Ž, โ‹ฏ (๐‘ โˆ’ 1)๐‘Ž by ๐‘ โˆด ๐›พ1, ๐‘Ÿ2, โ‹ฏ ๐‘Ÿ๐‘ƒโˆ’1 โ‰ก 1 โ‹… 2 โ‹… 3 โ‹ฏ (๐‘ƒ โˆ’ 1) โŸถ (1) From the above congruent relations
  • 4. But ๐›พ1, ๐›พ2; ๐‘Ÿ๐‘โˆ’1 are also remainders obtained by dividing ๐‘Ž, 2๐‘Ž, โ‹ฏ (๐‘ โˆ’ 1)๐‘Ž by ๐‘ โˆด ๐›พ1, ๐‘Ÿ2, โ‹ฏ ๐‘Ÿ๐‘ƒโˆ’1 โ‰ก 1 โ‹… 2 โ‹… 3 โ‹ฏ (๐‘ƒ โˆ’ 1) โŸถ (1) From the above congruent relations (๐‘ƒ โˆ’ 1)! ๐‘‘๐‘โˆ’1 โ‰ก (๐‘ โˆ’ 1)! (modp) Since, ๐‘ƒ is prime (๐‘ƒ, 1) = 1, (๐‘ƒ, 2) = 1 โ€ฆ (๐‘ƒ, ๐‘ƒ โˆ’ 1) = 1 โ‡’ (๐‘ƒ, (๐‘ƒ โˆ’ 1)!) = 1 ๐‘Žโˆ’1 โ‰ก 1(mod๐‘) Hence the proof
  • 5. If ๐‘ƒ is a prime and a is any integer then ๐‘Ž๐‘ โ‰ก ๐‘Ž(mod๐‘) Case (i). Let (๐‘Ž, ๐‘) โ‰  1 โ‡’ ๐‘ โˆฃ ๐‘Ž and ๐‘Ž โ‰ก 0 mod๐‘ โ„Ž๐‘’๐‘›๐‘๐‘’ ๐‘Ž๐‘ƒ โ‰ก 0(mod๐‘) and 0 โ‰ก ๐‘Ž(mod๐‘) By Transitive property ๐‘Ž๐‘ โ‰ก ๐‘Ž ๐‘š๐‘œ๐‘‘ ๐‘ case(ii): Let (๐‘Ž, ๐‘) = 1 By Fermat's theorem ๐‘Ž๐‘โˆ’1 โ‰ก 1(mod๐‘) ๐‘Ž๐‘ โ‹… 1 ๐‘Ž โ‰ก 1(mod๐‘) ๐‘Ž๐‘ โ‰ก ๐‘Ž(mod๐‘) Hence the proof โ†’ If ๐‘ƒ is prime and (๐‘Ž, ๐‘) = 1 then ๐‘Ž๐‘โˆ’1 โˆ’ 1 = ๐‘€(๐‘ƒ)
  • 6. Definition1.: A Set of integers ๐‘ฅ0, ๐‘ฅ1, ๐‘ฅ2, โ‹ฏ ๐‘ฅ๐‘šโˆ’1 is called a set of residues modulo ๐‘š if each ๐‘ฅ๐‘–(๐‘– = 0,1,2, โ‹ฏ ๐‘š โˆ’ 1) belongs to one and only one residue class modulo. Definition2.: A Set of integers ๐‘ฅ1, ๐‘ฅ2 โ€ฆ , ๐‘ฅ๐œ™๐‘š) is called a reduced set of residues modulo ๐‘š if exactly one of them, lies in each, residue class relatively prime to ๐‘š, Eg: {1,5} is a reduced set of residues modulo 6 = {0,1,2,3,4,5} (โˆต (1,6) = 1, (5; 6) = 1) โ†’ ๐œ™(๐‘š) is the number of elements in every reduced Set of residues modulo ๐‘š.
  • 7. THEOREM: If ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š), is a set of reduced residue modulo ๐‘š and (๐‘Ž, ๐‘š) = 1 then ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š) is also a set of reduced residue modulo ๐‘š. Given that ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š) is a set of reduced residue modulo ๐‘š and (๐‘Ž, ๐‘š) = 1 The set ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š,} โ„Ž๐‘Ž๐‘  ๐œ™(๐‘š) elements Since ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐‘Ÿ๐œ™(๐‘š}, is a reduced Set of residues modulo ๐‘š. โ‡’ Each ๐›พ๐‘–(๐‘– = 1,2, โ€ฆ โˆ’ ๐œ™(๐‘š)) is relatively prime to ๐‘š i.e. ๐‘Ÿ๐‘–, ๐‘š = 1 for ๐‘– = 1,2 โ€ฆ ๐œ™(๐‘š) Since ๐‘Ž, ๐‘š = 1, ๐‘Ÿ๐‘–, ๐‘š = 1 โ‡’ ๐‘Ž๐‘Ÿ๐‘– , ๐‘š = 1 for ๐‘– = 1,2, โ€ฆ ๐œ™(๐‘š) โˆด Each a๐‘Ÿ๐‘– is relatively prime to ๐‘š Suppose two of the numbers ๐‘Ž๐‘Ÿ๐‘– , ๐‘Ž๐‘Ÿ๐‘— are Congruent ๐‘Ž๐‘Ÿ๐‘– โ‰ก ๐‘Ž๐‘Ÿ ๐‘—(mod๐‘š) โ‡’ ๐‘Ÿ๐‘– โ‰ก ๐‘Ÿ ๐‘—(mod๐‘š) (โˆต (๐‘Ž, ๐‘š) = 1) This is impossible โˆต ๐›พ๐‘–, ๐›พ๐‘— are two members of reduced Set of residues modulo m {they are incongruent) no two elements a๐‘Ÿ๐‘–, a๐‘Ÿ ๐‘— are congruent Hence ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2, โ€ฆ ar ๐œ™(๐‘›1 is also reduced set of residues modulo m.
  • 8. Euler's theorem (Euler's generalization of Fermat's theorem) Statement: If (๐‘Ž, ๐‘š) = 1 then ๐‘Ž โ‰ก ๐œ™(๐‘š) 1(mod๐‘š) Proof: Given that (๐‘Ž, ๐‘š) = 1 Claim: ๐‘Ž โ‰ก ๐œ™(๐‘š) 1(mod๐‘š) Let ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆ ๐›พ๐œ™(๐‘š,๐‘— be a reduced set of residues modulo ๐‘š Since(๐‘Ž, ๐‘š) = 1, By known theorem ๐‘Ž๐‘Ÿ, ๐‘Ž๐‘Ÿ2, โ€ฆ ar๐œ™(๐‘š} is also reduced set of residues modulo ๐‘š. โˆด Each a๐‘Ÿi is congruent modulo ๐‘š to one and only one ๐›พ๐‘— ๐ฟ๐‘’๐‘ก ๐‘Ž๐‘Ÿ1 โ‰ก ๐‘ฅ1(modm) ๐‘Ž๐‘Ÿ2 โ‰ก ๐‘ฅ2(modm) โˆ’โˆ’โˆ’โˆ’ โˆ’ ๐‘Ž๐‘Ÿ๐œ™(๐‘š) โ‰ก ๐‘ฅ๐œ™(๐‘š)(modm) Multiplying the above congruence ๐‘Ž๐‘Ÿ1, ๐‘Ž๐‘Ÿ2 โ€ฆ ๐‘Ž๐‘Ÿ๐œ™(๐‘š) โ‰ก ๐‘ฅ1 โ‹… ๐‘ฅ2 โ‹ฏ ๐‘ฅ๐œ™(๐‘š)(modm) โ‡’ ๐‘Ÿ1 โ‹… ๐‘Ÿ2 โ‹ฏ ๐‘Ÿ๐œ™ ๐‘š โ‹… a^๐œ™(๐‘š) โ‰ก ๐‘ฅ1 โ‹… ๐‘ฅ2 โ€ฆ ๐‘ฅ๐œ™(๐‘š(modm) โ‡’ ๐›พ1 โ‹… ๐›พ2 โ€ฆ ๐›พโˆ… ๐‘š a^๐œ™(๐‘š) โ‰ก ๐›พ1๐›พ2 โ€ฆ ๐›พ๐œ™(๐‘š)(modm) โˆต ๐‘Ÿ1, ๐‘Ÿ2; ๐‘Ÿ๐œ™(๐‘š), are precisely numbers ๐‘ฅ1 โ‹… ๐‘ฅ2 โ€ฆ ๐‘ฅ๐œ™(๐‘š) โ‡’ a โ‰ก ๐œ™(๐‘š) 1(mod ๐‘š) โˆต ๐‘Ÿ1, ๐‘Ÿ2 โ€ฆ ๐‘Ÿ๐œ™ ๐‘š , 1 = 1 Hence the proof
  • 9. Derive Fermat's theorem from Euler's theorem corollary: If ๐‘š = ๐‘ and ๐‘Ž โ‰ก ๐œ™(๐‘š) (mod๐‘) Then ๐‘Ž๐‘โˆ’1 โ‰ก 1(mod๐‘) proof: If ๐‘š = ๐‘ is a prime ๐œ™(๐‘) = ๐‘ โˆ’ 1 Since ๐‘Ž ๐œ™(๐‘š) โ‰ก 1(modp)(๐ต๐‘ฆ Euler's theorem) โ‡’ ๐‘Ž๐‘โˆ’1 โ‰ก 1(mod๐‘) Hence the proof
  • 10. Question: What is the last digit in the ordinary decimal representation of 3400 ? Solution: The last digit in the ordinary decimal representation of 3400 is the remainders when 3400 is divided by 10 By division algorithm 3400 โ‰ก 10q + ๐‘Ÿ where q, ๐‘Ÿ โˆˆ ๐‘ and 0 โฉฝ ๐‘Ÿ < 10 โˆด ๐‘Ÿ is the last digit such that 3400 = 10q + ๐‘Ÿ 3400 โ‰ก ๐‘Ÿ(mod10) We have to find ๐‘Ÿ such that 3400 โ‰ก ๐‘Ÿ(mod10) Since 5 is prime (3,5) = 1 By Fermat's theorem 35โˆ’1 โ‰ก 1(mod5) 34 โ‰ก 1(mod5) โˆ’ (1) Since 2 is prime and (3,2) = 1 By fermat' theorem 32โˆ’1 โ‰ก 1(mod2) 31 โ‰ก 1(mod2) 34 โ‰ก 14(mod2) โˆ’ (2) From (1) & (2) , 34 โ‰ก 1 (mod of L.C.M of 5,2 ) ) 34 โ‰ก 1(mod 10 34 100 โ‰ก 1100 (mod10) 3400 โ‰ก 1(mod10) ๐‘Ÿ = 1 Hence the last digit =1.