SlideShare a Scribd company logo
1 of 27
Download to read offline
Photonic	
  Materials	
  Design	
  
§ Bonds	
  
§ Bands	
  
§ Proper4es	
  
§ Alloy	
  design	
   1	
  
3.46-­‐3.156	
  Fall	
  2015	
  
Photonic	
  Materials	
  &	
  Devices	
  
3.46/3.156	
  Fall	
  2015	
  
Class	
  Organiza4on	
  
n Instructor:	
  
§ Prof.	
  Polina	
  Anikeeva 	
  (8-­‐425) 	
   	
   	
  [anikeeva@mit.edu]	
  
§ Office	
  Hours:	
  Monday	
  6:30-­‐7:30	
  pm	
  
n Guest	
  Lectures:	
  
§ Prof.	
  Lionel	
  Kimerling	
  (13-­‐4118) 	
   	
   	
  [lckim@mit.edu]	
  
§ Dr.	
  Chris	
  Doerr	
  (?) 	
   	
   	
   	
  [doerrcr@gmail.com]	
  
n Class	
  Format:	
  
¨ Monday	
  9:30-­‐11	
  am	
  
§ Quiz	
  (10	
  min):	
  aZendance	
  mandatory	
  
§ Review	
  of	
  last	
  class/student	
  ques4ons	
  
§ Lecture	
  
¨ Wednesday	
  9:30-­‐11	
  am	
  
§ Review	
  of	
  last	
  class/student	
  ques4ons	
  
§ Lecture	
  
n Grading: 	
   	
   	
  G 	
  UG	
  
§ Problem	
  Sets	
  (4) 	
   	
  20% 	
  0%	
  
§ Quizes	
  (7-­‐8)	
   	
   	
  30% 	
  25%	
  
§ Design	
  Reviews	
  (3) 	
   	
  40% 	
  50%	
  
§ Final	
  Exam	
  –	
  DR4,	
  oral	
   	
  10% 	
  25%	
   2	
  
3.46/3.156	
  Fall	
  2015	
  
Schedule	
  and	
  Topics	
  
3	
  
Op4cs	
  
Optoelectronics	
  
Special	
  topics	
  
Integra4on	
  
§ Intro:	
  Photonic	
  Materials	
  Design	
  ×2	
  (PA)	
  
§ Photon	
  Op4cs	
  &	
  EM	
  Wave	
  Op4cs 	
  	
  
§ Periodic	
  Media	
  &	
  Photonic	
  Crystals	
  
§ Op4cal	
  Resonators	
  
§ Guided	
  Wave	
  Op4cs	
  
§ Microphotonic	
  Numerical	
  Simula4on	
  1	
  (CD-­‐?)	
  	
  
§ Electrons	
  and	
  Photons	
  in	
  Semiconductors	
  
§ Materials	
  Processing	
  (LCK)	
  
§ Solar	
  Cells	
  
§ Photodetectors	
  	
  
§ LEDs	
  
§ Op4cal	
  Amplifiers	
  and	
  Lasers	
  
§ Semiconductor	
  Lasers	
  
§ Organic	
  Optoelectronics	
  
§ Nanostructured	
  Optoelectronics	
  ×2	
  
§ Non-­‐Linear	
  Op4cs	
  
§ Biophotonics	
  
3.46/3.156	
  Fall	
  2015	
  
Class	
  Organiza4on	
  
n Course	
  Website	
  
¨ Stellar:	
  h"p://stellar.mit.edu/S/course/3/fa15/3.46/	
  
¨ Access:	
  registered	
  students	
  and	
  authorized	
  auditors	
  	
  
n Lecture	
  Content	
  (on	
  Materials	
  link)	
  
1. Lecture	
  Slides	
  
n Posted	
  to	
  website	
  within	
  24	
  hrs	
  of	
  presenta4on	
  
2. Lecture	
  Materials:	
  resources,	
  readings,	
  tools	
  
n Posted	
  to	
  website	
  
4	
  
3.46/3.156	
  Fall	
  2015	
  
Class	
  Organiza4on	
  
n Student	
  data	
  
¨ Submit	
  to	
  Ayn	
  Inserto	
  (ainserto@mit.edu)	
  
1. Full	
  Name	
  
2. Undergraduate/graduate	
  status	
  (UG/G)	
  
3. Research/UROP	
  advisor	
  and	
  thesis	
  topic	
  (if	
  applicable)	
  
4. Status:	
  class-­‐registered	
  or	
  auditor	
  
n Work	
  Groups	
  
¨ For	
  doing	
  weekly	
  Problem	
  Sets	
  (G)	
  and	
  Design	
  Review	
  projects	
  (All)	
  
¨ 2-­‐3	
  Graduate	
  or	
  4-­‐5	
  Undergraduate	
  students	
  
¨ Groups	
  will	
  be	
  assigned	
  by	
  Polina	
  Anikeeva	
  
5	
  
3.46/3.156	
  Fall	
  2015	
  
Class	
  Organiza4on	
  
	
  Problem	
  Sets	
  and	
  Design	
  Reviews:	
  
	
  
n Weekly	
  Problem	
  Set	
  and	
  Monthly	
  Design	
  Review	
  assignment	
  
n Problem	
  Sets	
  and	
  Design	
  Reviews	
  will	
  be	
  done	
  by	
  Work	
  Groups	
  
n One	
  PSet/DR	
  per	
  group	
  uploaded	
  (MSWord,	
  Pages,	
  PDF)	
  to	
  Homework	
  link	
  
n Electronic	
  Signature:	
  name	
  entry	
  on	
  top	
  of	
  page	
  1	
  aZes4ng:	
  
a) Your	
  contribu4on	
  
b) Agreement	
  that	
  all	
  Group	
  members	
  have	
  contributed	
  	
  
n All	
  members	
  of	
  a	
  given	
  Group	
  receive	
  same	
  PSet/DR	
  grade	
  
n Group	
  members	
  may	
  pick-­‐up	
  graded	
  hard-­‐copy	
  from	
  PA	
  
n Problem	
  Set	
  1	
  and	
  Design	
  Review	
  1	
  are	
  assigned	
  today	
  (Wednesday,	
  Sep.	
  9)	
  
¨ Grad	
  students:	
  PSet	
  due	
  09/16/15	
  
¨ DR	
  1	
  due	
  10/07/15	
  
¨ Download	
  from	
  course	
  website	
  
6	
  
3.46/3.156	
  Fall	
  2015	
  
Class	
  Organiza4on	
  
n Design	
  Review	
  project	
  
¨ In-­‐class	
  introduc4on	
  and	
  discussion	
  
¨ 20	
  min	
  (5-­‐10	
  slide)	
  presenta4on,	
  all	
  Group	
  members	
  speak	
  	
  
¨ Corrected	
  slides	
  +	
  final	
  2-­‐3-­‐page	
  report	
  due	
  two	
  days	
  later	
  (email	
  to	
  PA)	
  
n Weekly	
  Quiz	
  and	
  Final	
  Exam	
  
¨ Weekly	
  Quiz	
  test	
  student	
  aZen4veness,	
  covers	
  two	
  lectures	
  from	
  previous	
  week	
  
¨ Skipping	
  a	
  weekly	
  Quiz	
  without	
  advance	
  no4fica4on	
  =	
  0	
  grade	
  for	
  that	
  Quiz	
  
¨ Final	
  Exam	
  -­‐	
  Oral	
  on	
  Friday	
  12/05	
  evening	
  
¨ Quiz	
  1	
  is	
  on	
  Monday	
  Sep.	
  14	
  
§ Tes4ng	
  Lecture	
  1	
  content	
  
7	
  
3.46/3.156	
  Fall	
  2015	
  
Resources	
  
n 3.23	
  or	
  3.024	
  Notes	
  if	
  you	
  already	
  took	
  the	
  class.	
  
n “Fundamentals	
  of	
  Photonics”	
  B.	
  E.	
  A.	
  Saleh	
  and	
  M.	
  C.	
  Teich	
  
¨ Chs.	
  5,	
  6	
  
n “Op4cal	
  Materials”	
  reading	
  by	
  A.	
  M.	
  Glass	
  
n “Bands	
  and	
  Bonds”	
  reading	
  by	
  L.	
  C.	
  Kimerling	
  
n “Hardness	
  of	
  Covalent	
  and	
  Ionic	
  Crystals:	
  First-­‐Principle	
  
Calcula4ons”,	
  Antonín	
  Šimůnek	
  and	
  Jiří	
  Vackář,	
  PRL	
  96	
  (2006)	
  
8	
  
3.46/3.156	
  Fall	
  2015	
  
Op4cal	
  Fiber:	
  How	
  It’s	
  Made?	
  
9	
  
SiO2:	
  GeO2	
  
SiO2:	
  SixOyFz	
  
Germania	
  doped	
  silica	
  
n	
  >	
  n(SiO2)	
  
Fluorosilicate	
  doped	
  silica	
  
n	
  <	
  n(SiO2)	
  
§ The	
  fiber	
  geometry	
  is	
  defined	
  on	
  a	
  macroscale:	
  
Preform	
  fabrica4on	
  
§ Fiber	
  dimensions	
  are	
  reduced	
  to	
  microscale:	
  
Thermal	
  drawing	
  
3.46/3.156	
  Fall	
  2015	
  
Op4cal	
  Loss	
  in	
  Silica	
  Fiber	
  
10	
  
3.46/3.156	
  Fall	
  2015	
  
Op4cal	
  Loss	
  in	
  Silica	
  Fiber	
  
11	
  
Rayleigh	
  scaZering:	
  
Density	
  varia4on	
  
on	
  the	
  length	
  scale	
  
shorter	
  than	
  the	
  
light	
  wavelength	
  	
  	
  
Intrinsic	
  electronic	
  
absorp4on	
  of	
  silica	
  is	
  
in	
  the	
  UV	
  ~	
  140	
  nm.	
  
Silica	
  is	
  an	
  insulator,	
  
i.e.	
  wide	
  bandgap.	
  
Mie	
  scaZering:	
  
Density,	
  geometry	
  varia4on	
  on	
  the	
  length	
  
scale	
  longer	
  than	
  the	
  light	
  wavelength	
  	
  	
  
Intrinsic	
  absorp4on	
  
of	
  silica	
  vibra4onal	
  
modes	
  and	
  
mul4photon	
  
absorp4on	
  extends	
  
into	
  the	
  near	
  IR.	
  
Vibra4onal	
  peaks	
  
are	
  >	
  7	
  µm.	
  
Extrinsic	
  absorp4on:	
  water	
  vapor	
  
OH	
  and	
  combina4on	
  OH-­‐silica	
  vibra4onal	
  modes	
  
at	
  0.95,	
  1.24	
  and	
  1.29	
  µm.	
  
3.46/3.156	
  Fall	
  2015	
  
Op4cal	
  Loss	
  in	
  Silica	
  Fiber:	
  Why	
  Silica?	
  
12	
  
Fiber	
  Material	
  
Op4cal	
  loss	
  (dB/km)	
  
Experimental	
   Theore4cal	
  
SiO2	
   0.16	
  (1.55	
  µm)	
   ~0.1	
  (1.55	
  µm)	
  
GeO2	
   4	
  (2.0	
  µm)	
   0.1	
  (2.5	
  µm)	
  
Fluorides	
   0.9	
  (2.5	
  µm)	
   0.001	
  (3.5	
  µm)	
  
Chalcogenides	
   35	
  (2.5	
  µm)	
   0.05	
  (5	
  µm)	
  
Polymers	
   20	
  (0.7	
  µm)	
  
Theore4cal	
  Loss	
  Plot	
  
3.46/3.156	
  Fall	
  2015	
  
Op4cal	
  Loss	
  in	
  Silica	
  Fiber:	
  Why	
  Silica?	
  
13	
  
Fiber	
  Material	
  
Op4cal	
  loss	
  (dB/km)	
  
Experimental	
   Theore4cal	
  
SiO2	
   0.16	
  (1.55	
  µm)	
   ~0.1	
  (1.55	
  µm)	
  
GeO2	
   4	
  (2.0	
  µm)	
   0.1	
  (2.5	
  µm)	
  
Fluorides	
   0.9	
  (2.5	
  µm)	
   0.001	
  (3.5	
  µm)	
  
Chalcogenides	
   35	
  (2.5	
  µm)	
   0.05	
  (5	
  µm)	
  
Polymers	
   20	
  (0.7	
  µm)	
  
§ Fluorides,	
  chlorides,	
  chalcogenides:	
  
Unstable	
  in	
  moisture,	
  toxic,	
  crystalize	
  
§ Silica:	
  
Cheap,	
  stable,	
  easy	
  to	
  fabricate	
  
Theore4cal	
  Loss	
  Plot	
  
3.46/3.156	
  Fall	
  2015	
  
Light	
  Propaga4on:	
  Wave	
  Equa4on	
  
14	
  

∇×

E +
∂

B
∂t
= 0

∇×

H −
∂

D
∂t
=

J

∇⋅

B = 0

∇⋅

D = ρ
Maxwell’s	
  Equa4ons:	
  

∇2

E −
1
c2
∂2

E
∂t2
= 0

∇2

H −
1
c2
∂2

H
∂t2
= 0
Wave	
  equa4on:	
  
(absence	
  of	
  charges	
  
and	
  currents)	
  
c =
c0
n
=
1
µε
speed	
  of	
  light	
  in	
  media:	
  
speed	
  of	
  light	
  in	
  vacuum:	
  
n =
c0
c
=
µε
µ0ε0
= µrεr
refrac4ve	
  index:	
  
c0 =
1
µ0ε0
= 3×108
m s
ε0 =
10−9
36π
F m
µ0 = 4π ×10−7
H m
permi•vity	
  of	
  free	
  space:	
  
permeability	
  of	
  free	
  space:	
  
Simplest	
  solu4on	
  
to	
  wave	
  equa4on:	
  
plane	
  waves	
  

E = Re

E0ei

k

r−iωt
+C.C.
"
#
$
%

H = Re

H0ei

k

r−iωt
+C.C.
"
#
$
%
3.46/3.156	
  Fall	
  2015	
  
Interac4on	
  of	
  Light	
  and	
  MaZer	
  
Damped	
  Driven	
  Harmonic	
  Oscillator	
  Analogy:	
  
15	
  
d2 !
x
dt2
+σ
d
!
x
dt
+ω0
2 !
x =
!
F
m
!
P = N
!
p = Nex
d2
!
P
dt2
+σ
d
!
P
dt
+ω0
2
!
P =ω0
2
ε0 χ0
!
E
!
F = e
!
E
e2
N
m
=ω0
2
ε0 χ0

P =
ω0
2
ε0 χ0
ω0
2
−ω2
−iσω

E =ε0 χ ω
( )

E
!
E =
!
E0ei
!
k
!
r−iωt
⇒ P
!
"
= P0
!"
!
ei
"
k
"
r−iωt
B =σm
k =ω0
2
m
x
3.46/3.156	
  Fall	
  2015	
  
Interac4on	
  of	
  Light	
  and	
  MaZer	
  
16	
  
Polarizability,	
  Absorp4on,	
  Dispersion	
  
χ ω
( )= χ0
ω0
2
ω0
2
−ω2
( )
ω0
2
−ω2
( )
2
+ σω
( )
2
+ χ0
iω0
2
σω
ω0
2
−ω2
( )
2
+ σω
( )
2
= χ ' ω
( )+iχ" ω
( )
!
P =
ω0
2
ε0 χ0
ω0
2
−ω2
−iσω
!
E =ε0 χ ω
( )
!
E
χ ' ω
( )=
2
π
sχ" s
( )
s2
−ω2
ds
0
∞
∫
χ" ω
( )=
2
π
ωχ ' s
( )
s2
−ω2
ds
0
∞
∫
ε =ε0 1+ χ
( )=ε0 1+ χ '
( )+iε0 χ"=ε'+iε"
n' =
ε
ε0
= 1+ χ '+iχ" = n +iα
Kramers-­‐Cronig	
  Rela4ons.	
  
Connec4ng	
  absorp4on	
  and	
  
dispersion:	
  
Absorp4on	
  coefficient:	
  
Refrac4ve	
  index:	
  
D
!"
=ε0
!
E +
!
P =ε0 1+ χ
( )
!
E
3.46/3.156	
  Fall	
  2015	
  
Interac4on	
  of	
  Light	
  and	
  MaZer	
  
17	
  
Polarizability,	
  Absorp4on,	
  Dispersion	
  
χ ω
( )= χ0
ω0
2
ω0
2
−ω2
( )
ω0
2
−ω2
( )
2
+ σω
( )
2
+ χ0
iω0
2
σω
ω0
2
−ω2
( )
2
+ σω
( )
2
= χ ' ω
( )+iχ" ω
( )

P =
ω0
2
ε0 χ0
ω0
2
−ω2
−iσω

E =ε0 χ ω
( )

E
Multiple resonances:
Absorp4on	
  
coefficient	
  
α
(ν)
Refrac4ve	
  
index	
  
n
(ν)
3.46/3.156	
  Fall	
  2015	
  
Dispersion	
  and	
  Pulse	
  Propaga4on	
  
18	
  
n = n λ
( )⇒ c = c λ
( )
§ Normal	
  dispersion:	
  in	
  the	
  medium	
  blue	
  light	
  has	
  lower	
  velocity	
  than	
  red	
  
§ Light	
  pulses	
  get	
  broadened	
  due	
  to	
  shorter	
  wavelengths	
  “falling	
  behind”	
  	
  
Larger	
  dispersion	
  implies	
  longer	
  spacing	
  between	
  the	
  pulses	
  and	
  hence	
  lower	
  bit	
  rate	
  
3.46/3.156	
  Fall	
  2015	
  
La•ce	
  Proper4es	
  
La•ce	
  parameter,	
  Bond	
  s4ffness	
  
19	
  
k =
dF
dr
LaAce	
  parameter	
  a:
Balance	
  between	
  aZrac4ve	
  
and	
  repulsive	
  forces	
  
Bond	
  sDffness	
  is	
  constant	
  
and	
  the	
  force	
  is	
  linear	
  
for	
  small	
  devia4ons	
  from	
  
equilibrium	
  la•ce	
  parameter:	
  
3.46/3.156	
  Fall	
  2015	
  
La•ce	
  Proper4es:	
  Structure	
  vs.	
  Func4on	
  
La•ce	
  parameter,	
  Bond	
  s4ffness	
  
20	
  
II III IV V VI
Size	
  of	
  the	
  atom	
  vs.	
  bond	
  s4ffness?	
  
3.46/3.156	
  Fall	
  2015	
  
La•ce	
  Proper4es:	
  Structure	
  vs.	
  Func4on	
  
La•ce	
  parameter,	
  Bond	
  s4ffness	
  
21	
  
Shielding	
  of	
  the	
  poten4al	
  
with	
  many	
  electrons	
  
⇒	
  Lower	
  bond	
  strength	
  
II III IV V VI
Size	
  of	
  the	
  atom	
  vs.	
  bond	
  s4ffness?	
  
Large	
  atom	
   Small	
  atom	
  
Minimal	
  screening	
  with	
  
none	
  or	
  few	
  electrons	
  
⇒	
  Higher	
  bond	
  strength	
  
Higher	
  bond	
  s4ffness	
  ⇒	
  higher	
  elas4c	
  modulus	
  
Shorter	
  bonds	
  ⇒	
  higher	
  elas4c	
  modulus	
  
E =
K
a
3.46/3.156	
  Fall	
  2015	
  
Bands	
  and	
  Bandgaps:	
  
Metal,	
  Semiconductor,	
  Insulator	
  
Periodicity	
  of	
  the	
  la•ce	
  =>	
  Bands	
  
22	
  
allowed
forbidden
allowed
forbidden
allowed
allowed
forbidden
EF EF
valence band
conduction band
Eg
Eg
Metal Semiconductor Insulator
3.46/3.156	
  Fall	
  2015	
  
Bands	
  and	
  Bandgaps:	
  
Periodic	
  Poten4al	
  
23	
  
E1 =
2
2m
g
2
!
"
#
$
%
&
2
−V
E2 =
2
2m
g
2
!
"
#
$
%
&
2
+V
2V
For	
  simple	
  1D	
  periodic	
  poten4al:	
  
V = 2Vo cosgx, g =
2π
a
Eg = E2 − E1 ≈ 2V0
2
2m
k2
− E
"
#
$
%
&
'Ck
+ VG
Ck−G
G
∑ = 0
Solu4on	
  to	
  central	
  equa4on:	
   Simplified	
  representa4on	
  
of	
  band	
  diagram:	
  
3.46/3.156	
  Fall	
  2015	
  
24	
  
For	
  simple	
  1D	
  periodic	
  poten4al:	
  
V = 2Vo cosgx, g =
2π
a
Eg = E2 − E1 ≈ 2V0
Size	
  of	
  the	
  atom	
  vs.	
  band	
  gap?	
  
Bands	
  and	
  Bandgaps:	
  
Periodic	
  Poten4al	
  
3.46/3.156	
  Fall	
  2015	
  
25	
  
For	
  simple	
  1D	
  periodic	
  poten4al:	
  
V = 2Vo cosgx, g =
2π
a
Eg = E2 − E1 ≈ 2V0
Large	
  atom	
   Small	
  atom	
  
Shielding	
  of	
  the	
  poten4al	
  
with	
  many	
  electrons	
  
⇒	
  Lower	
  band	
  gap	
  
Minimal	
  screening	
  
of	
  the	
  poten4al	
  
⇒	
  Higher	
  band	
  gap	
  
Bands	
  and	
  Bandgaps:	
  
Periodic	
  Poten4al	
  
Size	
  of	
  the	
  atom	
  vs.	
  band	
  gap?	
  
3.46/3.156	
  Fall	
  2015	
  
Structure-­‐Property	
  Rela4ons	
  
Material:	
  V/III-­‐V	
   Ionicity	
   Eg, eV a, Å Hardness,	
  GPa	
  
Cdia/BNzb	
   0/0.18	
   5.5/6.5	
   3.56/3.16	
   96/31	
  
Si/AlP/NaCl	
   0/0.31/0.94	
   1.12/2.45/8.97	
   5.42/5.46/5.65	
   11.3/9.4/0.2	
  
Ge/GaAs	
   0/0.31	
   0.67/1.42	
   5.66/5.65	
   8.8/7.5	
  
Sn/InSb	
   0/0.32	
   0.08/0.17	
   6.45/6.09	
   2.2	
  
26	
  
II III IV V VI
Eg, K
Large	
  atoms	
  ⇒	
  poten4al	
  shielding	
  
⇒	
  lower	
  bandgap	
  and	
  bond	
  s4ffness	
  
Eg, K:
BN	
  >	
  AlP	
  >	
  GaAs	
  >	
  InSb	
  
GaN	
  >	
  GaP	
  >	
  GaAs	
  >	
  GaSb	
  
C	
  >	
  Si	
  >	
  Ge	
  >	
  Sn	
  
Zn(O,	
  S,	
  Se,Te)	
  >	
  Cd(O,	
  S,	
  Se,Te)	
  
In	
  addi4on	
  to	
  the	
  bond	
  length	
  bond	
  type	
  influences	
  the	
  material	
  proper4es:	
  
§ Higher	
  ionicity	
  leads	
  to	
  higher	
  poten4al	
  experienced	
  by	
  electrons	
  ⇒	
  increased	
  band	
  gap	
  
§ Higher	
  ionicity	
  ⇒	
  reduced	
  hardness	
  
3.46/3.156	
  Fall	
  2015	
  
Materials	
  Design	
  by	
  Property	
  Maps	
  
27	
  
Rules	
  of	
  Structure	
  
§ Covalent	
  solids:	
  
Ionic	
  charge	
  (e)	
  ÷	
  Ionic	
  Radius	
  (nm)	
  >	
  7	
  
§ Structure	
  of	
  covalent	
  solids:	
  
“8-­‐N”	
  Rule:	
  
Coordina4on	
  number	
  
of	
  a	
  covalent	
  solid	
  is	
  CN=8-­‐N	
  
N=number	
  of	
  outer	
  electrons	
  
Material	
   CN,	
  crystal	
  structure	
  
C,	
  Si,	
  Ge,	
  α-­‐Sn	
   8-­‐4=4,	
  tetrahedral	
  
P,	
  As	
   8-­‐5=3,	
  hexagonal	
  
S,	
  Se,	
  Te	
   8-­‐6=2,	
  rings,	
  chains	
  
Property	
  Maps:	
  
(courtesy	
  of	
  Prof.	
  Kimerling)	
  

More Related Content

Featured

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationErica Santiago
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellSaba Software
 

Featured (20)

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 

L1_Photonic_Materials_Design_I.pdf

  • 1. Photonic  Materials  Design   § Bonds   § Bands   § Proper4es   § Alloy  design   1   3.46-­‐3.156  Fall  2015   Photonic  Materials  &  Devices  
  • 2. 3.46/3.156  Fall  2015   Class  Organiza4on   n Instructor:   § Prof.  Polina  Anikeeva  (8-­‐425)      [anikeeva@mit.edu]   § Office  Hours:  Monday  6:30-­‐7:30  pm   n Guest  Lectures:   § Prof.  Lionel  Kimerling  (13-­‐4118)      [lckim@mit.edu]   § Dr.  Chris  Doerr  (?)        [doerrcr@gmail.com]   n Class  Format:   ¨ Monday  9:30-­‐11  am   § Quiz  (10  min):  aZendance  mandatory   § Review  of  last  class/student  ques4ons   § Lecture   ¨ Wednesday  9:30-­‐11  am   § Review  of  last  class/student  ques4ons   § Lecture   n Grading:      G  UG   § Problem  Sets  (4)    20%  0%   § Quizes  (7-­‐8)      30%  25%   § Design  Reviews  (3)    40%  50%   § Final  Exam  –  DR4,  oral    10%  25%   2  
  • 3. 3.46/3.156  Fall  2015   Schedule  and  Topics   3   Op4cs   Optoelectronics   Special  topics   Integra4on   § Intro:  Photonic  Materials  Design  ×2  (PA)   § Photon  Op4cs  &  EM  Wave  Op4cs     § Periodic  Media  &  Photonic  Crystals   § Op4cal  Resonators   § Guided  Wave  Op4cs   § Microphotonic  Numerical  Simula4on  1  (CD-­‐?)     § Electrons  and  Photons  in  Semiconductors   § Materials  Processing  (LCK)   § Solar  Cells   § Photodetectors     § LEDs   § Op4cal  Amplifiers  and  Lasers   § Semiconductor  Lasers   § Organic  Optoelectronics   § Nanostructured  Optoelectronics  ×2   § Non-­‐Linear  Op4cs   § Biophotonics  
  • 4. 3.46/3.156  Fall  2015   Class  Organiza4on   n Course  Website   ¨ Stellar:  h"p://stellar.mit.edu/S/course/3/fa15/3.46/   ¨ Access:  registered  students  and  authorized  auditors     n Lecture  Content  (on  Materials  link)   1. Lecture  Slides   n Posted  to  website  within  24  hrs  of  presenta4on   2. Lecture  Materials:  resources,  readings,  tools   n Posted  to  website   4  
  • 5. 3.46/3.156  Fall  2015   Class  Organiza4on   n Student  data   ¨ Submit  to  Ayn  Inserto  (ainserto@mit.edu)   1. Full  Name   2. Undergraduate/graduate  status  (UG/G)   3. Research/UROP  advisor  and  thesis  topic  (if  applicable)   4. Status:  class-­‐registered  or  auditor   n Work  Groups   ¨ For  doing  weekly  Problem  Sets  (G)  and  Design  Review  projects  (All)   ¨ 2-­‐3  Graduate  or  4-­‐5  Undergraduate  students   ¨ Groups  will  be  assigned  by  Polina  Anikeeva   5  
  • 6. 3.46/3.156  Fall  2015   Class  Organiza4on    Problem  Sets  and  Design  Reviews:     n Weekly  Problem  Set  and  Monthly  Design  Review  assignment   n Problem  Sets  and  Design  Reviews  will  be  done  by  Work  Groups   n One  PSet/DR  per  group  uploaded  (MSWord,  Pages,  PDF)  to  Homework  link   n Electronic  Signature:  name  entry  on  top  of  page  1  aZes4ng:   a) Your  contribu4on   b) Agreement  that  all  Group  members  have  contributed     n All  members  of  a  given  Group  receive  same  PSet/DR  grade   n Group  members  may  pick-­‐up  graded  hard-­‐copy  from  PA   n Problem  Set  1  and  Design  Review  1  are  assigned  today  (Wednesday,  Sep.  9)   ¨ Grad  students:  PSet  due  09/16/15   ¨ DR  1  due  10/07/15   ¨ Download  from  course  website   6  
  • 7. 3.46/3.156  Fall  2015   Class  Organiza4on   n Design  Review  project   ¨ In-­‐class  introduc4on  and  discussion   ¨ 20  min  (5-­‐10  slide)  presenta4on,  all  Group  members  speak     ¨ Corrected  slides  +  final  2-­‐3-­‐page  report  due  two  days  later  (email  to  PA)   n Weekly  Quiz  and  Final  Exam   ¨ Weekly  Quiz  test  student  aZen4veness,  covers  two  lectures  from  previous  week   ¨ Skipping  a  weekly  Quiz  without  advance  no4fica4on  =  0  grade  for  that  Quiz   ¨ Final  Exam  -­‐  Oral  on  Friday  12/05  evening   ¨ Quiz  1  is  on  Monday  Sep.  14   § Tes4ng  Lecture  1  content   7  
  • 8. 3.46/3.156  Fall  2015   Resources   n 3.23  or  3.024  Notes  if  you  already  took  the  class.   n “Fundamentals  of  Photonics”  B.  E.  A.  Saleh  and  M.  C.  Teich   ¨ Chs.  5,  6   n “Op4cal  Materials”  reading  by  A.  M.  Glass   n “Bands  and  Bonds”  reading  by  L.  C.  Kimerling   n “Hardness  of  Covalent  and  Ionic  Crystals:  First-­‐Principle   Calcula4ons”,  Antonín  Šimůnek  and  Jiří  Vackář,  PRL  96  (2006)   8  
  • 9. 3.46/3.156  Fall  2015   Op4cal  Fiber:  How  It’s  Made?   9   SiO2:  GeO2   SiO2:  SixOyFz   Germania  doped  silica   n  >  n(SiO2)   Fluorosilicate  doped  silica   n  <  n(SiO2)   § The  fiber  geometry  is  defined  on  a  macroscale:   Preform  fabrica4on   § Fiber  dimensions  are  reduced  to  microscale:   Thermal  drawing  
  • 10. 3.46/3.156  Fall  2015   Op4cal  Loss  in  Silica  Fiber   10  
  • 11. 3.46/3.156  Fall  2015   Op4cal  Loss  in  Silica  Fiber   11   Rayleigh  scaZering:   Density  varia4on   on  the  length  scale   shorter  than  the   light  wavelength       Intrinsic  electronic   absorp4on  of  silica  is   in  the  UV  ~  140  nm.   Silica  is  an  insulator,   i.e.  wide  bandgap.   Mie  scaZering:   Density,  geometry  varia4on  on  the  length   scale  longer  than  the  light  wavelength       Intrinsic  absorp4on   of  silica  vibra4onal   modes  and   mul4photon   absorp4on  extends   into  the  near  IR.   Vibra4onal  peaks   are  >  7  µm.   Extrinsic  absorp4on:  water  vapor   OH  and  combina4on  OH-­‐silica  vibra4onal  modes   at  0.95,  1.24  and  1.29  µm.  
  • 12. 3.46/3.156  Fall  2015   Op4cal  Loss  in  Silica  Fiber:  Why  Silica?   12   Fiber  Material   Op4cal  loss  (dB/km)   Experimental   Theore4cal   SiO2   0.16  (1.55  µm)   ~0.1  (1.55  µm)   GeO2   4  (2.0  µm)   0.1  (2.5  µm)   Fluorides   0.9  (2.5  µm)   0.001  (3.5  µm)   Chalcogenides   35  (2.5  µm)   0.05  (5  µm)   Polymers   20  (0.7  µm)   Theore4cal  Loss  Plot  
  • 13. 3.46/3.156  Fall  2015   Op4cal  Loss  in  Silica  Fiber:  Why  Silica?   13   Fiber  Material   Op4cal  loss  (dB/km)   Experimental   Theore4cal   SiO2   0.16  (1.55  µm)   ~0.1  (1.55  µm)   GeO2   4  (2.0  µm)   0.1  (2.5  µm)   Fluorides   0.9  (2.5  µm)   0.001  (3.5  µm)   Chalcogenides   35  (2.5  µm)   0.05  (5  µm)   Polymers   20  (0.7  µm)   § Fluorides,  chlorides,  chalcogenides:   Unstable  in  moisture,  toxic,  crystalize   § Silica:   Cheap,  stable,  easy  to  fabricate   Theore4cal  Loss  Plot  
  • 14. 3.46/3.156  Fall  2015   Light  Propaga4on:  Wave  Equa4on   14    ∇×  E + ∂  B ∂t = 0  ∇×  H − ∂  D ∂t =  J  ∇⋅  B = 0  ∇⋅  D = ρ Maxwell’s  Equa4ons:    ∇2  E − 1 c2 ∂2  E ∂t2 = 0  ∇2  H − 1 c2 ∂2  H ∂t2 = 0 Wave  equa4on:   (absence  of  charges   and  currents)   c = c0 n = 1 µε speed  of  light  in  media:   speed  of  light  in  vacuum:   n = c0 c = µε µ0ε0 = µrεr refrac4ve  index:   c0 = 1 µ0ε0 = 3×108 m s ε0 = 10−9 36π F m µ0 = 4π ×10−7 H m permi•vity  of  free  space:   permeability  of  free  space:   Simplest  solu4on   to  wave  equa4on:   plane  waves    E = Re  E0ei  k  r−iωt +C.C. " # $ %  H = Re  H0ei  k  r−iωt +C.C. " # $ %
  • 15. 3.46/3.156  Fall  2015   Interac4on  of  Light  and  MaZer   Damped  Driven  Harmonic  Oscillator  Analogy:   15   d2 ! x dt2 +σ d ! x dt +ω0 2 ! x = ! F m ! P = N ! p = Nex d2 ! P dt2 +σ d ! P dt +ω0 2 ! P =ω0 2 ε0 χ0 ! E ! F = e ! E e2 N m =ω0 2 ε0 χ0  P = ω0 2 ε0 χ0 ω0 2 −ω2 −iσω  E =ε0 χ ω ( )  E ! E = ! E0ei ! k ! r−iωt ⇒ P ! " = P0 !" ! ei " k " r−iωt B =σm k =ω0 2 m x
  • 16. 3.46/3.156  Fall  2015   Interac4on  of  Light  and  MaZer   16   Polarizability,  Absorp4on,  Dispersion   χ ω ( )= χ0 ω0 2 ω0 2 −ω2 ( ) ω0 2 −ω2 ( ) 2 + σω ( ) 2 + χ0 iω0 2 σω ω0 2 −ω2 ( ) 2 + σω ( ) 2 = χ ' ω ( )+iχ" ω ( ) ! P = ω0 2 ε0 χ0 ω0 2 −ω2 −iσω ! E =ε0 χ ω ( ) ! E χ ' ω ( )= 2 π sχ" s ( ) s2 −ω2 ds 0 ∞ ∫ χ" ω ( )= 2 π ωχ ' s ( ) s2 −ω2 ds 0 ∞ ∫ ε =ε0 1+ χ ( )=ε0 1+ χ ' ( )+iε0 χ"=ε'+iε" n' = ε ε0 = 1+ χ '+iχ" = n +iα Kramers-­‐Cronig  Rela4ons.   Connec4ng  absorp4on  and   dispersion:   Absorp4on  coefficient:   Refrac4ve  index:   D !" =ε0 ! E + ! P =ε0 1+ χ ( ) ! E
  • 17. 3.46/3.156  Fall  2015   Interac4on  of  Light  and  MaZer   17   Polarizability,  Absorp4on,  Dispersion   χ ω ( )= χ0 ω0 2 ω0 2 −ω2 ( ) ω0 2 −ω2 ( ) 2 + σω ( ) 2 + χ0 iω0 2 σω ω0 2 −ω2 ( ) 2 + σω ( ) 2 = χ ' ω ( )+iχ" ω ( )  P = ω0 2 ε0 χ0 ω0 2 −ω2 −iσω  E =ε0 χ ω ( )  E Multiple resonances: Absorp4on   coefficient   α (ν) Refrac4ve   index   n (ν)
  • 18. 3.46/3.156  Fall  2015   Dispersion  and  Pulse  Propaga4on   18   n = n λ ( )⇒ c = c λ ( ) § Normal  dispersion:  in  the  medium  blue  light  has  lower  velocity  than  red   § Light  pulses  get  broadened  due  to  shorter  wavelengths  “falling  behind”     Larger  dispersion  implies  longer  spacing  between  the  pulses  and  hence  lower  bit  rate  
  • 19. 3.46/3.156  Fall  2015   La•ce  Proper4es   La•ce  parameter,  Bond  s4ffness   19   k = dF dr LaAce  parameter  a: Balance  between  aZrac4ve   and  repulsive  forces   Bond  sDffness  is  constant   and  the  force  is  linear   for  small  devia4ons  from   equilibrium  la•ce  parameter:  
  • 20. 3.46/3.156  Fall  2015   La•ce  Proper4es:  Structure  vs.  Func4on   La•ce  parameter,  Bond  s4ffness   20   II III IV V VI Size  of  the  atom  vs.  bond  s4ffness?  
  • 21. 3.46/3.156  Fall  2015   La•ce  Proper4es:  Structure  vs.  Func4on   La•ce  parameter,  Bond  s4ffness   21   Shielding  of  the  poten4al   with  many  electrons   ⇒  Lower  bond  strength   II III IV V VI Size  of  the  atom  vs.  bond  s4ffness?   Large  atom   Small  atom   Minimal  screening  with   none  or  few  electrons   ⇒  Higher  bond  strength   Higher  bond  s4ffness  ⇒  higher  elas4c  modulus   Shorter  bonds  ⇒  higher  elas4c  modulus   E = K a
  • 22. 3.46/3.156  Fall  2015   Bands  and  Bandgaps:   Metal,  Semiconductor,  Insulator   Periodicity  of  the  la•ce  =>  Bands   22   allowed forbidden allowed forbidden allowed allowed forbidden EF EF valence band conduction band Eg Eg Metal Semiconductor Insulator
  • 23. 3.46/3.156  Fall  2015   Bands  and  Bandgaps:   Periodic  Poten4al   23   E1 = 2 2m g 2 ! " # $ % & 2 −V E2 = 2 2m g 2 ! " # $ % & 2 +V 2V For  simple  1D  periodic  poten4al:   V = 2Vo cosgx, g = 2π a Eg = E2 − E1 ≈ 2V0 2 2m k2 − E " # $ % & 'Ck + VG Ck−G G ∑ = 0 Solu4on  to  central  equa4on:   Simplified  representa4on   of  band  diagram:  
  • 24. 3.46/3.156  Fall  2015   24   For  simple  1D  periodic  poten4al:   V = 2Vo cosgx, g = 2π a Eg = E2 − E1 ≈ 2V0 Size  of  the  atom  vs.  band  gap?   Bands  and  Bandgaps:   Periodic  Poten4al  
  • 25. 3.46/3.156  Fall  2015   25   For  simple  1D  periodic  poten4al:   V = 2Vo cosgx, g = 2π a Eg = E2 − E1 ≈ 2V0 Large  atom   Small  atom   Shielding  of  the  poten4al   with  many  electrons   ⇒  Lower  band  gap   Minimal  screening   of  the  poten4al   ⇒  Higher  band  gap   Bands  and  Bandgaps:   Periodic  Poten4al   Size  of  the  atom  vs.  band  gap?  
  • 26. 3.46/3.156  Fall  2015   Structure-­‐Property  Rela4ons   Material:  V/III-­‐V   Ionicity   Eg, eV a, Å Hardness,  GPa   Cdia/BNzb   0/0.18   5.5/6.5   3.56/3.16   96/31   Si/AlP/NaCl   0/0.31/0.94   1.12/2.45/8.97   5.42/5.46/5.65   11.3/9.4/0.2   Ge/GaAs   0/0.31   0.67/1.42   5.66/5.65   8.8/7.5   Sn/InSb   0/0.32   0.08/0.17   6.45/6.09   2.2   26   II III IV V VI Eg, K Large  atoms  ⇒  poten4al  shielding   ⇒  lower  bandgap  and  bond  s4ffness   Eg, K: BN  >  AlP  >  GaAs  >  InSb   GaN  >  GaP  >  GaAs  >  GaSb   C  >  Si  >  Ge  >  Sn   Zn(O,  S,  Se,Te)  >  Cd(O,  S,  Se,Te)   In  addi4on  to  the  bond  length  bond  type  influences  the  material  proper4es:   § Higher  ionicity  leads  to  higher  poten4al  experienced  by  electrons  ⇒  increased  band  gap   § Higher  ionicity  ⇒  reduced  hardness  
  • 27. 3.46/3.156  Fall  2015   Materials  Design  by  Property  Maps   27   Rules  of  Structure   § Covalent  solids:   Ionic  charge  (e)  ÷  Ionic  Radius  (nm)  >  7   § Structure  of  covalent  solids:   “8-­‐N”  Rule:   Coordina4on  number   of  a  covalent  solid  is  CN=8-­‐N   N=number  of  outer  electrons   Material   CN,  crystal  structure   C,  Si,  Ge,  α-­‐Sn   8-­‐4=4,  tetrahedral   P,  As   8-­‐5=3,  hexagonal   S,  Se,  Te   8-­‐6=2,  rings,  chains   Property  Maps:   (courtesy  of  Prof.  Kimerling)