Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

K4 d ws_p_longstaff_bolzano_2013

224 views

Published on

Published in: Education, Business
  • Be the first to comment

  • Be the first to like this

K4 d ws_p_longstaff_bolzano_2013

  1. 1. Managing  uncertainty  in   resilient  organizations   P.  H.  Longstaff   Syracuse  University   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  2. 2. Planning  Options   •  Resistance  (The  Citadel)     •  In  baLle,  surprise  or  superior  force  reduces   ability  to  resist     •  Tendency  to  fail  catastrophically     •  Trust  high  unPl  failure   •  Resilience  (Surviving  to  operate  another   day)   •  StaPc:  Bouncing  back  –  return  to  “normal”   •  AdapPve:  Bouncing  forward     •  Trust  built  and  reinforced  oYen   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  3. 3. •  For  predictable  systems:     •  Development  of  facts,  reproducibility,  risk  eliminaPon   (resistance)     •  For  known  unknowns:   •  Cyclical  systems  and  unpredictable  emergence  (power  laws)   •  Development  of  “odds”  and  risk  miPgaPon  (sta8c  resilience)     •   For  unpredictable  systems:   •  Black  Swans,  new  surprises   •  Development  of  acceptable  parameters;  nudging  and  learning     (adap8ve  resilience)       Goals  for  managing   uncertainty    
  4. 4. “Normal”  distribution   Normal Frequency 75604530150-15-30 60 50 40 30 20 10 0 A Typical Normal Distribution Mean~20 ; Std Dev ~20 Normal
  5. 5. Gamma  (Power  Law)  distribution   Gamma Frequency 1251007550250-25 100 80 60 40 20 0 A Typical Gamma Distribution Mean~20 ; Std Dev ~20
  6. 6. Power  Laws  and  Hollywood:   Typical  Revenue  pattern     REVENUE 400.0 360.0 320.0 280.0 240.0 200.0 160.0 120.0 80.0 40.0 0.0 50 40 30 20 10 0 Std. Dev = 70.38 Mean = 57.0 N = 189.00
  7. 7. Resilience  usually  increases  with       • Diversity  –  many  opPons  for  resources   • Interoperability,  cross-­‐training   • Access  to  other  networks  (bridgers)     • IntervenPon  at  the  right  scale   • Right  balance  of  Tight/Loose  Coupling   • Adap8ve  capacity  –  mechanisms  for   • Ability  to  change   • Knowledge  management  (knowing  and   remembering)     KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  8. 8. Resilience  requires   trustworthy  information   •  Accurate  sensing  of  environment   •  Watch  out  for  Local  adaptaPon  and  PracPcal  DriY  (ScoL   Snook,  USAF,  ret.)     •  CounPng  the  right  stuff  (not  what’s  handy,  what  proves   it’s  working)   •  What  is  NOT  working  (hide  it  or  suffer?)   •  InsPtuPonal  memory   •  ConnecPon  to  other  info  and  ideas   •  Unexpected  events  “audit”  our  ability  to  adapt  –   how  do  we  learn  from  that?   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  9. 9. Learning  and  Adaptation  are   Lowered  by   •  Hindsight  bias     •  ConfirmaPon  Bias/MoPvated  ScepPcism   •  Overconfidence  in  knowledge  –  “planning  fallacy”   •  No  ba6le  plan  ever  survives  first  contact  with  the  enemy      Helmuth  von  Moltke,  A  19th-­‐century  head  of  the  Prussian  army   •  Plans  can  decrease  mindful  an=cipa=on  of  the  unexpected        Weick  and  Sutcliffe,  Managing  the  Unexpected   •   Clinging  to  Cogworld  (Microscope  v.  Kaleidoscope  -­‐  NSF)     •  Demands  a  “fix”  –  constrain  system,  new  complexity,  more   uncertainty   •  The  Blame  Game   •  The  Buck  doesn’t  stop  anywhere   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  10. 10. Changing  the  Game:  building   adaptability  in  environments  with  high   uncertainty   •  Acknowledge  unpredictability  and  create  new   ways  to  learn  and  plan   •  Create  a  sub-­‐system  for  Pmes  of  crisis  and  plan   how  you  will  learn  in  that  sub-­‐system   •  Decide  when  improvisaPon  is  going  to  be  OK  and   how  you  can  learn  from  it   •  Set  up  sensors  that  indicate  when     •  adapPve  mechanisms  are  failing  (e.g.  challenges   cascade)     •  Ppping  points  are  near   •  buffers/reserves  are  near  exhausPon   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    
  11. 11. Heroes  of  Uncertainty     •  Combine  an  awareness  of  common  paLerns  with  an   acute  aLenPon  to  the  specific  circumstances  of  a  unique   situaPon.   •  David  Brooks  NYT  28  May  2013   •  Understand  that  they  don’t  know  it  all  –  humility.   •  Know  that  they  may  fail  and  accept  it  as  a  temporary  set-­‐ back.   KNOW4DRR      Bolzano  2013                               P.H.    Longstaff    

×