SlideShare a Scribd company logo
1 of 20
ResearchArticle 
A modified NARMAXmodel-basedself-tunerwithfault 
toleranceforunknownnonlinearstochastichybrid 
systemswithaninput–output directfeed-throughterm 
Jason S.-H.Tsai a,n, Wen-TengHsu a, Long-GueiLin a, Shu-MeiGuo b,n, JosephW.Tann c 
a Department ofElectricalEngineering,NationalCheng-KungUniversity,Tainan701,Taiwan,ROC 
b Department ofComputerScienceandInformationEngineering,NationalCheng-KungUniversity,Tainan701,Taiwan,ROC 
c Automation&InstrumentationSystemDevelopmentSectionSteel&IronResearch&DevelopmentDepartment,Kaohsiung81233,Taiwan,ROC 
a rticleinfo 
Article history: 
Received3January2013 
Receivedinrevisedform 
9 August2013 
Accepted10August2013 
Availableonline5September2013 
This paperwasrecommendedfor 
publication byDr.Q.-G.Wang 
Keywords: 
Self-tuning control 
Stochasticsystem 
NARMAXmodel 
Faulttolerantcontrol 
OKID 
RELS 
Systemidentification 
An input–output directtransmissionterm 
a b s t r a c t 
A modified nonlinearautoregressivemovingaveragewithexogenousinputs(NARMAX)model-basedstate- 
spaceself-tunerwithfaulttoleranceisproposedinthispaperfortheunknownnonlinearstochastichybrid 
systemwithadirecttransmissionmatrixfrominputtooutput.Throughtheoff-lineobserver/Kalman filter 
identification method,onehasagoodinitialguessofmodified NARMAXmodeltoreducetheon-linesystem 
identification processtime.Then,basedonthemodified NARMAX-basedsystemidentification, acorrespond- 
ing adaptivedigitalcontrolschemeispresentedfortheunknowncontinuous-timenonlinearsystem,withan 
input–output directtransmissionterm,whichalsohasmeasurementandsystemnoisesandinaccessible 
systemstates.Besides,aneffectivestatespaceself-turnerwithfaulttoleranceschemeispresentedforthe 
unknownmultivariablestochasticsystem.Aquantitativecriterionissuggestedbycomparingtheinnovation 
processerrorestimatedbytheKalman filterestimationalgorithm,sothataweightingmatrixresetting 
techniquebyadjustingandresettingthecovariancematricesofparameterestimateobtainedbytheKalman 
filterestimationalgorithmisutilizedtoachievetheparameterestimationforfaultysystemrecovery. 
Consequently,theproposedmethodcaneffectivelycope withpartiallyabruptand/orgradualsystemfaults 
andinputfailuresbythefaultdetection. 
& 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
1. Introduction 
The state-spaceself-tuningcontrolmethods [1,2] havebeen 
shown tobeeffectiveindesigningadvancedadaptivecontrollers 
for linearmultivariablestochasticsystems [3]. Inthoseapproaches 
[1,2], thestandardKalmanstate-estimationalgorithm [4] has been 
embedded intoanonlineparameterestimationalgorithm.They 
utilize state-spaceself-tunersbasedoninnovationmodels,where 
(i) theequivalentinternalstatescanbeestimatedsuccessively; 
(ii) thestable/unstableandminimum/nonminimum-phasemulti- 
variablesystemscanbecontrolledaccurately;(iii)theself-tuners 
aresimple,reliableandrobust;and(iv)theadaptiveKalmangain 
can subsequentlybeobtained. 
Polynomialexpansionsareusedextensivelyinnonlinearsys- 
tem analysis,wherethesystemhasnotheinput–output direct 
feed-through term.Iftheresponseofasystemisdominatedby 
nonlinear characteristics,itisgeneralnecessarytouseanonlinear 
model, andthisimmediatelyraisestheproblemofwhatclassof 
models touse.ThetraditionalNARMAXmodel,whichwas first 
introducedandrigorouslyderivedby [5], providesaunified 
representationforawideclassofnonlinearstochasticsystems 
[6]. TheNARMAXmodelisnotrestrictedtopolynomialsystems 
and canbeexpandedasarationalmodel [7]. Theadvantageofthe 
rationalmodelistheefficiency withwhichitcanseverelydescribe 
nonlinear characteristicswithafewparameters.Theseresultscan 
be relatedtothemodelsintroducedbySontag [8]. Whentheyare 
extendedtotheunknownstochasticcase,thesemodelsprovidea 
class ofrationalmodels [7] which canbeusedasthebasisof 
parameterestimationalgorithms. 
Over thepastdecades,therehasbeenagrowinginterestinthe 
singular system.Theapplicationsofsingularsysteminlarge-scale 
systems,circuits,powersystems,economics,controltheory, 
robots,andotherareas [9,10] are extensively.Thetrackerand 
fault tolerancecontrolforthelinearsingularsystemisgivenin 
[11]. Actually,thesingularsystemcanbeconvertedintoan 
equivalentregularsystemwhichmayhaveadirecttransmission 
termfrominputtooutput.Indeed,thesingularsystemwithoutthe 
Contents listsavailableat ScienceDirect 
journalhomepage: www.elsevier.com/locate/isatrans 
ISATransactions 
0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
http://dx.doi.org/10.1016/j.isatra.2013.08.007 
n Corresponding authors.Tel.: þ886 62757575x62630, +886 62757575x62525; 
fax: þ886 62345482, +886 62747076. 
E-mail addresses: shtsai@mail.ncku.edu.tw (J.-H.Tsai), 
guosm@mail.ncku.edu.tw (S.M.Guo). 
ISA Transactions53(2014)56–75
impulse modeisjustaspecialclassoftheregularsystemwiththe 
direct transmissiontermfrominputtooutput.Totheauthor's 
knowledge,theNARMAXmodel-basedstate-spaceoptimaltracker 
with faulttolerancefortheregularnonlinearsampled-datasystem 
containing thedirecttransmissiontermfrominputtooutputhas 
not beenproposedinliterature. 
The settingofinitialparametersoftheNARMAXmodelis 
important toreducethetimeoftheon-lineidentifyingprocess,so 
the observer/Kalman filteridentification (OKID) [12,13] is applied 
to estimatetheinitialparametersoftheNARMAXmodelandorder 
determination fortheonlinerecursiveextended-least-squares 
(RELS)identification inthispaper.Thewell-knownprocessof 
on-line systemidentification ofARMA/NARMAXmodel-based 
state-space self-tuningcontrolforthesystemwithoutinput– 
output feed-throughtermrequitestheone-steppastcontrolinput 
and someothermeasurementstodeterminethecurrentcontrol 
input.However,forthecaseofthesystemwithinput–output feed- 
through term,itrequirestohavethecurrentcontrolinput,which 
implies thereisacausalproblem.Toovercomethisproblem,a 
modified NARMAXmodel-basedsystemidentification forthe 
unknown nonlinearsystemwiththeinput–output feed-through 
term willbeproposedinthispaper.TheOKID [12,13] is performed 
in off-line,sothereisnocausalproblemtoidentifytheinput– 
output feed-throughterm.However,itdoesnotworkfortheon- 
line case.Totheauthor'sknowledge,noon-lineOKIDhasbeen 
proposed inliterature.Theidentified observerofthestate-space 
self-tuning controlisinthestate-spaceinnovationform;however, 
the oneidentified bytheOKIDisinthegeneralcoordinateform. 
So, thetransformationbetweenthesetwowillbebriefly intro- 
duced inthispaper.Then,basedonthemodified NARMAXmodel 
and itscorrespondingstatespaceinnovationform,adigital 
controller designtodealwiththesystemwithadirecttransmis- 
sion term [11] is presented. 
One pointmustbenoticedthatthestate-spaceself-tuning 
control (STC)schemefornonlinearstochastichybridsystems 
proposed byGuoetal. [14] estimatesthesystemparametersat 
every samplinginstant,thendesignsanadaptivecontrollerbased 
on theestimatedparametersalsoateverysamplinginstant.The 
frameworkofthestate-spaceSTCseemstoagreewiththatofthe 
activefaulttoleranceinarealtime.Forfaultysystemrecovery,we 
use themodified Kalman filter estimationalgorithmbyutilizing 
the modified covariancematricesfromestimatederrorsto 
improvetheparameterestimation [15], insteadofutilizingthe 
estimatedcovariancematriceswhichisobtainedfromtheRELS 
algorithm intheconventionalSTCschemeforadaptingparameter 
variations.Aboutthefaults,abruptfaultsandgradualfaultsare 
considered inthispaper. 
This paperisorganizedasfollows.Problemdescriptionand 
motivationofthispaperisgivenin Section 2. Section 3 summaries 
some preliminaryfortheproposedmethod. Section 4 presents the 
modified NARMAX(inpolynomial)model-basedstate-spaceself- 
tuner forunknownnonlinearstochastichybridsystemswiththe 
input–output feed-throughterm.In Section 5, afaulttolerance 
scheme bymodifyingtheconventionalstate-spaceself-tuning 
controlapproachfortheunknownmultivariablestochasticsystem 
with input–output feed-throughtermisproposed.Finally,an 
illustrativeexampleisshownin Section 6. 
2. Problemdescriptionandmotivation 
Considertheclassofcontinuous-timenonlinearstochasticsystems 
as follows: 
_xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðtÞþw′ðtÞ; ð1aÞ 
yðtÞ ¼ hðxðtÞÞþdðxðtÞÞuðtÞþv′ðtÞ; ð1bÞ 
where f : ℜn-ℜn, g : ℜn-ℜnm, h : ℜn-ℜp, d : ℜn-ℜpm, 
uðkÞAℜm is thecontrolinput, xðkÞAℜn is thestatevector, yðtÞAℜp 
isthemeasurableoutputvector, w′ðtÞ and v′ðtÞ areuncorrelatedwhite 
noise processes.Theon-linesystemidentification methodologiesof 
ARMAXand/orNARMAX(inpolynomialand/orrational)model-based 
state-spaceself-tuningcontrolwith/withoutfaulttoleranceforthe 
known/unknownlinear/nonlinearsystemwithoutinput–output feed- 
throughtermestimatethecurrentsystemparametersandstateat 
time index t ¼ kT based oncontrolinputuptotimeindex t ¼ kTT, 
uðkTTÞ, andoutputmeasurementsuptoeither t ¼ kTT or t ¼ kT. 
Then, determinethecurrentcontrolparameter uðkTÞ basedonthe 
estimatedstate ^xoðkTÞ, where ^xoðkTÞ denotestheestimatedcurrent 
statefortheconstructedobserverrepresentedintheobserver 
canonical form,sothatthesystemoutput yðtÞ canwelltrackthe 
desiredreference ΓðtÞ at timeindex t ¼ kTþT, i.e. 
yðkTþTÞffiΓðkTþTÞ, butnot yðkTÞffiΓðkTÞ. Theinterpretationofthis 
comment isthatthecurrent uðkTÞ is determinedbythecurrentstate 
^xoðkTÞ=xðkTÞ, whichimplies yðkTÞ determinedby uðkTTÞ exists 
already.So, uðkTÞ cannotaffect yðkTÞ anymore.Theaboveobservation 
showsthatoneneeds uðkTTÞ first,thenidentifies thesystem 
parameter/state,anddeterminesthecurrentcontrolinput uðkTÞ finally,whichisthewell-knownon-lineprocessofthesystem 
identification methodologyforthestate-spaceself-tuningcontrol. 
However,whenthesystemhastheinput-outputfeed-through 
term,oneneedstohavethecurrentcontrolinput uðkTÞ first forthe 
on-line systemidentification, thendeterminesthecontrolinput 
uðkTÞ later,whichinducestheso-calledcasualproblem.Toover- 
come thisproblem,amodified NARMAmodel-basedsystem 
identification fortheunknownnonlinearsystemwiththeinput– 
output feed-throughtermwillbeproposedinthispaper. 
The structureofthestate-spaceSTCschemeincludesapara- 
meter andstateestimatorandacontrollerdesign.Atypicalstate- 
space STCstructureisillustratedin Fig. 1. 
Fig. 1. Block diagramofatypicalstate-spaceself-tuningcontrol. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 57
Underthisframework,parametersandstateoftheunknown 
model areestimatedfromthecontrolinput ðud 
nðkTÞ; 
udððk1ÞTÞ; udððk2ÞTÞ;…Þ and thesystemoutput ðyðkTÞ; 
yððk1ÞTÞ; yððk2ÞTÞ;…Þ, where ud 
nðkTÞ is tobeestimatedbased 
on somepredictionconceptpresentedin Section 4. Considering 
the complexityofthefaulttolerancecontrol,thispapertakesthe 
NARMAXmodelinpolynomialexpansionform,butnotinrational 
expansionform.Theextensionofthemodified NARMAXmodel- 
based methodologyforthefault-tolerancecontrolfromitspoly- 
nomial expansionformtorationalexpansionformcanbecon- 
sideredasafutureresearchwork.Basedontheestimated 
parameter θðkÞ of themodified NARMAXmodel,anappropriate 
controllercanbedesignedin Section 4. Then,thedesigned 
adaptivecontrollergeneratesreal-timecontrolactionsforthe 
unknown dynamicsystem.Thedetailofthetraditionalalgorithm 
to estimatethesystemparameters θðkÞ is describedin Section 2. 
Then, theprocesscycleisrepeateduntilthecontrolgoalis 
achieved. Noticethatifthecontrolinputispersistentlyexcited, 
the convergencetothetruesystemparametersisguaranteedby 
Ljung [16]. 
It iswell-knownthatonecanformulateanARMAXmodel 
suitable fortheunknownrealsystem.However,insomecases,the 
ARMAX modelforself-tuningcontrolcannotsimulatetheoriginal 
true systemaccurately.Inthispaper,wewillproposethemodified 
NARMAXmodelinpolynomialexpansionformforthefault 
toleranceself-tuningcontrol(STC)scheme. 
The expressionofmodified NARMAXmodelforthe m-input p-output 
systemisgivenby 
~yiðkÞ ¼ Fi½y1ðk1Þy2ðk1Þ…ypðk1Þ…y1ðknnyÞy2ðknnyÞ…ypðknnyÞ 
u1 
nðkÞun 
2ðkÞ⋯un 
mðkÞu1ðk1Þu2ðk1Þ…umðk1Þ…u1ðknnuÞ 
u2ðknnuÞ…umðknnuÞε1ðk1Þε2ðk1Þ…εpðk1Þ⋯ε1ðknneÞ 
ε2ðknneÞ…εpðknneÞ 
¼ Σ 
j ¼ 1n 
θijðkÞϕijðkÞ ¼ θiðkÞTϕiðkÞ; for i ¼ 1; 2;…; p; ð2Þ 
where ~yiðkÞ is theestimatedvalueof yiðkÞ, uαðkÞ and yβðkÞ denote 
the α  th input(α¼1, 2, …,m) andthe β  th output(β¼1, 2, …,p) 
at time k (k¼0, 1, …). Notation εðkÞ is theresidualscalar, nny, nnu, 
nne aretheordersof y, u, ε, respectively, n is theamountofthe 
linear/nonlinear variables ðy; u; εÞ of theNARMAXmodel (2), θijðkÞ 
denotesthe j-th coefficient oftheNARMAXmodelforthe i-th 
estimatedoutput~yiðkÞ. Besides, ϕijðkÞ denotesthe j-th linear/non- 
linear variables(y, u, ε) oftheNARMAXmodelforthe i-th 
estimatedoutput ~yiðkÞ. Thewholemodelisnonlinear,i.e. FiðdÞ 
arenonlinearpolynomialsfor i ¼ 1; 2;⋯; p. Notation n 
 denotesthe 
lags and ϕ 
ðkÞ can beanynonlinearfunctionin FiðdÞ. 
Each estimatedoutput ~yiðkÞ is identified fromeachclassof 
nonlinear ϕiðkÞ as 
~yiðkÞ ¼ θi 
T ðkÞϕiðkÞ; i ¼ 1; 2;…; p; ð3aÞ 
and thestandardRELSalgorithmisappliedby 
θiðkÞ ¼ θiðk1Þþ 
Siðk1ÞϕiðkÞ 
λðkÞþϕi 
T ðkÞSiðk1ÞϕiðkÞ 
εiðkÞ; ð3bÞ 
SiðkÞ ¼ 
1 
λðkÞ 
Siðk1Þ 
Siðk1ÞϕiðkÞϕiðkÞTSiðk1Þ 
λðkÞþϕi 
T ðkÞSiðk1ÞϕiðkÞ 
! 
; ð3cÞ 
where λðkÞ is theforgettingfunctiontodiscounttheoldmeasure- 
ments, andcanbedeterminedbythe first-order difference 
equation, λðkÞ ¼ λ0λðk1Þþð1λ0Þ, withtheinitialcondition 
0:9oλð0Þo1; and theupdatingfactor0oλ0o1. Also, SiðkÞAℜnn 
is theparametersestimationerrorcovariancematrixwith 
Sið0Þ ¼ αiInn, where αi is thepositivescalar,andtheresidualvector 
of eachoutputisgivenby 
εiðkÞ ¼ yiðkÞθi 
T ðk1ÞϕiðkÞ: ð4Þ 
Fordifferentselectionsof FiðUÞ, manyclassesofNARMAXmodels 
can bechosen.Tosimplifythewholecontrolschemeforthe 
complicateon-linefault-tolerancecontrol,itisdesiredtochoose 
some simplestructuresofdynamicnonlinearmodels.Thus,the 
self-tuning controlschemewiththeNARMAXmodelfornonlinear 
stochasticsystemscanworkmoreprecisely. 
3. Preliminary 
In thissection,webriefly reviewtheRELS-basedobserver/ 
Kalman filterstate-spaceformandOKID-basedgeneralcoordinate 
form, sincethemodelconversionfromOKID-basedgeneral 
coordinatetotheRELS-basedstate-spaceinnovateformisneces- 
sary.Oncehavingtheestimatedparameters θiðkÞ from thestan- 
dard RELSalgorithm,theNARMAXmodelfortheSTCschemecan 
accuratelyapproximatetheresponsesofthenonlinearsystem. 
Moreover,theinitialparameters θiðkÞ of NARMAXmodelwillaffect 
the convergentspeedofRELSprocess.Inordertogetsuitable 
initial parameters θið0Þ toshortenthetransientprocessofRELS, 
we applyOKIDtoevaluateithere. 
The regressor ϕiðkÞ in ~yiðkÞ ¼ θi 
T ðkÞϕiðkÞ is composedof 
ðy1ðk1Þ; y1ðk2Þ;…; y1ðknnyÞ; y2ðk1Þ; y2ðk2Þ;…y2ðknnyÞ;…; ypðk1Þ 
ypðk2Þ;…; ypðknnyÞ; u1 
nðkÞ; u1ðk1Þ;…; u1ðknnuÞ; u2 
nðkÞ; 
u2ðk1Þ;…u2ðknnuÞ;…um 
nðkÞ; umðk1Þ;…; umðknnuÞ; ε1ðk1Þ; 
ε1ðk2Þ;…; ε1ðknneÞ; ε2ðk1Þ; 
ε2ðk2Þ;⋯; ε2ðknneÞ;⋯; εpðk1Þ; εpðk2Þ;⋯; εpðknneÞÞ: 
Components of ϕiðkÞ are notindependentfactors,soitis 
difficult todesigndigitalcontrollerdirectlyfromtheSTCscheme 
with theNARMAXmodel.Forthisreason,onecouldapplythe 
optimallinearizationtotheNARMAXmodeltoconfigure alinear 
discrete-timestate-spaceobserverfordesigningthedigitalcon- 
trolleroftheSTCscheme. 
3.1.RELS-basedobserver/Kalman filter instate-space 
innovationform 
A preliminarystructureofthediscretestate-spaceobserverof 
the linearsystemispresentedin [3]. Considerthefollowinglinear 
discretestochasticsystemas 
xðkþ1Þ ¼ GxðkÞþHuðkÞþwðkÞ; ð5aÞ 
yðkÞ ¼ CxðkÞþDuðkÞþvðkÞ; ð5bÞ 
where GAℜnn, HAℜnm, CAℜpn and DAℜpm are systemmatrices, 
xAℜn, uAℜm, and yAℜp arestatevector,inputvector,andoutput 
vector,respectively, wAℜnand vAℜp arezero-meanwhitenoise 
sequenceswithcovariancematricesas 
E 
wðkÞ 
vðkÞ 
 # 
wT ðlÞ vT ðlÞ 
( h i) 
¼ 
Q S 
S R 
  
δk;l; ð6Þ 
QZ0, R40, δk;l ¼1 if k ¼ l, and δk;l ¼0 if kal, k; l ¼ 0; 1; 2;…. 
System (5) can betransferredintotheblockobservableform,ifthe 
rankofthefollowingobservabilitymatrix 
Θ ¼ ½ðCGr1 
ÞT ; ðCGr2 
ÞT…ðCGÞT ; CT 
T ð7Þ 
is equalto n. 
Notethattheobservabilityindexof Θ is ρ ¼ n=p, ifitisan 
integer(otherwise,itisundefined). Thisconstraintmeansthatthe 
Kroneckerindicesofsystem (5) areallsuchintegers ρs satisfying 
n ¼ ρp. Whensystem (5) is blockobservable,itcanbetransformed 
J.S.-H. Tsaietal./ISATransactions53(2014)5658 –75
into theblockobservablecompanionformasfollows 
xoðkþ1Þ ¼ GoxoðkÞþHouðkÞþwoðkÞ; ð8aÞ 
yðkÞ ¼ CoxoðkÞþDouðkÞþvoðkÞ; ð8bÞ 
where 
To ¼ ½Gr1To1; Gr2To1;…; GTo1; To1; To1 ¼ Θ1CT 
o 
xoðkÞ ¼ T1 
o xðkÞ 
Go ¼ T1 
o GTo ¼ 
Go1 Ip 0p ⋯ 0p 
Go2 0p Ip ⋯ 0p 
⋮ ⋮ ⋮⋱⋮ 
Goρ1 0p 0p ⋯ Ip 
Goρ 0p 0p ⋯ 0p 
2 
6666664 
3 
7777775 
; 
Ho ¼ T1 
o H ¼ ½HT 
o1;HT 
o2;…;HT 
oρT 
xoðkÞ ¼ ½xT 
o1ðkÞ; xT 
o2ðkÞ;…; xT 
oρðkÞT 
Co ¼ CTo ¼ ½Ip; 0p;…; 0p 
Do ¼ D 
woðkÞ ¼ T1 
o wðkÞ; voðkÞ ¼ vðkÞ; 
E 
woðkÞ 
voðkÞ 
 # 
wo 
T ðlÞ vo 
T ðlÞ 
( h i) 
¼ 
T1 
o QðT1 
o ÞT T1 
o S 
ðT1 
o SÞT R 
 # 
¼ 
Qo So 
So Ro 
 # 
δk;l; 
in which Ip and 0p are pp identity andzeromatrices,respectively. 
System (8) can berepresentedbyastate-spaceinnovation 
model [17] as 
^xoðkþ1jkÞ ¼ Go ^xoðkjk1ÞþHouðkÞþKoðkÞeoðkÞ; ð9aÞ 
yoðkÞ ¼ Co ^xoðkjk1ÞþDouðkÞ; ð9bÞ 
where KoðkÞ is theKalmangain,whichcanbecomputedbythe 
following algorithm [18]: 
KoðkÞ ¼ ½GoPoðkÞCo 
T 
þSo½CoPoðkÞCT 
o þRo1; ð10aÞ 
Poðkþ1Þ ¼ ½GoKoðkÞCoPoðkÞ½GoKoðkÞCoT 
þKoðkÞRoKT 
o ðkÞSoKT 
o ðkÞKoðkÞST 
o þQo 
¼ Ef~xoðkþ1jkÞ~xoðkþ1jkÞTg ð10bÞ 
Poð0Þ ¼ Ef½xoð0Þ^xoð0Þ½xoð0Þ^xoð0ÞT g; ð10cÞ 
in which ^xoðkjk1Þ is theoptimalestimateof xoðkÞ by themeasure- 
mentdataupto yðk1Þ, i.e., yðiÞ for i ¼ 0; 1;…; k1, ~xoðkjk1Þ ¼ xoðkÞ^xoðkjk1Þ is theestimateerror, eoðkÞ ¼ yðkÞCo ^xoðkjk1Þ DouðkÞ ¼ Co ~xoðkÞþvoðkÞ isthezero-meanwhitenoisesequencewith 
Re ¼ EfeoðkÞeT 
o ðkÞg ¼ CoPoðkÞCT 
o þRo, where eoðkÞ is calledtheinnova- 
tion process. 
If thepair ðGo; CoÞ is detectableandthepair ðGoSoR1 
o Co; ^Q 
oÞ, 
with ^Q 
o 
^Q 
T 
o ¼ QoSoR1 
o ST 
o , isstable,then PoðkÞ-Po, where Po is the 
stationary errorcovariancematrix,sothat KoðkÞ-Ko (the station- 
ary Kalmangain)as k-1. Furthermore,theeigenvaluesof 
GoKoCo areallinsidetheunitcircle.Let z1 be thebackward 
time-shiftoperatorandset Ko ¼ ½KT 
o1; KT 
o2;…; KT 
oρT Aℜnp. Then,the 
input–output relationshipofthesteady-stateinnovationrepre- 
sentation (9) can berewrittenas 
yðkÞ ¼ Co½InGoz11½Hoz1uðkÞþKoz1eoðkÞ 
þDouðkÞþeoðkÞ 
¼ ½Glðz1Þ1½Hlðz1ÞuðkÞþ½Glðz1Þ1½Kelðz1ÞeoðkÞ; ð11Þ 
where 
Glðz1Þ ¼ IpþGo1z1þGo2z2þ…þGoρzρ; 
Hlðz1Þ ¼ Doþ ~H 
o1z1þ ~H 
o2z2þ…þ ~H 
oρzρ; 
~H 
oi ¼ HoiþGoiDo; 
Kelðz1Þ ¼ IpþKeo1z1þKeo2z2þ…þKeoρzρ 
Keoi ¼ GoiþKoi; i ¼ 1; 2;…; ρ: 
Notethatallthezerosofdet½Kelðz1Þ must beinsidetheunitcircle 
in themultivariableARMAXmodel (11). Iftheparametersmatrices 
Goi, Hoi, Coiand Doi, i ¼ 1; 2;…; ρ, in (8) are known,andthe 
covariancematricesthereinareavailable,therecursiveestimation 
algorithm (10a) can beappliedtodeterminetheKalmangain 
KoðkÞ. Thus,thestate xoðkÞ can beoptimallyestimatedusingthe 
algorithmin (9). TheestimatedKalmangain, ^K 
oiðkÞ, isgivenby 
^K 
oiðkÞ ¼ ^K 
eoiðkÞ ^G 
oiðkÞ; i ¼ 1; 2;…; ρ: ð12Þ 
and theestimatedstateintheblockobservableformis 
xoðkþ1jkÞ ¼ ^G 
oðkjk1Þxoðkjk1Þþ ^H 
oðkÞuðkÞ 
þ ^K 
oðkÞeoðkÞ; ð13aÞ 
eoðkÞ ¼ yðkÞCoxoðkjk1ÞDouðkÞ; ð13bÞ 
where ^G 
oðkÞ, ^H 
oðkÞ, and ^K 
oðkÞ contain theestimatedparameters 
matrices ^G 
oiðkÞ, ^H 
oiðkÞ, and ^K 
oiðkÞ, i ¼ 1; 2;…; ρ. Whenallthese 
estimatedparametersmatricesconvergetothetruevalues,the 
estimated xoðkjk1Þ and eoðkÞ convergetotheoptimalstate 
estimate ^xoðkjk1Þ and innovationprocess eoðkÞ. Itisimportant 
tonotethataslongasthematrix 
Gc ¼ GoKoCo ¼ 
Keo1 Ip 0p ⋯ 0p 
Keo2 0p Ip ⋯ 0p 
⋮ ⋮ ⋮⋱⋮ 
Keoρ1 0p 0p ⋯ Ip 
Keoρ 0p 0p ⋯ 0p 
2 
6666664 
3 
7777775 
is asymptoticallystable,theboundaryofthenoisesequences 
implies thattheestimationerrorwillalwaysbebounded.When- 
ever KeoiðkÞ ¼ 0p, for i ¼ 1; 2;…; ρ, itdesignatesadead-beat-like 
property. 
3.2. OKID-basedobserver/Kalman filter ingeneralcoordinateform 
Consider thefollowingdiscrete-timestate-spaceequationsofa 
multivariablelinearsystem 
xðkþ1Þ ¼ GxðkÞþHuðkÞ; ð14aÞ 
yðkÞ ¼ CxðkÞþDuðkÞ; ð14bÞ 
where GAℜnn, HAℜnm, CAℜpnand DAℜpm aresystemmatrices, 
and xðkÞAℜn, yðkÞAℜp, uðkÞAℜm are statevector,outputvector, 
inputvector,respectively.WhenthecombinedobserverMarkov 
parametersaredetermined,theeigensystemrealizationalgorithm 
(ERA) methodisusedtoobtainthedesireddiscretesystem 
realization ½ ^G 
; ^H 
; ^C 
; ^D 
; F throughsingularvaluedecomposition 
(SVD) oftheHankelmatrix [12,13]. 
The ERAprocessesthefactorizationofthecorresponding 
Hankel matrix,usingthesingularvaluedecomposition 
^H 
ð0Þ ¼ VΣST , wherethecolumnsofmatrices V and S areortho- 
normal and Σ is arectangularmatrixoftheformas 
Σ¼ 
Σ~ n 0 
0 0 
  
; ð15Þ 
where Σ~ n ¼ diag½s1; s2;…; snmin ; snmin þ1;…; s~ n  contains monotoni- 
cally non-increasingentries s1Zs2Z…ZsnminZsnmin þ1Z 
…Zs~ n40. Here,somesingularvalues snmin þ1;…; s~ n are relatively 
small ðsnmin þ15snmin Þ and negligibleinthesensethattheycontain 
more noiseinformationthansysteminformation.Inorderto 
construct theloworderobserverofthesystem,let'sdefine 
Σnmin ¼ diag½s1; s2;…; snmin  . Inotherwords,thereducedmodel 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 59
of order nmin afterdeletingsingularvalues snmin þ1;…; s~ n is then 
consideredastherobustlycontrollableandobservablepartofthe 
realizedopen-loopsystemwithanacceptableperformance.Simul- 
taneous realizationsofthesystemandobserverbytheERAare 
givenas 
x^ðkÞ ¼ G^ xðk1ÞþH^ uðk1ÞþF½yðk1Þy^ ðk1Þ; ð16aÞ 
^yðkÞ ¼ ^CxðkÞþ D^ uðkÞ; ð16bÞ 
where 
^G 
¼Σ1=2 
nmin VT 
nmin 
Hð1ÞSnminΣ1=2 
nmin ; ð16cÞ 
½ H^ F ¼ First ðmþpÞ columns of Σ1=2 
nminST 
nmin ; ð16dÞ 
^C 
¼ FirstprowsofVnminΣ1=2 
nmin ; ð16eÞ 
^D 
¼ Y0: ð16fÞ 
The definition of Hð1Þ can bereferredto [12,13]. 
3.2.1.OKIDformulationforrelationshiptoaKalman filter 
Let thesystem (14) be extendedtoincludeprocessand 
measurementnoisedescribedas 
xðkþ1Þ ¼ GxðkÞþHuðkÞþwðkÞ; ð17aÞ 
yðkÞ ¼ CxðkÞþDuðkÞþvðkÞ; ð17bÞ 
where wðkÞ is theprocessnoiseassumedtobeGaussian,zero- 
mean andwhitewiththecovariancematrix Q and vðkÞ is the 
measurementnoisesatisfies thesameassumptionas wðkÞ with a 
different covariancematrix R. Thesequences wðkÞ and vðkÞ are 
independent ofeachother.Then,atypicalKalman filterforthe 
system, (17a) and (17b), canbewrittenas 
^xðkþ1Þ ¼ G^xðkÞþHuðkÞþKεrðkÞ; ð18aÞ 
^yðkÞ ¼ C^xðkÞþDuðkÞ; ð18bÞ 
where ^xðkÞ is theestimatedstate, K is theKalman filtergain,and 
εrðkÞ is defined asthedifferencebetweentherealmeasurement 
yðkÞ and theestimatedmeasurement ^yðkÞ. 
The measurementequationbecomes 
yðkÞ ¼ C^xðkÞþDuðkÞþεr ðkÞ: ð19Þ 
Systems (16a) and (18a) areidenticalwhen F ¼K and εrðkÞ ¼ 0, 
and soareMarkovparameters.Inpractice,anyobserversatisfying 
a least-squaressolutionwillproducethesameinput–output map 
as aKalman filterdoes,providedthatthedatalengthissufficiently 
long andtheorderoftheHankelmatrixissufficiently large,sothat 
the truncationerrorisnegligible [12]. Therefore,whentheresidual 
εrðkÞ is awhitesequenceoftheKalman filter residual,theobserver 
gain F convergestothesteady-stateKalman filtergain K such that 
F ¼K. 
3.3. Optimallinearization 
The optimallinearization [19,20] wasproposedforcontinuous- 
time nonlinearsystemsfollowedbystabilizingcontrollerdesign 
for uncertainnonlinearsystemsusingfuzzymodels.Theproposed 
optimallinearizationattheoperatingstate,notnecessarilythe 
equilibriumstate,yieldstheexactlinearmodel.Also,ityieldsthe 
optimallinearmodeldefined bysomeconvexconstraintoptimiza- 
tion criterioninthevicinityoftheoperatingstate. 
Consider theclassofnonlinearsystemsdescribedas 
xðkþ1Þ ¼ f ðxðkÞÞþgðxðkÞÞuðkÞ; ð20Þ 
where f : Rn-ℜn and g : ℜn-ℜm are nonlinearwithcontinuous 
partial derivativeswithrespecttoeachoftheirvariablesatall 
steps k, where xðkÞAℜn is thestatevectorattimeindex k, and 
uðkÞARm is thecontrolinputvectorattimeindex k. Itisdesiredto 
haveanexactlocallinearmodelðAðkÞ; BðkÞÞ at anoperatingstateof 
interest, xopðkÞAℜn, intheformof 
xðkþ1Þ ¼ AðkÞxðkÞþBðkÞuðkÞ; ð21Þ 
where AðkÞ and BðkÞ areconstantmatricesofappropriatedimensions. 
Suppose thatwearegivenanoperatingstate xopðkÞa0, which 
is notnecessarilyanequilibriumofthegivensystem.Thegoalisto 
construct alocalmodel,linearin x and alsolinearin u, thatcan 
wellapproximatethedynamicalbehaviorsof (20), inthevicinity 
of theoperatingstate xopðkÞ. Inotherwords,onehas 
f ðxÞþgðxðkÞÞuðkÞ  AðkÞxðkÞþBðkÞuðkÞ; f oranyuðkÞ; ð22aÞ 
f ðxÞþgðxðkÞÞuðkÞ ¼ AðkÞxopðkÞþBðkÞuðkÞ; f orany: ð22bÞ 
Since thecontrolinput u is tobedesignedanditisarbitrary,one 
must have gðxðkÞÞ ¼ BðkÞ, sothat (22a) and (22b) become quite 
simple 
f ðxðkÞÞ  AðkÞxðkÞ ð23Þ 
and 
f ðxopðkÞÞ ¼ AðkÞxopðkÞ: ð24Þ 
Tosatisfythese,let ai 
Tdenotethe ith rowofthematrix AðkÞ, and 
represent (23) and (24) as 
f iðxÞ  ai 
Tx; i ¼ 1; 2;…; n ð25Þ 
and 
f iðxopðkÞÞ ¼ ai 
TxopðkÞ; i ¼ 1; 2;…; n; ð26Þ 
where f i : ℜn-ℜ is the i-th componentof f. Then,expandingthe 
left-handsideof (25) about xopðkÞ and neglectingthesecondand 
higher orderterms,onehas 
f iðxopðkÞÞþ½∇f iðxopðkÞÞT ðxðkÞxopðkÞÞ  ai 
TxðkÞ; ð27Þ 
where ∇f iðxopðkÞÞ : ℜn-ℜn is thegradientcolumnvectorof f i 
evaluatedat xðkÞ. Now,using (26), wecanrewrite (27) as 
½∇f iðxopðkÞÞT ðxðkÞxopðkÞÞ  ai 
T ðxðkÞxopðkÞÞ; ð28Þ 
in which xðkÞ is arbitrarybutshouldbe “close” to xopðkÞ so thatthe 
approximationisgood.Todetermineaconstantvector ai 
T, itis “as 
close aspossible” to ½∇f iðxopðkÞÞT and alsosatisfies ai 
TxopðkÞ ¼ f iðxopðkÞÞ. Then,wemayconsiderthefollowingconstrainedmini- 
mization problem: 
min E ¼ 
1 
2‖∇f iðxopðkÞÞai‖22 
subject to ai 
TxopðkÞ ¼ f iðxopðkÞÞ: ð29Þ 
Noticethatthisisaconvexconstrainedoptimizationproblem; 
therefore,the first ordernecessaryconditionforaminimumof E is 
also sufficient, whichis 
∇aiEþλ∇ai ðai 
TxopðkÞf iðxopðkÞÞÞ ¼ 0; ð30Þ 
ai 
TxopðkÞ ¼ f iðxopðkÞÞ; ð31Þ 
where λ is theLagrangemultiplierandthesubscript ai in ∇ai 
indicatesthegradientistakenwithrespectto ai. Itfollowsfrom 
(30) that 
ai∇f iðxopðkÞÞþλxopðkÞ ¼ 0: ð32Þ 
Recallthatwearestudyingthecasewhere xopðkÞa0, sobysolving 
(32), weobtain 
λ ¼ 
xT 
opðkÞ∇f iðxopðkÞÞf iðxopðkÞÞ 
‖xopðkÞ‖22 
: ð33Þ 
J.S.-H. Tsaietal./ISATransactions53(2014)5660 –75
Substituting (33) into (32) gives 
ai ¼ ∇f iðxopðkÞÞþ 
f iðxopðkÞÞxT 
opðkÞ∇f iðxopðkÞÞ 
‖xopðkÞ‖22 
xopðkÞ; ð34Þ 
where xopðkÞa0. Itiseasilyverified thatwhen xopðkÞ ¼ 0, Eq. (32) 
yields 
ai ¼ ∇f iðxopðkÞÞ ð35Þ 
The controllabilitymatrixforthenonlinearsystemin (20) at 
the operatingstate xopðkÞ is derivedfromtheoptimallinearmodel 
ðAðkÞ; BðkÞÞ, resultingin 
C ¼ BðkÞ AðkÞBðkÞ A2 
ðkÞBðkÞ … An1 
ðkÞBðkÞ 
h i 
; ð36Þ 
where AðkÞ and BðkÞ areconstructedviathefollowingrule:the j-th 
columns ofAðkÞand BðkÞ are settobezerowheneverthe j-th 
corresponding componentsof xopðkÞ and uðkÞ arezero,respectively. 
4. Modified NARMAXmodel-basedstate-spaceself-tuning 
control forunknownnonlinearstochastichybridsystemswith 
an input–output directfeed-throughterm 
By takingtheproposedNARMAXmodel (2) for theself-tuning 
control, thediscrete-timestate-spaceinnovationmodel (9) is 
constructed todesignthecontrolinput ud for theunknownreal 
system.Sincethemodified NARMAXmodelisnonlinear,the 
optimallinearizationmethodin Section 3.3 is presentedto 
linearize theNARMAXmodelasalinearARMAXmodelatthe 
operating statewithoutanyapproximation.Besides,itisalsothe 
optimaloneinthesenseofminimizingoptimizationproblem (29) 
in thevicinityofoperatingstate. 
In thispaper,weselectanadaptiveclassofthemodified 
NARMAXmodelinpolynomialformwith m-inputs, p-outputs 
and ρ-time-steps asfollows: 
where 
BiðyÞ ¼ ½Bi01ðyÞ;…; Bi0mðyÞ; Bi11ðyÞ;…; Bi1mðyÞ; Bi21ðyÞ;…; 
Bi2mðyÞ;…; Biρ1ðyÞ;…; BiρmðyÞAR1mρ 
KeiðyÞ ¼ ½Kei11ðyÞ;…; Kei1pðyÞ; Kei21ðyÞ;…; Kei2pðyÞ;…; 
Keiρ1ðyÞ; :::; KeiρpðyÞAR1pρ 
U ¼ ½un 
1ðkÞ;…; un 
mðkÞ; u1ðk1Þ;…; umðk1Þ; u1ðk2Þ;…; 
umðk2Þ;…; u1ðkρÞ;…; umðkρÞT ARmρ1; 
E ¼ ½ε1ðk1Þ;…; εpðk1Þ; ε1ðk2Þ;…; εpðk2Þ;…; ε1ðkρÞ;…; 
εpðkρÞT ARpρ1 
the function FiðUÞ is nonlinear,theoutputs,inputsandresiduals 
are yiðkÞ;yiðk1Þ;…;yið0Þ; uj 
nðkÞ; ujðk1Þ;ujðk2Þ;…; ujð0Þ and 
εiðk1Þ; εiðk2Þ;…; εið0Þ, respectively, i ¼ 1; 2; 3; :::; p and j ¼ 1; 2; 3; :::;m. ThisadaptiveNARMAXmodel (37) has thefeature 
that BiðyÞU is linearinallitemsof u and KeiðyÞE is linearinallitems 
of ε. 
Rewritethemodel (37) to separatelinear/nonlinearvariables 
and itscoefficients asfollows: 
~yiðkÞ ¼ FiðyÞþBiðyÞUþKeiðyÞE 
¼ Σ 
j ¼ 1n 
θijðkÞϕijðkÞ ð38Þ 
~yiðkÞ ¼ θi 
T ðkÞϕiðkÞ i ¼ 1; 2; 3;…; p; ð39Þ 
where ~yiðkÞ is theestimatedvalueof yiðkÞ, θiðkÞ ¼ ½θi1ðkÞ;…; θinðkÞT 
is coefficient matrix, ϕiðkÞ ¼ ½ϕi1ðkÞ;…; ϕinðkÞT is linear/nonlinear 
variablematrix.Getthecoefficient matrix θiðkÞ by thestandard 
RELSalgorithm (3) to approximatetherealsystem. FiðyÞ only 
include theoutput yi's delays,andtheyarenonlinearfunctionsof 
yi. Forgettingthecorrespondinglinearmodelofthenonlinear 
model (37), thefunctions FiðyÞ must needtobelinearizedbythe 
optimallinearization. 
Performing theoptimallinearizationapproachon FiðyÞ in (38) 
yields 
FiðyÞ ¼ AiRYF f ori ¼ 1; 2; 3;…; p; ð40Þ 
where 
YF ¼ ½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞT 
Aℜ1pρ 
and 
AiR ¼ ∇FiðYFÞþ 
FiðYFÞYTF 
ðkÞ∇FiðYF Þ 
‖YF‖22 
YF ¼ ½ai11R;…; ai1pR; ai21R;…; ai2pR;…; aiρ1R;…; aiρpRAℜ1pρ: 
Substitute (40) into (38) to have 
~yiðkÞþðAiRÞYF ¼ BiUþKeiE; 
i.e. 
~yiðkÞþ ~A 
iYF ¼ ~B 
iUþ ~K 
eiE; ð41Þ 
where 
i ¼ 1; 2; 3;…; p; 
~A 
i ¼ 
~A 
i11 ⋯ ~A 
i1p 
~A 
i21 ⋯ ~A 
i2p ⋯⋯ ~A 
iρ1 ⋯ ~A 
iρp 
  
¼AiR; 
~B 
i ¼ 
~B 
i01 ⋯ ~B 
i0m ~B 
i11 ⋯ ~B 
i1m ⋯⋯ ~B 
iρ1 ⋯ ~B 
iρm 
h i 
¼ Bi; 
~K 
ei ¼ 
~K 
ei11 ⋯ ~K 
ei1p 
~K 
ei21 ⋯ ~K 
ei2p⋯⋯ ~K 
eiρ1 ⋯ ~K 
eiρp 
  
¼ Kei: 
Let z1 denotethebackwardshiftoperator.Onecouldtransform 
(41) to give 
~y1ðkÞþ ~A 
111z1y1ðkÞþ…þ ~A 
11pz1ypðkÞþ…þ ~A 
1ρ1zρy1ðkÞ 
þ…þ ~A 
1ρpzρypðkÞ 
¼ ~B 
101u1 
nðkÞþ…þ~B 
10mum 
nðkÞþ…þ~B 
1ρ1zρu1ðkÞ 
þ…þ~B 
1ρmzρumðkÞ 
þ ~K 
e111z1ε1ðkÞþ…þ ~K 
e11pz1εpðkÞþ…þ ~K 
e1ρ1zρε1ðkÞ 
þ…þ ~K 
e1ρpzρεpðkÞ; ~y2ðkÞþ ~A 
211z1y1ðkÞþ…þ ~A 
21pz1ypðkÞ 
þ…þ ~A 
2ρ1zρy1ðkÞþ…þ ~A 
2ρpzρypðkÞ 
¼ ~B 
201u1 
nðkÞþ…þ~B 
20mum 
nðkÞþ…þ~B 
2ρ1zρu1ðkÞ 
þ…þ~B 
2ρmzρumðkÞ 
þ ~K 
e211z1ε1ðkÞþ…þ ~K 
e21pz1εpðkÞþ…þ ~K 
e2ρ1zρε1ðkÞ 
þ…þ ~K 
e2ρpzρεpðkÞ; ⋮~ypðkÞþ ~A 
p11z1y1ðkÞþ…þ ~A 
p1pz1ypðkÞ 
þ…þ ~A 
pρ1zρy1ðkÞþ…þ ~A 
pρpzρypðkÞ 
¼ ~B 
p01u1 
nðkÞþ…þ~B 
p0mum 
nðkÞþ…þ~B 
pρ1zρu1ðkÞ 
~y1ðkÞ ¼ F1½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþB1ðyÞUþKe1ðyÞE; 
~y2ðkÞ ¼ F2½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþB2ðyÞUþKe2ðyÞE; 
⋮ 
~ypðkÞ ¼ Fp½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþBpðyÞUþKepðyÞE; 
ð37Þ 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 61
þ…þ~B 
pρmzρumðkÞ 
þ ~K 
ep11z1ε1ðkÞþ…þ ~K 
ep1pz1εpðkÞþ…þ ~K 
epρ1zρε1ðkÞ 
þ…þ ~K 
epρpzρεpðkÞ: ð42Þ 
From (42), onecangetthecorrespondingARMAXmodelas 
Glðz1ÞyðkÞ ¼ Hlðz1ÞuðkÞþξðkÞ ¼ Hlðz1ÞuðkÞþKelðz1ÞeoðkÞ; ð43Þ 
where 
yðkÞ ¼ y1ðkÞ y2ðkÞ … ypðkÞ 
h iT 
; 
uðkÞ ¼ u1ðkÞ u2ðkÞ … umðkÞ 
h iT 
; 
eoðkÞ ¼ eo1ðkÞ eo2ðkÞ … eopðkÞ 
h iT 
; 
Glðz1Þ ¼ IpþGo1z1þ⋯þGoρzρ; 
Goiði ¼ 1; 2;…; ρÞAℜpp; 
Hlðz1Þ ¼ Ho0þHo1z1þ⋯þHoρzρ; 
Hoiði ¼ 0; 1;…; ρÞAℜpm 
Kelðz1Þ ¼ IpþKeo1z1þ⋯þKeoρzρ; 
Keoiði ¼ 1; 2;…; ρÞAℜpp; 
Goi ¼ 
~A 
1i1 ⋯ ~A 
1ip 
⋮ ⋱ ⋮ 
~A 
pi1 ⋯ ~A 
pip 
2 
664 
3 
775 
; Hoi ¼ 
~B 
1i1 ⋯ ~B 
1im 
⋮ ⋱ ⋮ 
~B 
pi1 ⋯ ~B 
pim 
2 
664 
3 
775 
; Keoi ¼ 
~K 
e1i1 ⋯ ~K 
e1ip 
⋮ ⋱ ⋮ 
~K 
epi1 ⋯ ~K 
epip 
2 
664 
3 
775 
: 
The specialcharacteristicofthemodified ARMAXmodelisthatit 
includes the Ho0 matrix, soit fits thesystemwithadirect 
transmissionmatrix. 
An alternativerepresentationoftheARMAXmodel (43) is 
givenby 
yðkÞ ¼ Gl1 
ðz1ÞHlðz1ÞuðkÞþGl1 
ðz1ÞKelðz1ÞeoðkÞ; ð44Þ 
in which (44) is intheleftmatrixfractiondescriptionform(LMFD) 
[3]. The first andsecondtermsintheright-handsideof (44) share 
the sameleftcharacteristicmatrixpolynomial Gl1 
ðz1Þ, which 
representstheeffectsofthecontrolandthedisturbances.Once 
Gl1 
ðz1Þ has beenspecified tocharacterizethedynamicsofthe 
plant, theresidualvectormodel Gl1 
ðz1ÞDlðz1ÞeoðkÞ presents an 
adjustable movingaverageprocessofthenoiseinput Kelðz1ÞeoðkÞ. 
UnderthelinearizedNARMAXmodel (44), asysteminan 
observableblockcompanionformcanberepresentedinthe 
state-space innovationform [21–23] as 
^xoðkþ1Þ ¼ Go ^xoðkÞþHouðkÞþKoðkÞeoðkÞ; ð45Þ 
eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ; ð46Þ 
where 
Go ¼ 
Go1 Ip 0p ⋯ 0p 
Go2 0p Ip ⋯ 0p 
⋮ ⋮ ⋮⋱⋮ 
Goρ1 0p 0p ⋯ Ip 
Goρ 0p 0p ⋯ 0p 
2 
6666664 
3 
7777775 
; 
Ho ¼ 
Ho1 
Ho2 
⋮ 
Hoρ 
2 
66664 
3 
77775 
;Hoi ¼ ~H 
oiGoiDo; i ¼ 1; 2;⋯; ρ 
Co ¼ Ip 0p ⋯ 0p 
h i 
; 
Do ¼ Ho0; 
Ko ¼ Ko1 Ko2 ⋯ Koρ 
h i 
; Koi ¼ KeoiGoi ; i ¼ 1; 2;⋯; ρ 
^xoðkÞ ¼ ^xT 
o1ðkÞ ^xT 
o2ðkÞ ⋯ ^xT 
oρðkÞ 
h iT 
; 
^xoiðkÞAℜρ for i ¼ 1; 2;⋯; ρ, 0p is a p  p null matrix, ^xoðkÞ is the 
estimation ofsystemstate xðkÞ in theobservercoordinates,andthe 
initial stateisgivenas ^xoð0Þ ¼ C†y, where C† is thepseudo-inverse 
of matrix C and eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ. 
However,thezerosof Kelðz1Þ in (44) may notbeallintheunit 
circle,sothattheeigenvaluesoftheobservergain KoðkÞ in (45) 
may notalllieintheunitcircleeither.InsteadoftheKalmangain 
KoðkÞ, onecoulddesignthedigitalestimatorgain LoðkÞ toreplace 
KoðkÞ. Thedigitalestimatorgainisindirectlydesignedviathe 
discrete-timeobserverdesignbasedon (47), ratherthandirectly 
estimatedfromtheidentified parametersofthemodified 
NARMAXmodel (44). Therefore,theclosed-loopestimatormatrix 
GoðkÞLoðkÞCo has allitseigenvaluesstrictlylyinginsidetheunit 
circle. 
The observergainis 
LoðkÞ ¼ ððCo^P 
ðkÞCo 
T 
þRoÞ1Co^P 
ðkÞGo 
T 
ðkÞÞT ; ð47Þ 
where ^P 
ðkÞis thesolutionoftheRiccatiequation 
GoðkÞ^P 
ðkÞGo 
T 
ðkÞ^P 
ðkÞðGoðkÞ^P 
ðkÞCo 
T 
ÞðCo^P 
ðkÞCo 
T 
þRoÞ1ðCo^P 
ðkÞGo 
T 
ðkÞÞ 
þQo ¼ 0 ð48Þ 
in whichweightingmatrices QoZ0 and Ro40 withappropriate 
dimensions. Thenthecorrespondingstate-spaceinnovationform 
of (45) is givenas 
^xoðkþ1Þ ¼ GoðkÞ^xoðkÞþHoðkÞuðkÞþLoðkÞeoðkÞ; ð49Þ 
eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ: ð50Þ 
4.1.TheinitialparametersofNARMAXmodelbasedonOKID 
The initialparameters θið0Þ of themodified NARMAXmodel 
significantly affecttheconvergentspeedofRELSprocess.Inorder 
toincreasetheconvergentspeedofRELSalgorithm,onecan 
predicttheinitialparameters θið0Þ of themodified NARMAXmodel 
by OKID.Forgettingtheinitialparameters θið0Þ of RELSalgorithm 
(3), weperformtheoff-linesystemidentification scheme,OKID,in 
Section 3.2 to obtainthediscretesystemrealization ^G 
, ^H 
, ^C 
, ^ D, and 
F firstly.Then,transferthem(^G 
, ^H 
, ^C 
, ^ D, F) intothecorresponding 
observer form(Go, Ho, Co, Do, Ko) in (45) by 
To ¼ ½Gρ1To1; Gρ2To1;…; GTo1; To1; To1 ¼ Θ1CT 
o ; 
Co ¼ CTo ¼ ½Ip; 0p;…; 0p:Do ¼ Ho0; 
Go ¼ T1 
o GTo;Ho ¼ T1 
o H ¼ ½HT 
o1;HT 
o2;…;HT 
oρT : 
Ko ¼ T1 
o Lo 
Based on (43)–(45), wehavethemodified ARMAXmodelas 
yðkÞþGo1yðk1ÞþGo2yðk2Þþ⋯þGoρyðkρÞ 
¼ Ho0uðkÞnþHo1uðk1Þþ⋯þHoρuðkρÞ 
þKe1eðk1ÞþKe2eðk2Þþ⋯þKeρeðkρÞ ð51Þ 
where 
Goi ¼ 
Goi11 ⋯ Goi1p 
⋮ ⋱ ⋮ 
Goip1 ⋯ Goipp 
2 
64 
3 
75 
; 
Hoi ¼ 
Hoi01 ⋯ Hoi0m 
⋮ ⋱ ⋮ 
Hoip1 ⋯ Hoipm 
2 
64 
3 
75 
; 
Keoi ¼ 
Keoi11 ⋯ Keoi1p 
⋮ ⋱ ⋮ 
Keoip1 ⋯ Keoipp 
2 
64 
3 
75 
62 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
and i ¼ 1; 2;⋯ρ. From (43) and (51), onehastherelationshipas 
Goi ¼ 
~A 
1i1 ⋯ ~A 
1ip 
⋮ ⋱ ⋮ 
~A 
pi1 ⋯ ~A 
pip 
2 
664 
3 
775 
¼ 
Goi11 ⋯ Goi1p 
⋮ ⋱ ⋮ 
Goip1 ⋯ Goipp 
2 
64 
3 
75 
; ð52aÞ 
Hoi ¼ 
~B 
1i1 ⋯ ~B 
1im 
⋮ ⋱ ⋮ 
~B 
pi1 ⋯ ~B 
pim 
2 
664 
3 
775 
¼ 
Hoi01 ⋯ Hoi0m 
⋮ ⋱ ⋮ 
Hoip1 ⋯ Hoipm 
2 
64 
3 
75 
; ð52bÞ 
Keoi ¼ 
~K 
e1i1 ⋯ ~K 
e1ip 
⋮ ⋱ ⋮ 
~K 
epi1 ⋯ ~K 
epip 
2 
664 
3 
775 
¼ 
Keoi11 ⋯ Keoi1p 
⋮ ⋱ ⋮ 
Keoip1 ⋯ Keoipp 
2 
64 
3 
75 
: ð52cÞ 
Then,onehasthecoefficientmatrices ð~A 
i; ~B 
i; ~K 
eiÞ ofthelinearized 
NARMAXmodelin (41). Basedontheoptimallinearizationin 
Section3.3, wecansolvesimultaneousequations AiR in (40) that 
showtherelationshipbetweentheunknowncoefficientsofthe 
modified NARMAXmodel (39) andtheknowncoefficientsof 
thelinearizedNARMAXmodel (41) togettheparameters θi ofthe 
modified NARMAXmodel (39) bythepseudoinverseoperation. 
Thus,theparameters θi of themodifiedNARMAXmodelcanbe 
utilizedastheinitialparameters θið0Þ ofRELSmethod (3) in STC. 
4.2. Thedigitaltrackerforsampled-datalinearsystemwithadirect 
transmissionterm 
This sectionpresentsadigitalcontrollermethodforthelinear 
systemwithadirecttransmissionterm.Consideralineardiscrete- 
time systemasfollows 
xðkþ1Þ ¼ GxðkÞþHudðkÞ; ð53aÞ 
yðkÞ ¼ CxðkÞþDudðkÞ; ð53bÞ 
where xðkÞAℜn is thestatevector, udðkÞAℜm is thecontrolinput 
vector,and yðkÞAℜp is themeasurableoutputvector.Parameters 
G,H,C and D are estimated(orgiven)constantsystemmatricesof 
appropriatedimensions. 
Define theperformanceindex [24] as 
Jd ¼ 
1 
2 Σ k 
f 
k ¼ 0 ½CðkÞxðkÞþWDðkÞudðkÞΓnðkÞTQ½CðkÞxðkÞþWDðkÞudðkÞ 
( 
ΓnðkÞþuT 
dðkÞRudðkÞ 
) 
; ð54Þ 
where tf ¼kf Ts is the final time,and Ts is thesampletime, Q is the 
positivesemi-definite matrix, R is thepositivedefinite matrix, 
ΓnðkÞAℜp is thepre-specified referenceinputvector,and W is a 
weightingmatrixtoadjustthecontrollergainmatrix.Thisoptimal 
controlisgivenby [24] 
udðkÞ¼KdðkÞxðkÞþEdðkÞΓnðkÞ; ð55Þ 
where 
KdðkÞ ¼ ½~R 
ðkÞþHT 
ðkÞPHðkÞ1½HT 
ðkÞPGðkÞþNT 
ðkÞ; ð56aÞ 
EdðkÞ ¼ ½~R 
ðkÞþHT 
ðkÞPHðkÞ1fHT 
ðkÞ½IðGðkÞHðkÞKdðkÞÞT 1 
½WDðkÞKdðkÞCðkÞT þðWDðkÞÞT gQ; ð56bÞ 
~R 
ðkÞ ¼ RþðWDðkÞÞTQWDðkÞ and NðkÞ ¼ CT 
ðkÞQWDðkÞ; ð56cÞ 
ΓnðkÞ ¼ ΓðkÞðkþ1Þ for thetrackingpurpose [25,26], and P is the 
positivedefinite andsymmetricsolutionofthefollowingRiccati 
equation 
P ¼ GT 
ðkÞPGðkÞþCT 
ðkÞQCðkÞðGT 
ðkÞPHðkÞ 
þNðkÞÞð~R 
ðkÞþHT 
ðkÞPHðkÞÞ1ðHT 
ðkÞPGðkÞþNT 
ðkÞÞ: ð57Þ 
It iswell-knownthatthehigh-gaincontrollerinducesahigh 
qualityperformanceontrajectorytrackingdesignandstate 
estimation, anditalsocansuppresssystemuncertaintiessuchas 
nonlinear perturbations,parametervariations,modelingerrors 
and externaldisturbances.Forthesereasons,thedigitalcontroller 
with ahigh-gainpropertyisadoptedinourapproach.Thehigh- 
gain propertycontrollercanbeobtainedbychoosingasufficiently 
high ratioof Q to R (to beshownin Lemma 1) in (54) so thatthe 
systemoutputcancloselytrackthepre-specified trajectory. 
Lemma 1. [27] Giventheanalogsysteminthepairofsystem 
matrices fA; B; Cg, letapairofweightingmatrices fQ; Rg be givenas 
diagonalmatrices Q ¼ qIPbR and R ¼ rIm40. Thereexiststhe 
lowerboundofweightingmatrices fQn; Rng, i.e. Qn ¼ qnIp and 
Fig. 2. Structureofthehybridstate-spaceself-tuningcontrolwiththemodified NARMAXmodelandOKIDforunknownnonlinearstochastichybridsystem. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 63
Rn ¼ rnIm, determinedby 
κn ¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
:BTB::CTC: 
:ATA: 
qn 
rn 
  
vuut 
; 
as longasthepropertyofthehigh-gaincontrolstillholds,thatis, 
P244ζP1, for 
ζ ¼ κ2=κ1 ¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ð:BTB::CTC:=:ATA:Þðq2=r2Þ 
q 
= 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ð:BTB::CTC:=:ATA:Þðq2=r1Þ 
q 
¼ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ðq2=r2Þ 
p 
= 
ffiffiffiffiffiffiffiffiffiffiffiffi 
q1=r1 
p 
and κ24κ1Zκn; 
where P2 and P1 are thesymmetricpositive-definite solutionof 
the followingRiccatiequations,respectively, 
ATP1þP1AP1BR1 
1 BTP1þCTQ1C ¼ 0; 
ATP2þP2AP2BR1 
2 BTP2þCTQ2C ¼ 0: 
In thefollowing,weshowthedesignproducefortheclassof 
MIMO modelfor ρ42. Theresultscanbeextendedtothegeneral 
multivariablecasefor ρ42. Thestructureoftheproposedstate- 
space self-tuningcontrolwiththemodified NARMAXmodelis 
shown in Fig. 2. 
The designprocedureisgivenasfollows: 
Step(1)Fortheunknowncontinuous-timenonlinearstochastic 
system(1),chooseanappropriatemodified NARMAXmodel 
(37) tobeusedtoidentifythissystem. 
(i) Performtheoff-linesystemidentification schemein 
Section 3.2 to obtainsystemandobserver-gainMarkov 
parametersoftheOKIDmodel,thenusetheERAmethod 
to obtainthediscretesystemrealization ^G 
, ^H 
, ^C 
, ^ Dand F, 
then transferthemtoobserverform Go, Ho, Co, Do and Ko. 
(ii) Basedonthestate-spaceinnovationform (45) and the 
optimallinearizationoftheNARMAXmodel (38)–(45), 
initial parameters θið0Þ of theNARMAXmodelcanbe 
reverselyobtainedby Go, Ho, Co, Do and Ko. 
Step(2)Whenthemodified NARMAXmodelischosen,perform 
the parameteridentification ateachsamplingperiod T. 
(i) Setsomereasonableinitialparameterstoperformthe 
state-space RELSalgorithmin (3). Letthenumberof θi be 
θin. Also,set Sið0Þ ¼ αiI 
ðinÞðinÞAℜθinθin40, 0oλ0o1, 
0:9oλð0Þo1, ^xoð0Þ, andtheinitialcoefficients matrix 
θið0Þ which isobtainedbyOKIDinStep1. 
(ii) Predictthecontrolinput un 
dð0Þ for theon-linesystem 
identification as un 
dð0Þ¼Kdð0Þ^xoð0ÞþEdð0ÞΓð1Þ, where 
the Kdð0Þ and Edð0Þ are obtainedby (56a) and (56b), and 
^xoð0Þ ¼ C þ ydð0Þ: 
(iii) Foron-lineidentifyingthegivencontinuous-timenon- 
linear stochasticsystem(1)withprecise-constantcontrol 
input,utilizetheinformationofinputsandoutputsto 
determine theupdatedparameters θiðkÞ at eachsampling 
period T by RELSalgorithm,wherethepredictioncontrol 
input un 
dðkÞ fortheon-linesystemidentificationisdeter- 
mined by un 
dðkÞ¼Kdðk1ÞxoðkÞþEdðk1ÞΓðkþ1Þ for kZ1. 
Step(3)LinearizetheNARMAXmodelbytheoptimallinear- 
ization methodandestimatestatesateachsamplingperiod T. 
Based ontheestimatedparameters θi, linearize FiðyÞ in (40) by 
the optimallinearizationmethodology.Underthislinearized 
NARMAXmodel,estimatethepredictedstate ^xoðkþ1jkÞ in (58). 
Select appropriate fQo; Rog in (48) tohavethehigh-gain 
propertydigitalestimatorgainin (47). Theassociatedstate- 
space observer (49), forinstance ρ ¼ 2, isgivenby 
^xoðkþ1jkÞ ¼ GoðkÞ^xoðkjk1ÞþHoðkÞuðkÞþLoðkÞeoðkÞ; 
^yoðkjk1Þ ¼ Co ^xoðkjk1ÞþDouðkÞ; ð58Þ 
where 
eoðkÞ ¼ yðkÞCo ^xoðkjk1ÞDouðkÞ; 
GoðkÞ ¼ 
Go1ðkÞ Ip 
Go2ðkÞ 0p 
 # 
Aℜ2p2p; 
HoðkÞ ¼ 
Ho1ðkÞ 
Ho2ðkÞ 
 # 
Aℜ2pp 
Ho1ðkÞ ¼ ~H 
o1Go1Do; 
Ho2ðkÞ ¼ ~H 
o2Go2Do; 
DoðkÞ ¼ Ho0ðkÞAℜpp 
Co ¼ ½Ip; 0pAℜp2p; ^xoðkjk1ÞAℜ2p 
LoðkÞ ¼ fðCo^P 
ðkÞCo 
T 
þRoÞ1Co^P 
ðkÞGo 
T 
ðkÞgT AR2pp 
where 
GoðkÞ^P 
ðkÞGo 
T 
ðkÞ^P 
ðkÞðGoðkÞ^P 
ðkÞCo 
T 
Þ 
ðCo^P 
ðkÞCo 
T 
þRoÞ1ðCo^P 
ðkÞGo 
T 
ðkÞÞþQo ¼ 0 
Step(4)Generatethedigitalcontrolinputateachsampling 
period T: 
(i) Selectappropriateweightingmatrices fQd; Rdg in (57) 
havethehigh-gainpropertydigitalcontrollawin (55) 
and (56b). 
(ii) Computethedigitalcontrolgains KdðkÞ and EdðkÞ, bythe 
digital controlformulain (56a) and (56b) as follows. 
~D 
ðkÞ¼WDoðkÞ and Wis aweightingmatrixtoadjustthe 
controllergainmatrix, 
~R 
ðkÞ ¼ Rþ ~D 
T 
ðkÞQ ~D 
ðkÞ; 
NðkÞ ¼ CT 
oQ ~D 
ðkÞ; 
KdðkÞ ¼ ½~R 
ðkÞþHT 
o ðkÞPðkÞHoðkÞ1 
½HT 
o ðkÞPðkÞGoðkÞþNT 
ðkÞ; 
EdðkÞ ¼ ½~R 
ðkÞþHT 
o ðkÞPðkÞHoðkÞ1fHT 
o ðkÞ 
½IðGoðkÞHoðkÞKdðkÞÞT 1 
½~D ðkÞKdðkÞCðkÞT þ ~D 
T 
ðkÞgQ; 
where 
PðkÞ ¼ GT 
o ðkÞPðkÞGoðkÞþCT 
o ðkÞQCoðkÞ 
ðGT 
o ðkÞPðkÞHoðkÞþNðkÞÞð~R 
ðkÞ 
þHT 
o ðkÞPðkÞHoðkÞÞ1ðHT 
o ðkÞPðkÞGoðkÞþNT 
ðkÞÞ: 
(iii) Set k¼kþ1. GotoStep2-(ii)andcontinuetheadaptive 
controlprocess. 
5. Self-tuningcontrolwithfaulttolerance 
Consider theclassofcontinuous-timenonlinearstochastic 
system(1).Ifthesystemstatesorinputsareinpartialfaults,the 
Fig. 3. (a) Thegradualfailurefunctionand(b)theabruptfailurefunction. 
64 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
systemdynamicscanberepresentedby 
_xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðtÞ 
þ Σ Z 
ζ ¼ 1 
βζ ðtτζ Þ½f ζ ðxÞþgζ ðuÞþwðtÞ; ð59Þ 
where f ζ ðxÞþgζ ðuÞ representsthedynamicchangescausedbythe 
unknown andunanticipatedfailuremodesofstatesorinputs. 
Two typicalfaults,gradualfaultsandabruptfaultsarecon- 
sidered online.Theircharacteristicsaredescribedbythetime- 
varyingfunction βζ ðUÞ as shownin Fig. 3 by [28], where UðUÞ 
denotestheunit-stepfunction. f ζðxÞþgζ ðuÞ, βζ ðUÞ, and τζ are 
unknown duetothepossibleoccurrenceofunanticipatedfaults. 
If Z ¼ 1, system (59) has asinglefault.If Z ¼ 2; 3; 4; :::, itmeansthe 
multiple-fault case 
Accordingto [20], anoptimallylinearizedmodelofanonlinear 
systemcanbedeterminedandappliedtoawideclassofnonlinear 
systems.Asaresult,thenonlinearsystem(1)canbeaccurately 
linearized asthefollowinglinearstate-dependencemodel: 
_xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞuðtÞþwðtÞ: ð60Þ 
Similarly,thesystemwithfailuredynamicscanalsobeapproxi- 
mated asthestate-dependencetime-varyingmodel: 
_xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞuðtÞþ Σ Z 
ζ ¼ 1 
βζ ðtτζ Þ½Aζ ðxðtÞÞxðtÞ 
þBζ ðxðtÞÞuðtÞþwðtÞ_xðtÞ ¼ ½AðxðtÞÞþ Σ Z 
ζ ¼ 1 
βζ ðtτζ ÞAζðxðtÞÞxðtÞ 
þ½BðxðtÞÞþ Σ Z 
ζ ¼ 1 
βζ ðtτζ ÞBζ ðxðtÞÞuðtÞþwðtÞ: ð61Þ 
The systemcouldcontainlargeuncertaintieswhenthefailure 
dynamics in (61) arelarge.Underthissituation,thecontrollerhas 
to takeanappropriatecontrolactionfortheuncertaintiesoccur- 
ring atanytimeinstant τζ . Thisisanadaptivecontrolproblem,in 
which controllerparametersareadjustedbasedontheestimated 
plant parameters.Themethodbasedonthemodified STCscheme 
is proposedtoaccomplishtheFTC. 
There arethreeassumptionsoftheproposedmethodthatare 
addressed asfollows: 
Assumption1. The controlledsystemiscontrollableandobser- 
vableeveniffaultsoccur. 
Assumption2. The controlinputispersistentlyexcited. 
Assumption3. Before thefaultoccurs,thesystemishealthyor 
has fullyrecoveredfromthepreviousfault. 
TheSTCschemeshouldbemodified tocopewithparameter 
variationsduetosystemfaults.Whenapartialfaultoccurs,the 
systemparametersvaryaccordingly.Theestimatedstate-depen- 
dencetime-varyingparametersobtainedviatheRELSalgorithmin 
theconventionalSTCschemewouldgivelargeparametererrorsand 
resultinapoorsystemperformance.However,basedontheKalman 
filterinterpretationalgorithmofRELSmethod [29], a modified 
scheme isproposedtoestimateparametervariations.Theabove 
modified state-spaceself-tuningcontrolschemecanbeappliedto 
the multivariablestochasticfaulty systemwithoutpriormessageof 
systemparametersandnoiseproperties. 
In short,inthebeginning,ahealthyandunknownsystemis 
welltunedbytheconventionalSTCscheme,andthentheself- 
tuning structurewiththeresetcovariancematricesofparameter 
estimateismodified toenhancetheparameterestimationand 
output responsewhenthesystemand/orinputsarepartially 
faulty by [15]. 
It postulatesthattheestimatedparameterisnotconstantbut 
varieslikearandomwalk 
θiðkÞ ¼ θiðk1ÞþwiðkÞ; ð62Þ 
εiðkÞ ¼ yiðkÞθT 
iðk1ÞϕiðkÞ; ð63Þ 
E½wiðkÞwi 
T 
ðkÞ ¼ R1i; ð64Þ 
E½εTi 
ðkÞεiðkÞ ¼ R2i; ð65Þ 
where i ¼ 1; 2;…; p; wiðkÞ is thewhiteGaussiannoisesequence. 
The Kalman filterthenstillgivestheconditionalexpectationand 
1414.51515.51616.51717.51818.519-0.3-0.2-0.100.10.20.3 Magnitude System output Y1ARMAX identified output Y11414.51515.51616.51717.51818.519-0.2-0.100.10.20.3 Megnitude Time (sec) System output Y1NARMAX identified output Y1 
Fig. 4. The trajectoriesofOutput1byRELSmethodwithARMAXmodelandmodified NARMAXmodel. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 65
covarianceof θiðkÞ as 
^θ 
iðkÞ ¼ ^θ 
iðk1ÞþMiðkÞεi 
T ðkÞ; ð66Þ 
MiðkÞ ¼ 
Siðk1ÞϕiðkÞ 
R2iþϕi 
T ðkÞSiðk1ÞϕiðkÞ 
; ð67Þ 
SiðkÞ ¼ Siðk1Þ 
Siðk1ÞϕiðkÞϕi 
T ðkÞSiðk1Þ 
R2iþϕi 
T ðkÞSiðk1ÞϕiðkÞ þR1i; ð68Þ 
with 
Sið0Þ ¼ E½^θ 
ið0Þθið0Þ ½^θ 
ið0Þθið0ÞT : ð69Þ 
SiðkÞ is thecovariancematrixoftheparameterestimate ^θ 
iðkÞ. 
Usually,theestimatedresidualortheinnovationerrorvector 
εiðkÞ ¼ yiðkÞ^θ 
i 
T 
ðk1ÞϕiðkÞ will benearwhiteifthemodelwith 
parameterestimateisingoodagreementwithitstruesystem. 
TomodifyKalman filter interpretationoftheRELSmethod, 
some appropriateinitializationsof R1i, R2i, and Sið0Þ in (67)–(69) 
areassumedtobepre-specified beforetheparameterestimation 
process.Whenunanticipatedsystemfaultsbringtheprocesswith 
large parametervariations,theyneedtobereasonablyreset. 
TomodifytheconventionalSTCprocesswiththeRELSestimate 
algorithmforthefaultysystem,approximate R1i, R2i, and Sið0Þ by 
the followingmovingwindow-basedstatisticalquantities: 
R2i  
1 
Nk1 
Σ 
N1 
k ¼ k1 
εTi 
ðkÞεiðkÞ ð70Þ 
051015202530-0.2-0.100.10.20.3 megnitude System output Y1Identified output Y1051015202530-0.2-0.100.10.2 error 1 Time (sec) 051015202530-0.3-0.2-0.100.10.20.3 megnitude System output Y2Identified output Y2051015202530-0.2-0.100.10.2 error 1 Time (sec) 
Fig. 5. The outputresponsesofthemodified NARMAXmodelbyRELSmethodwithoutOKID. 
66 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
and 
Sið0Þ  diag 
1 
Nk1 
Σ 
N1 
k ¼ k1½^θ 
iðkÞθiðNÞ ½^θ 
iðkÞθiðNÞT 
( ) 
; ð71Þ 
where k1 is thetimeindexaftertheestimate ^θ 
iðkÞ in steady-state, 
and N is thelasttimeinstantoftheSTC.Itshouldbenotedthatthe 
elements of ^θ 
iðkÞ in (71) wouldnotbeindependentwitheach 
other,when Nk11 in (71) is notlargeenough.Similarly, R1i can 
be approximatedbycomparing (62) with (66) as follows: 
R1i  ½MiðNÞεi 
T ðNÞ ½MiðNÞεi 
T ðNÞT ; ð72Þ 
where 
MiðNÞ ¼ 
Sið0ÞϕiðNÞ 
R2iþϕi 
T ðNÞSið0ÞϕiðNÞ 
: 
The STCwiththealgorithm (66)–(69) and theinitialization 
(70)–(72) worksonlyfortheplantwithslowlytime-varying 
parameters.Thiscanbeinterpretedbythefactthattheinitialized 
R1i obtained from (72) is sosmallwhilethesystemishealthyin 
general;hence θiðkÞffiθiðk1Þ in (62). Asaresult,itcannotreflect 
the realparametervariationinducedbytheunanticipatedsystem 
faults. Therefore, SiðkÞ, R2i, and R1i in (68) need tobeappropriately 
reset whenafaultisdetectedattimeinstant kf . Althoughthe 
algorithm withanappropriatelyresetforgettingfactor λðkf Þ could 
improveestimationsofparametervariationfortheconventional 
STC scheme,theresetforgettingfactor λðkf Þ would needsome 
trials forvariousfailuremodes.Nevertheless,theresetsof Siðkf Þ, 
R1i, andR2i proposed in [15] is asystematicapproachforvarious 
failure modes. 
Because thefactthattheparametervariationsinducedbyfaults 
areunknown,theruleofthumbtoresetthecovariancematricesof 
the parameterestimate SiðkÞ in (68) online isgivenasfollows. 
When thefaultbedetectedattimeinstant kf , thevariationof 
parameterestimationsbeforeandafterthefaultcanbeapproxi- 
mated as 
δ^θ 
iðkfÞ  ^θiðkf Þ^θ 
iðkhÞ; for khokf ; ð73Þ 
where ^θ 
iðkhÞ is theparameterestimateofthehealthysystem.Then, 
based onthephysicalinterpretationof (69), Siðk1Þ in (68) can be 
reasonablyresetas 
Siðkf1Þ  diagf½^θ 
iðkf Þ^θ 
iðkhÞ ½^θ 
iðkf Þ^θ 
iðkhÞT g 
 δ2diag½^θ 
iðkf Þ^θ 
iðkf ÞT : ð74Þ 
Duetotheadditiveuncertaintiesconsidered,wecanassumethe 
averageparametervariationisintherangeofthesameorderof 
magnitudeofthefaultsystem.So,itisreasonabletoset δ ¼ 1, which 
denotestheworstcaseofthisassumption.Somenumericalexamples 
arealsogivenin [15] toshowthesensitivityofvarious δ's tothemean 
valueofthetrackingerrortoverifytheeffectivenessofthisruleof 
thumb forresettingthecovariancematricesoftheparameterestimate. 
Toimprovetheparameterestimationfortheunanticipated 
faulty systems, R2i in (70) needs toberesetbyamovingwindow 
with theresidual 
R2i  
1 
kfkiþ1 Σ k 
f 
κ ¼ ki 
εi 
T ðκÞεiðκÞ; ð75Þ 
where 1oðkfkiÞo5 usually.Similarly, R1i in (68) should bereset 
by substituting (69) and (70) into (67) and then (66) to obtain 
R1i  ½Miðkf Þεi 
T ðkf Þ ½Miðkf Þεi 
T ðkf ÞT : ð76Þ 
In theSTCscheme,theestimatedresidualisupdatedforevery 
samplingtime.Consequently,itisconvenienttouseitasthe 
informationoffaultdetection. Therefore,thetimeinstant kf of 
the faultoccurrencecouldbedetectedbyutilizingtheratiowith 
theresidual R2i in (75) andtheaveragenormoftheinnovation 
vectorsas 
R2i 
Rf i 
4γεi; ð77Þ 
where Rf i ¼ ð1=kf1ÞΣkf 
k ¼ 1εi 
T ðkÞεiðkÞ and γεi isapresetthreshold. 
The followingsummarizestheFTCusingthemodified STC 
methodology withthefaultdetectionandcovariancematrices 
resetting: 
1) Applythemodified NARMAXmodel-basedSTCalgorithmin 
Section 4 to thehealthysystemuntilitwelltracksthepre- 
specified trajectory. 
2) SwitchtheconventionalRELSestimationalgorithmin Section 4 
Step-(ii)tothemodified Kalman filter estimationalgorithm 
(66)–(68) with initialized R1i,R2i, and Sið0Þ via (70)–(72). 
3) Performthemodified STCschemeandthefaultdetection. 
4) Wheneverafaultisdetectedandtheerrorislargeenoughfor 
the ratio ðR2i=Rf iÞ4γεi; reset R1i, R2i, and Siðkf Þ by (74)–(76). 
5) Whenthefaulthasrecovered,gotoStep(3),andrepeatthe 
modified STCprocess. 
6. Anillustrativeexample 
6.1.Identification byusingtheRELSmethod 
6.1.1.NonlinearNARMAXmodelsystem 
Assume thetwo-input-two-outputsystemisunknown,and 
choose anappropriatetwo-inputtwo-outputNARMAXmodelfor 
the RELSmethod. 
Consider thenonlinearNARMAXmodelasfollows 
y1ðkÞ¼0:2ð0:2y1ðk1Þþ0:2y2ðk1Þ cos ðy1ðk1ÞÞþy21 
ðk2Þ 
þ0:4y1ðk1Þu1ðk1Þþu1ðk1Þþ0:8e1ðk1Þ 
þ0:7y1ðk2Þe1ðk2Þþu1ðkÞÞþe1ðkÞ; ð78aÞ 
y2ðkÞ¼0:2ð0:2y2ðk1Þþ0:3y2ðk1Þ cos ðy2ðk2ÞÞþy22 
ðk2Þ 
þ0:1y2ðk1Þu2ðk1Þþu2ðk1Þþ0:8e2ðk1Þ 
þ0:5y1ðk2Þe2ðk2Þþu2ðkÞÞþe2ðkÞ; ð78bÞ 
051015202530-0.4-0.200.20.40.60.811.21.4Time (sec) Parameter 
Fig. 6. Estimated parametersin θðkÞ of RELSmethodforthemodified NARMAX 
model withoutOKID. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 67
where y1ðkÞ and y2ðkÞ areoutputs, u1ðkÞ and u2ðkÞ are inputs, 
e1ðkÞand e2ðkÞ arenoiseswhicharezero-meanGaussiansequences 
with variances s2 e1 ¼ s2 e2 ¼ 0:01. BecausethesystemEqs. (78a) and 
(78b), isunknown,onlythedataofinputandoutputatsampling 
instants areavailabletoidentifythesystem.Thesamplingperiod T 
is takenas0.1sathere. 
The resultsofsystemidentification throughtheRELSmethod 
with themodified ARMAXmodel [11] and theproposedmodified 
NARMAXmodelareshownin Fig. 4, respectively. 
ThetrajectoriesofOutput2byRELSmethodwithARMAXmodel 
and modifiedNARMAXmodelhavethesimilarperformanceofthe 
caseforOutput1.Allthesesimulationsshowthattheresultof 
systemidentificationthroughtheRELSmethodwiththemodified 
NARMAXmodel,ratherthanthemodifiedARMAXmodel,achievesa 
betterperformance. 
6.1.2.Theinitialparameter θð0Þ of themodified NARMAXmodel 
Comparison ofthesystemidentification ofRELSmethodwith 
the NARMAXmodelbasedontheintuitiveinitialparameter θð0Þ ¼ 
½I211 I212 0212 I26T and theinitialparameterobtainedby 
the off-lineOKIDisshownasfollows. 
1) The NARMAXmodelwiththeintuitiveinitialparameter θð0Þ ¼ 
½I211 I212 0212 I26T Let thesystem (78) be excitedby 
the controlforce uðtÞ ¼ ½u1ðtÞ u2ðtÞT with whitenoisehaving 
a zeromeanandcovariance diagðcovðuÞÞ ¼ 0:1I2, wherethe 
sampling period T is 0.1s.Theresultsofidentification are 
shown in Figs. 5 and 6. 
2) The modified NARMAXmodelwiththeinitialparametersobtained 
the byOKID. Thesystemandobservergain Go, Ho, Co, Doand Ko 
in (58) areobtainedbytheOKID.Basedontheoptimal 
051015202530-0.2-0.100.10.20.3 megnitude System output Y1Identified output Y1051015202530-0.2-0.100.10.2 error 1 Time (sec) 051015202530-0.2-0.100.10.2 megnitude System output Y2Identified output Y2051015202530-0.2-0.100.10.2 error 1 Time (sec) 
Fig. 7. The outputsresponsesofthemodified NARMAXmodelbyRELSmethodwithOKID. 
68 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
linearization method,wecanobtaintheinitialparameters θð0Þ 
which isclosetotheconvergentvalueof θðkÞ. Aftertheinitial 
parameters θð0Þ are obtained,theRELSmethod (3) is appliedto 
identify thissystem.Theresultofidentification isshownin 
Figs. 7 and 8. 
6.2. Activefaulttoleranceusingmodified NARMAXmodel-based 
state-space self-tuningcontrol 
In fact,thesystemmodelisunknown (78), wehaveonly 
information aboutinputandoutputdata.Thesamplingperiod T 
is selectedas0.1sfortheoff-lineOKIDandtheon-linestate-space 
self-tuning control.First,chooseanappropriatetwo-input-two- 
output modified NARMAXmodelviatheoff-lineOKIDfortheself- 
tuning controlwithfaulttoleranceusingtheestimationalgorithm 
and thefaultdetectionisusedtoadapttothefaulttolerance 
control. Noticethattheinitialparameter θð0Þof thedetermined 
NARMAXmodelfortheon-lineRELSisobtainedbyoff-lineOKID. 
If afaultisdetectedat t ¼ kf , matrices R1i, R2i, and Siðkf Þ with the 
reset parameter δ ¼ 1 in (71) is automaticallyresetagain.Thefault 
detection thresholdsare γε1 and γε2 are 3.0.Noticethatthis 
NARMAXmodelcouldapproximateothertwo-input-two-output 
systems,notjustonlyforthisexample. 
The proposedtwo-input-two-outputmodified NARMAXmodel 
is givenby (79). Inordertoshortentheexpressions,oneassumes 
y 
10 
, ¼ F11ðyÞþB1UþKe1E; 
y 
20 
, ¼ F21ðyÞþB2UþKe2E; ð79Þ 
where 
y 
i j 
,¼ yiðkj , 
Þ; u 
kl 
,¼ ukðkl , 
Þ; ε 
mn, ¼ εmðkn, 
Þ; 
F11ðyÞ ¼ a11y 
11 
,þa12y 
21 
,þa13y 
12 
,þa14y 
22 
,þa15y2 
11 
, 
þa16y 
11 
,y 
21 
,þa17y 
11 
,y 
12 
,þa18y 
11 
,y 
22 
, 
þa19y 
12 
,y 
21 
,þa110y2 
12 
,þa111y 
12 
,y 
22 
,; 
F21ðyÞ ¼ a21y 
11 
,þa22y 
21 
,þa23y 
12 
,þa24y 
22 
,þa25y 
21 
,y 
11 
, 
þa26y2 
21 
,þa27y 
21 
,y 
12 
,þa28y 
21 
,y 
22 
, 
þa29y 
22 
,y 
11 
,þa210y 
22 
,y 
12 
,þa211y2 
22 
,; 
BT 
1 ¼ 
b101þb103y 
11 
,þb105y 
12 
, 
b102þb104y 
11 
,þb106y 
12 
, 
b11þb15y 
11 
,þb19y 
12 
, 
b12þb16y 
11 
,þb110y 
12 
, 
b13þb17y 
11 
,þb111y 
12 
, 
b14þb18y 
11 
,þb112y 
12 
, 
2 
666666666666664 
3 
777777777777775 
; BT 
2 ¼ 
b201þb203y 
21 
,þb205y 
22 
, 
b202þb204y 
21 
,þb206y 
22 
, 
b21þb25y 
21 
,þb29y 
22 
, 
b22þb26y 
21 
,þb210y 
22 
, 
b23þb27y 
21 
,þb211y 
22 
, 
b24þb28y 
21 
,þb212y 
22 
, 
2 
666666666666664 
3 
777777777777775 
KT e1 ¼ 
d11þd15y 
11 
,þd19y 
12 
, 
d12þd16y 
11 
,þd110y 
12 
, 
d13þd17y 
11 
,þd111y 
12 
, 
d14þd18y 
11 
,þd112y 
12 
, 
2 
66666664 
3 
77777775 
; KT e2 ¼ 
d21þd25y 
21 
,þd29y 
22 
, 
d22þd26y 
21 
,þd210y 
22 
, 
d23þd27y 
21 
,þd211y 
22 
, 
d24þd28y 
21 
,þd212y 
22 
, 
2 
66666664 
3 
77777775 
U ¼ 
u 
10 
, 
n 
u 
20 
, 
n 
u 
11 
, 
u 
21 
, 
u 
12 
, 
u 
22 
, 
2 
6666666666664 
3 
7777777777775 
; E ¼ 
ε 
11 
, 
ε 
21 
, 
ε 
12 
, 
ε 
22 
, 
2 
666664 
3 
777775 
: 
Simplify themodeltoformalinear-in-the-parametersexpression 
~y1ðkÞ ¼ θ1 
T ðkÞϕ1ðkÞ; 
~y2ðkÞ ¼ θ2 
T ðkÞϕ2ðkÞ; ð80Þ 
where 
θ1ðkÞ ¼ ½a11a12 ⋯ a111 b11b12 ⋯ b112 d11d12 ⋯ d112 
b101b102 ⋯ b106T Aℜ411; 
θ2ðkÞ ¼ ½a21a22 ⋯ a211 b21b22 ⋯ b212 d21d22 ⋯ d212 
b201b202 ⋯ b206T Aℜ411; 
θðkÞ ¼ θ1ðkÞ θ2ðkÞ 
h i 
; 
ϕ1ðkÞ and ϕ2ðkÞ are therelatedtermstoeachparameter, 
nθ ¼ n ¼ 41 isthenumberofparametersin θ1ðkÞ, soisin θ2ðkÞ. 
Estimatetheparameters θ1ðkÞ and θ3ðkÞ using thestandard 
recursiveextended-least-squaresalgorithm.Theinitialparameters 
θð0Þ is obtainedbyOKID,where λ0 ¼ 0:9, λð0Þ ¼ 0:9 and S1ð0Þ ¼ S2ð0Þ ¼ 1  Inθ . 
The optimallinearizationmethod,thelinearmodelsof F11ðyÞ 
and F21ðyÞ at samplingtime kT are gottenas 
F11ðyÞ ¼ a11Ry 
11 
,þa12Ry 
21 
,þa13Ry 
12 
,þa14Ry 
22 
,; ð81aÞ 
F21ðyÞ ¼ a21Ry 
11 
,þa22Ry 
21 
,þa23Ry 
12 
,þa24Ry 
22 
,; ð81bÞ 
where 
a11R 
a12R 
a13R 
a14R 
2 
6664 
3 
7775 
¼ 
a11þ2a15y 
11 
,þa16y 
21 
,þa17y 
12 
,þa18y 
22 
, 
a12þa16y 
11 
,þa19y 
12 
, 
a13þa17y 
11 
,þa19y 
21 
,þ2a110y 
12 
,þa111y 
22 
, 
a14þa16y 
11 
,þa111y 
12 
, 
2 
66666664 
3 
77777775 
þλ1R 
y 
11 
, 
y 
21 
, 
y 
12 
, 
y 
22 
, 
2 
6666664 
3 
7777775 
; 
λ1R ¼ 
1 
‖ðy 
11 
,; y 
21 
,; y 
12 
,; y 
22 
,Þ‖22 
ða15y2 
11 
,þa16y 
11 
,y 
21 
,þa17y 
11 
,y 
12 
, 
 
þa18y 
11 
,y 
22 
,þa19y 
12 
,y 
21 
,þa110y2 
12 
,þa111y 
12 
,y 
22 
,Þ 
 
; 
051015202530-1-0.500.51Time (sec) Parameter 
Fig. 8. Estimated parametersin θðkÞ of RELSmethodforthemodified NARMAX 
model withOKID. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 69
a21R 
a22R 
a23R 
a24R 
2 
6664 
3 
7775 
¼ 
a21þa25y 
21 
,þa29y 
22 
, 
a22þa25y 
11 
,þ2a26y 
21 
,þa27y 
12 
,þa28y 
22 
, 
a23þa27y 
21 
,þa210y 
22 
, 
a24þa28y 
21 
,þa29y 
11 
,þa210y 
12 
,þ2a211y 
22 
, 
2 
66666664 
3 
77777775 
þλ2R 
y 
11 
, 
y 
21 
, 
y 
12 
, 
y 
22 
, 
2 
6666664 
3 
7777775 
; 
λ2R ¼ 
1 
‖ðy 
11 
,; y 
21 
,; y 
12 
,; y 
22 
,Þ‖22 
ða25y 
21 
,y 
11 
,þa26y2 
21 
,þa27y 
21 
,y 
12 
, 
 
þa28y 
21 
,y 
22 
,þa29y 
22 
,y 
11 
,þa210y 
22 
,y 
12 
,þa211y2 
22 
,Þ 
 
; 
GoðkÞ and HoðkÞ in theassociatedstate-spaceinnovationform (58) 
aredeterminedas 
GoðkÞ ¼ 
Go1ðkÞ I2 
Go2ðkÞ 02 
 # 
; HoðkÞ ¼ 
Ho1ðkÞ 
Ho2ðkÞ 
 # 
; 
Co ¼ I2 02 
  
; Do ¼ Ho0ðkÞ ð82Þ 
012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y2012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.511.5Time (sec) magnitude Y2Reference 2System output Y2012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y20.10.150.20.250.30.350.40.450.50.550.65678910111213141516weighting factor w the convergence of weighting factor 
Fig. 9. The comparisonbetween(i)Output y1ðtÞ and reference r1ðtÞ and (ii)Output y2ðtÞ and reference r2ðtÞ: (a) W ¼ 0:2  I2, (b) W ¼ 0:1  I2, (c) W ¼0:4  I2, and 
(d) theconvergenceoferrorsvs.weightingmatrices. 
70 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
where 
Go1 ¼ 
a11R a12R 
a21R a22R 
 # 
; 
~H 
o1ðkÞ ¼ 
b11þb15y 
11 
,þb19y 
12 
, b12þb16y 
11 
,þb110y 
12 
, 
b21þb25y 
21 
,þb29y 
22 
, b22þb26y 
21 
,þb210y 
22 
, 
2 
64 
3 
75 
; 
Go2 ¼ 
a13R a14R 
a23R a24R 
 # 
; 
~H 
o2ðkÞ ¼ 
b13þb17y 
11 
,þb111y 
12 
, b14þb18y 
11 
,þb112y 
12 
, 
b23þb27y 
21 
,þb211y 
22 
, b24þb28y 
21 
,þb212y 
22 
, 
2 
64 
3 
75 
; 
Ho0ðkÞ ¼ 
b101þb103y 
11 
,þb105y 
12 
, b102þb104y 
11 
,þb106y 
12 
, 
b201þb203y 
21 
,þb205y 
22 
, b202þb204y 
21 
,þb206y 
22 
, 
2 
64 
3 
75 
; 
Ho1ðkÞ ¼ ~H 
o1Go1Do; 
Ho2ðkÞ ¼ ~H 
o2Go2Do: 
05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 10. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 11. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithFTC. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 71
The weightingmatricesare fQ ¼ 108 
 I2; R ¼ I2g in (54) and 
fQo ¼ 108 
 I4; Ro ¼ I2g in (48). 
1) Determination oftheweightingmatrix. 
Here, severalcaseswillbegiventodiscusstheeffectsfor 
different weightingmatrices.Wecanselectanappropriate 
weightingfactortoimprovethetrackingperformanceofthe 
on-line systemcontrol.Sometypicalexamplesforthesystem 
(78) are illustratedfollows. 
From Fig. 9, theweightingfactorischosenas W ¼ 0:2I2 to 
minimize theoutputtrackingerrordefined. Then,theFTCwith 
an abruptinputfaultandagradualinputfaultisconsideredas 
follows 
2) Fault scenario1:anabruptinputfault. 
Weusethemodified NARMAXmodeltoidentifythenonlinear 
system,andswitchittotheFTCatthe5thsecond.Atthe20th 
second, theInput1isassumedtobeabruptlyaddedto5times 
of itsfunction,andInput2isassumedtobeabruptlyadded 
to 0.8timesofitsfunction,thensimulationresultsin Fig. 10. 
The simulationresultsusingtheFTCwiththemodified STC 
05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 12. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 13. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithFTC. 
72 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
methodology areshownin Fig. 11. Forthefaulttolerance,a 
comparison ofthenewmethodisgivenin Figs. 10–13, which 
showsourproposedapproachismuchsuperiorthan [11]. 
3) Faultscenario2:agradualinputfault. 
Weusethemodified NARMAXmodeltoidentifythenonlinear 
system,thenswitchtotheFTCwhichusingthemodified STC 
methodology when5thsecond.Afterthe20thsecond,the 
Input1isassumedtobeabruptlyaddedto10:8ð1eðt20ÞÞ times ofitsfunctions,thensimulationresultsin Fig. 14. Andthe 
simulation resultswiththeFTCwhichusingthemodified STC 
methodology isshownin Fig. 15. Forthefaulttolerance,a 
comparison ofthenewmethodisgivenin Figs. 14–17, which 
showsourproposedapproachismuchsuperiorthan [11]. 
7. Conclusions 
A polynomial-expansion-formmodified NARMAXmodel-based 
fault-tolerantstate-spaceself-tunerfortheunknownnonlinear 
stochastichybridsystemwithaninput-outputfeed-throughterm 
05101520-1-0.500.51 magnitude Y1 Reference 1System output Y105101520-1-0.500.51Time (sec) magnitude Y2 Reference 2System output Y2 
Fig. 14. The outputresponses(divergingtoaninfinity valuebefore23s)withagradualinputfaultoccurringatthe20thforthemodified NARMAXmodelsecond 
without FTC. 05101520253035404550-1-0.500.51 magnitude Y1Reference 1System output Y105101520253035404550-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y2 
Fig. 15. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithFTC. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 73
has beenproposedinthispaper.Themaincontrolschemesofthis 
paperare(i)initializationfortheon-linepolynomial-expansion-form 
NARMAX-basedsystemidentification obtainedbytheoff-lineOKID 
is proposedtospeeduptheparameteridentificationprocess,(ii)an 
optimal trackerbasedontheidentified modelwithadirecttransmis- 
sion termfrominputtooutputisutilizedfortheunknownnonlinear 
systemwithadirecttransmissionmatrix,and(iii)whenthe 
unknownsystemhasinputfault,thecontrolschemefocuseson 
designinganactivefaulttolerancestate-spaceself-tunerusingthe 
modified NARMAXmodel-basedsystemidentification. 
Totheauthor’s knowledge,theNARMAXmodel-basedstate- 
space optimaltrackerwithfaulttolerancefortheregularnonlinear 
sampled-data systemcontainingthedirecttransmissionterm 
from inputtooutputhasnotbeenproposedinliterature.Con- 
sidering thecomplexityofthefaulttolerancecontrol,thispaper 
takes theNARMAXmodelinpolynomialexpansionform,butnot 
in rationalexpansionform.Theextensionofthemodified NAR- 
MAX model-basedmethodologyforthefault-tolerancecontrol 
from itspolynomialexpansionformtorationalexpansionform 
can beconsideredasafutureresearchwork. 
05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 16. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 
Fig. 17. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithFTC. 
74 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
Acknowledgments 
This workwassupportedbytheNationalScienceCouncilof 
RepublicofChinaundercontractsNSC102-2221-E-208-MY3and 
NSC102-2221-E-006-199. 
References 
[1] WarwickK.Self-tuningregulatorsastate-spaceapproach.International 
Journal ofControl1981;33:839–58. 
[2] TsayYT,ShiehLS.State-spaceapproachforself-tuningfeedbackcontrolwithpole 
assignment.ControlTheoryandApplications,IEEProceedingsD1981;123:93–101. 
[3] Shieh LS,BaoYL,ChangFR.State-spaceself-tuningregulatorsforgeneral 
multivariablestochasticsystems.ControlTheoryandApplications,IEEPro- 
ceedings D1989;136:17–27. 
[4] Aström KJ,WittenmarkB.AdaptiveControl.NY:Addison-Wesley;1989. 
[5] Leontaritis IJ,BillingsSA.Input–output parametricmodelsfornonlinear 
systems,PartsIandII.InternationalJournalofControl1985;41(2):303–44. 
[6] Li J,ChenW,LiJ,FangY.AdaptiveNNoutput-feedbackstabilizationforaclass 
of stochasticnonlinearstrict-feedbacksystems.ISATransactions2009;48(4): 
468–75. 
[7] TsaiJSH,WangCT,KuangCC,GuoSM,ShiehLS,ChenCW.ANARMAXmodel- 
based state-spaceself-tuningcontrolfornonlinearstochastichybridsystems. 
Applied MathematicalModeling2010;34:3030–54. 
[8] Sontag ED.PolynomialResponseMaps.LectureNotesinControlandidenti- 
fication Science,vol.13.Berlin:Springer-Verlag;1979. 
[9] Lewis FL.Asurveyoflinearsingularsystems.Circuits,SystemsandSignal 
Processing 1986;5:3–36. 
[10] Dai L.SingularControlSystems.Berlin,Germany:Springer-Verlag;1989. 
[11] WangJH,TsaiJSH,HuangJS,GuoSM,ShiehLS.Alow-orderactivefault- 
tolerantstatespaceself-tunerfortheunknownsampled-datanonlinear 
singular systemusingOKIDandmodified ARMAXmodel-basedsystem 
identification. AppliedMathematicalModeling2013;37:1242–74. 
[12] JN. AppliedSystemIdentification. EnglewoodCliffs.NJ:Prentice-Hall;1994. 
[13] TsaiJSH,ChengFM,YuTY,ShiehLS.Efficient decentralizediterativelearning 
trackerforunknownsampled-datainterconnectedlarge-scalestate-delay 
systemswithclosed-loopdecouplingproperty.ISATransactions2012;51(1): 
81–94. 
[14] Guo SM,ShiehLS,ChenG,LinCF,ChandraJ.State-spaceself-tuningcontrolfor 
nonlinear stochasticandchaotichybridsystem.InternationalJournalof 
Bifurcation andChaos2001;11(4):1079–113. 
[15] TsaiJSH,LeeYY,Cofie P,ShiehLS,ChenXM.Activefaulttolerantcontrolusing 
state-space self-tuningcontrolapproach.InternationalJournalofSystems 
Science 2006;37(11):785–97. 
[16] Ljung L.SystemIdentification TheoryfortheUser.EnglewoodCliffs.NJ: 
Prentice-Hall; 1987. 
[17] Kailath T.Aninnovationapproachtoleast-squaresestimation.PartI:Linear 
filtering inadditivewhitenoise.IEEETransactionsonAutomaticControl1968; 
AC-13:646–55. 
[18] Polites ME.Idealstatereconstructorfordeterministicdigitalcontrolsystems. 
InternationalJournalofControl1989;49:2001–11. 
[19] DabneyJB,HarmanTL.MasteringSimulink.EnglewoodCliffs,NJ:Prentice-Hall; 
1998. 
[20] TeixeiraMCM,ZakSH.Stabilizingcontrollerdesignforuncertainnonlinear 
systemsusingfuzzymodels.IEEETransactionsonFuzzySystems1999;7(2): 
133–42. 
[21] TsayYT,ShiehLS,BarnettS.StructuralAnalysisandDesignofMultivariable 
Control Systems:anAlgebraicApproach.Berlin,Heidelberg:Springer-Verlag; 
1988. 
[22] Shieh LS,TsayYT.Transformationsofaclassofmultivariablecontrolsystems 
to blockcompanionforms.IEEETransactionsonAutomaticControl1982;AC- 
27:199–203. 
[23] Shieh LS,WangCT,TsayYT.Multivariablestatefeedbackself-tuningcon- 
trollers. StochasticAnalysisandApplications1985;3(2):189–212. 
[24] WangJH,J.S.H.Tsai,ChenYC,GuoSM,ShiehLS.Anactivelow-orderfault- 
tolerantstatespaceself-tunerfortheunknownsample-datalinearregular 
systemwithaninput–output directfeed-throughterm.AppliedMathematical 
Sciences 2012;6(97)(4813–4355). 
[25] Guo SM,ShiehLS,ChenG,LinCF.Effectivechaoticorbittracker:Aprediction- 
based digitalredesignapproach.IEEETransactionCircuitsandSystems-I: 
Fundamental TheoryandApplications2000;47(11):1557–70. 
[26] TsaiJSH,DuYY,HuangPH,GuoSM,ChenCW,ShiehLS,etal.Iterative 
learning-based decentralizedadaptivetrackerforlarge-scalesystems:a 
digital redesignapproach.ISATransactions2011;50:344–56. 
[27] TsaiJSH,DuYY,ZhuangWZ,GuoSM,ChenCW,ShiehLS.Optimalanti- 
windup digitalredesignofmulti-inputmulti-outputcontrolsystemsunder 
inputconstraints.IETControlTheoryApplications2011;5:447–64. 
[28] YenGG,HoLW.Onlinemultiple-model-basedfaultdiagnosisandaccommo- 
dation. IEEETransactionsonIndustrialElectronics2003;50:296–312. 
[29] Soderstrom T,StoicaP.SystemIdentification. EnglewoodCliffs:Prentice-Hall; 
1989. 
J.S.-H. Tsaietal./ISATransactions53(2014)56–75 75

More Related Content

Viewers also liked

Bi objective redundancy allocation problem for a system with mixed repairable...
Bi objective redundancy allocation problem for a system with mixed repairable...Bi objective redundancy allocation problem for a system with mixed repairable...
Bi objective redundancy allocation problem for a system with mixed repairable...ISA Interchange
 
Estimation of region of attraction for polynomial nonlinear systems a numeric...
Estimation of region of attraction for polynomial nonlinear systems a numeric...Estimation of region of attraction for polynomial nonlinear systems a numeric...
Estimation of region of attraction for polynomial nonlinear systems a numeric...ISA Interchange
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicISA Interchange
 
Stochastic behavior analysis of complex repairable industrial systems
Stochastic behavior analysis of complex repairable industrial systemsStochastic behavior analysis of complex repairable industrial systems
Stochastic behavior analysis of complex repairable industrial systemsISA Interchange
 
Plant-Wide Control: Eco-Efficiency and Control Loop Configuration
Plant-Wide Control: Eco-Efficiency and Control Loop ConfigurationPlant-Wide Control: Eco-Efficiency and Control Loop Configuration
Plant-Wide Control: Eco-Efficiency and Control Loop ConfigurationISA Interchange
 
Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...ISA Interchange
 
Cascade control of superheated steam temperature with neuro PID controller
Cascade control of superheated steam temperature with neuro PID controllerCascade control of superheated steam temperature with neuro PID controller
Cascade control of superheated steam temperature with neuro PID controllerISA Interchange
 
Modified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejectionModified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejectionISA Interchange
 
An opto isolator based linearization technique of a typical thyristor driven ...
An opto isolator based linearization technique of a typical thyristor driven ...An opto isolator based linearization technique of a typical thyristor driven ...
An opto isolator based linearization technique of a typical thyristor driven ...ISA Interchange
 

Viewers also liked (10)

Bi objective redundancy allocation problem for a system with mixed repairable...
Bi objective redundancy allocation problem for a system with mixed repairable...Bi objective redundancy allocation problem for a system with mixed repairable...
Bi objective redundancy allocation problem for a system with mixed repairable...
 
Estimation of region of attraction for polynomial nonlinear systems a numeric...
Estimation of region of attraction for polynomial nonlinear systems a numeric...Estimation of region of attraction for polynomial nonlinear systems a numeric...
Estimation of region of attraction for polynomial nonlinear systems a numeric...
 
PID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logicPID gain scheduling using fuzzy logic
PID gain scheduling using fuzzy logic
 
Stochastic behavior analysis of complex repairable industrial systems
Stochastic behavior analysis of complex repairable industrial systemsStochastic behavior analysis of complex repairable industrial systems
Stochastic behavior analysis of complex repairable industrial systems
 
Plant-Wide Control: Eco-Efficiency and Control Loop Configuration
Plant-Wide Control: Eco-Efficiency and Control Loop ConfigurationPlant-Wide Control: Eco-Efficiency and Control Loop Configuration
Plant-Wide Control: Eco-Efficiency and Control Loop Configuration
 
Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...Design of a self tuning regulator for temperature control of a polymerization...
Design of a self tuning regulator for temperature control of a polymerization...
 
Cascade control of superheated steam temperature with neuro PID controller
Cascade control of superheated steam temperature with neuro PID controllerCascade control of superheated steam temperature with neuro PID controller
Cascade control of superheated steam temperature with neuro PID controller
 
Modified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejectionModified Smith predictor design for periodic disturbance rejection
Modified Smith predictor design for periodic disturbance rejection
 
An opto isolator based linearization technique of a typical thyristor driven ...
An opto isolator based linearization technique of a typical thyristor driven ...An opto isolator based linearization technique of a typical thyristor driven ...
An opto isolator based linearization technique of a typical thyristor driven ...
 
PID Tuning Rules
PID Tuning RulesPID Tuning Rules
PID Tuning Rules
 

Similar to A modified narmax model based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input–output direct feed-through term

A Comparison Study between Inferred State-Space and Neural Network Based Syst...
A Comparison Study between Inferred State-Space and Neural Network Based Syst...A Comparison Study between Inferred State-Space and Neural Network Based Syst...
A Comparison Study between Inferred State-Space and Neural Network Based Syst...Ahmed Momtaz Hosny, PhD
 
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...tchunsen
 
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...cscpconf
 
Neural network based identification of multimachine power system
Neural network based identification of multimachine power systemNeural network based identification of multimachine power system
Neural network based identification of multimachine power systemcsandit
 
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEM
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEMNEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEM
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEMcscpconf
 
A Study of Load Flow Analysis Using Particle Swarm Optimization
A Study of Load Flow Analysis Using Particle Swarm OptimizationA Study of Load Flow Analysis Using Particle Swarm Optimization
A Study of Load Flow Analysis Using Particle Swarm OptimizationIJERA Editor
 
11.power flow control limiting short circuit current using tcsc
11.power flow control limiting short circuit current using tcsc11.power flow control limiting short circuit current using tcsc
11.power flow control limiting short circuit current using tcscAlexander Decker
 
Power flow control limiting short circuit current using tcsc
Power flow control limiting short circuit current using tcscPower flow control limiting short circuit current using tcsc
Power flow control limiting short circuit current using tcscAlexander Decker
 
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET... FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET...
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...Politeknik Negeri Ujung Pandang
 
Transient Stability Assessment and Enhancement in Power System
Transient Stability Assessment and Enhancement in Power  SystemTransient Stability Assessment and Enhancement in Power  System
Transient Stability Assessment and Enhancement in Power SystemIJMER
 
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...IRJET Journal
 
Evaluation of tcsc power flow control capability
Evaluation of tcsc power flow control capabilityEvaluation of tcsc power flow control capability
Evaluation of tcsc power flow control capabilityAlexander Decker
 
Akhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar
 
Foundation and Synchronization of the Dynamic Output Dual Systems
Foundation and Synchronization of the Dynamic Output Dual SystemsFoundation and Synchronization of the Dynamic Output Dual Systems
Foundation and Synchronization of the Dynamic Output Dual Systemsijtsrd
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemISA Interchange
 
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...ijcsit
 

Similar to A modified narmax model based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input–output direct feed-through term (20)

Slide
SlideSlide
Slide
 
Defense_thesis
Defense_thesisDefense_thesis
Defense_thesis
 
A Comparison Study between Inferred State-Space and Neural Network Based Syst...
A Comparison Study between Inferred State-Space and Neural Network Based Syst...A Comparison Study between Inferred State-Space and Neural Network Based Syst...
A Comparison Study between Inferred State-Space and Neural Network Based Syst...
 
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...
Determining Multiple Steady State Zcs Operating Points Of A Switch Mode Conta...
 
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...
Park’s Vector Approach to detect an inter turn stator fault in a doubly fed i...
 
Neural network based identification of multimachine power system
Neural network based identification of multimachine power systemNeural network based identification of multimachine power system
Neural network based identification of multimachine power system
 
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEM
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEMNEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEM
NEURAL NETWORK BASED IDENTIFICATION OF MULTIMACHINE POWER SYSTEM
 
A Study of Load Flow Analysis Using Particle Swarm Optimization
A Study of Load Flow Analysis Using Particle Swarm OptimizationA Study of Load Flow Analysis Using Particle Swarm Optimization
A Study of Load Flow Analysis Using Particle Swarm Optimization
 
11.power flow control limiting short circuit current using tcsc
11.power flow control limiting short circuit current using tcsc11.power flow control limiting short circuit current using tcsc
11.power flow control limiting short circuit current using tcsc
 
Power flow control limiting short circuit current using tcsc
Power flow control limiting short circuit current using tcscPower flow control limiting short circuit current using tcsc
Power flow control limiting short circuit current using tcsc
 
JMS_Luo
JMS_LuoJMS_Luo
JMS_Luo
 
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET... FAULT DETECTION ON OVERHEAD TRANSMISSION LINE  USING ARTIFICIAL NEURAL NET...
FAULT DETECTION ON OVERHEAD TRANSMISSION LINE USING ARTIFICIAL NEURAL NET...
 
Transient Stability Assessment and Enhancement in Power System
Transient Stability Assessment and Enhancement in Power  SystemTransient Stability Assessment and Enhancement in Power  System
Transient Stability Assessment and Enhancement in Power System
 
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...
IRJET- A Simple Approach to Identify Power System Transmission Line Faults us...
 
Resume- EE
Resume- EEResume- EE
Resume- EE
 
Evaluation of tcsc power flow control capability
Evaluation of tcsc power flow control capabilityEvaluation of tcsc power flow control capability
Evaluation of tcsc power flow control capability
 
Akhil Kumar-resume
Akhil Kumar-resumeAkhil Kumar-resume
Akhil Kumar-resume
 
Foundation and Synchronization of the Dynamic Output Dual Systems
Foundation and Synchronization of the Dynamic Output Dual SystemsFoundation and Synchronization of the Dynamic Output Dual Systems
Foundation and Synchronization of the Dynamic Output Dual Systems
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
 
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...
COMPARATIVE STUDY OF BACKPROPAGATION ALGORITHMS IN NEURAL NETWORK BASED IDENT...
 

More from ISA Interchange

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkISA Interchange
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical systemISA Interchange
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...ISA Interchange
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...ISA Interchange
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...ISA Interchange
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...ISA Interchange
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...ISA Interchange
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...ISA Interchange
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...ISA Interchange
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...ISA Interchange
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...ISA Interchange
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...ISA Interchange
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...ISA Interchange
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...ISA Interchange
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsISA Interchange
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessISA Interchange
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...ISA Interchange
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...ISA Interchange
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersISA Interchange
 
Design of a new PID controller using predictive functional control optimizati...
Design of a new PID controller using predictive functional control optimizati...Design of a new PID controller using predictive functional control optimizati...
Design of a new PID controller using predictive functional control optimizati...ISA Interchange
 

More from ISA Interchange (20)

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic Network
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical system
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control Systems
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column Process
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filters
 
Design of a new PID controller using predictive functional control optimizati...
Design of a new PID controller using predictive functional control optimizati...Design of a new PID controller using predictive functional control optimizati...
Design of a new PID controller using predictive functional control optimizati...
 

Recently uploaded

The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwaitdaisycvs
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...amitlee9823
 
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 MonthsSEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 MonthsIndeedSEO
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon investment
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptxnandhinijagan9867
 
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLJAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLkapoorjyoti4444
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...allensay1
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableSeo
 
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...lizamodels9
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000dlhescort
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...Aggregage
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...rajveerescorts2022
 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1kcpayne
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentationuneakwhite
 
Falcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to ProsperityFalcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to Prosperityhemanthkumar470700
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfAdmir Softic
 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Centuryrwgiffor
 

Recently uploaded (20)

The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
 
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
Call Girls Electronic City Just Call 👗 7737669865 👗 Top Class Call Girl Servi...
 
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 MonthsSEO Case Study: How I Increased SEO Traffic & Ranking by 50-60%  in 6 Months
SEO Case Study: How I Increased SEO Traffic & Ranking by 50-60% in 6 Months
 
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabiunwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
unwanted pregnancy Kit [+918133066128] Abortion Pills IN Dubai UAE Abudhabi
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRLJAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
JAYNAGAR CALL GIRL IN 98274*61493 ❤CALL GIRLS IN ESCORT SERVICE❤CALL GIRL
 
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
 
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
Call Girls Service In Old Town Dubai ((0551707352)) Old Town Dubai Call Girl ...
 
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 98765-12871 Top Class Call Girl Service Available
 
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
Russian Call Girls In Rajiv Chowk Gurgaon ❤️8448577510 ⊹Best Escorts Service ...
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
 
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
The Path to Product Excellence: Avoiding Common Pitfalls and Enhancing Commun...
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
 
Uneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration PresentationUneak White's Personal Brand Exploration Presentation
Uneak White's Personal Brand Exploration Presentation
 
Falcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to ProsperityFalcon's Invoice Discounting: Your Path to Prosperity
Falcon's Invoice Discounting: Your Path to Prosperity
 
Falcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in indiaFalcon Invoice Discounting platform in india
Falcon Invoice Discounting platform in india
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
 
Famous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st CenturyFamous Olympic Siblings from the 21st Century
Famous Olympic Siblings from the 21st Century
 

A modified narmax model based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input–output direct feed-through term

  • 1. ResearchArticle A modified NARMAXmodel-basedself-tunerwithfault toleranceforunknownnonlinearstochastichybrid systemswithaninput–output directfeed-throughterm Jason S.-H.Tsai a,n, Wen-TengHsu a, Long-GueiLin a, Shu-MeiGuo b,n, JosephW.Tann c a Department ofElectricalEngineering,NationalCheng-KungUniversity,Tainan701,Taiwan,ROC b Department ofComputerScienceandInformationEngineering,NationalCheng-KungUniversity,Tainan701,Taiwan,ROC c Automation&InstrumentationSystemDevelopmentSectionSteel&IronResearch&DevelopmentDepartment,Kaohsiung81233,Taiwan,ROC a rticleinfo Article history: Received3January2013 Receivedinrevisedform 9 August2013 Accepted10August2013 Availableonline5September2013 This paperwasrecommendedfor publication byDr.Q.-G.Wang Keywords: Self-tuning control Stochasticsystem NARMAXmodel Faulttolerantcontrol OKID RELS Systemidentification An input–output directtransmissionterm a b s t r a c t A modified nonlinearautoregressivemovingaveragewithexogenousinputs(NARMAX)model-basedstate- spaceself-tunerwithfaulttoleranceisproposedinthispaperfortheunknownnonlinearstochastichybrid systemwithadirecttransmissionmatrixfrominputtooutput.Throughtheoff-lineobserver/Kalman filter identification method,onehasagoodinitialguessofmodified NARMAXmodeltoreducetheon-linesystem identification processtime.Then,basedonthemodified NARMAX-basedsystemidentification, acorrespond- ing adaptivedigitalcontrolschemeispresentedfortheunknowncontinuous-timenonlinearsystem,withan input–output directtransmissionterm,whichalsohasmeasurementandsystemnoisesandinaccessible systemstates.Besides,aneffectivestatespaceself-turnerwithfaulttoleranceschemeispresentedforthe unknownmultivariablestochasticsystem.Aquantitativecriterionissuggestedbycomparingtheinnovation processerrorestimatedbytheKalman filterestimationalgorithm,sothataweightingmatrixresetting techniquebyadjustingandresettingthecovariancematricesofparameterestimateobtainedbytheKalman filterestimationalgorithmisutilizedtoachievetheparameterestimationforfaultysystemrecovery. Consequently,theproposedmethodcaneffectivelycope withpartiallyabruptand/orgradualsystemfaults andinputfailuresbythefaultdetection. & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction The state-spaceself-tuningcontrolmethods [1,2] havebeen shown tobeeffectiveindesigningadvancedadaptivecontrollers for linearmultivariablestochasticsystems [3]. Inthoseapproaches [1,2], thestandardKalmanstate-estimationalgorithm [4] has been embedded intoanonlineparameterestimationalgorithm.They utilize state-spaceself-tunersbasedoninnovationmodels,where (i) theequivalentinternalstatescanbeestimatedsuccessively; (ii) thestable/unstableandminimum/nonminimum-phasemulti- variablesystemscanbecontrolledaccurately;(iii)theself-tuners aresimple,reliableandrobust;and(iv)theadaptiveKalmangain can subsequentlybeobtained. Polynomialexpansionsareusedextensivelyinnonlinearsys- tem analysis,wherethesystemhasnotheinput–output direct feed-through term.Iftheresponseofasystemisdominatedby nonlinear characteristics,itisgeneralnecessarytouseanonlinear model, andthisimmediatelyraisestheproblemofwhatclassof models touse.ThetraditionalNARMAXmodel,whichwas first introducedandrigorouslyderivedby [5], providesaunified representationforawideclassofnonlinearstochasticsystems [6]. TheNARMAXmodelisnotrestrictedtopolynomialsystems and canbeexpandedasarationalmodel [7]. Theadvantageofthe rationalmodelistheefficiency withwhichitcanseverelydescribe nonlinear characteristicswithafewparameters.Theseresultscan be relatedtothemodelsintroducedbySontag [8]. Whentheyare extendedtotheunknownstochasticcase,thesemodelsprovidea class ofrationalmodels [7] which canbeusedasthebasisof parameterestimationalgorithms. Over thepastdecades,therehasbeenagrowinginterestinthe singular system.Theapplicationsofsingularsysteminlarge-scale systems,circuits,powersystems,economics,controltheory, robots,andotherareas [9,10] are extensively.Thetrackerand fault tolerancecontrolforthelinearsingularsystemisgivenin [11]. Actually,thesingularsystemcanbeconvertedintoan equivalentregularsystemwhichmayhaveadirecttransmission termfrominputtooutput.Indeed,thesingularsystemwithoutthe Contents listsavailableat ScienceDirect journalhomepage: www.elsevier.com/locate/isatrans ISATransactions 0019-0578/$-seefrontmatter & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.isatra.2013.08.007 n Corresponding authors.Tel.: þ886 62757575x62630, +886 62757575x62525; fax: þ886 62345482, +886 62747076. E-mail addresses: shtsai@mail.ncku.edu.tw (J.-H.Tsai), guosm@mail.ncku.edu.tw (S.M.Guo). ISA Transactions53(2014)56–75
  • 2. impulse modeisjustaspecialclassoftheregularsystemwiththe direct transmissiontermfrominputtooutput.Totheauthor's knowledge,theNARMAXmodel-basedstate-spaceoptimaltracker with faulttolerancefortheregularnonlinearsampled-datasystem containing thedirecttransmissiontermfrominputtooutputhas not beenproposedinliterature. The settingofinitialparametersoftheNARMAXmodelis important toreducethetimeoftheon-lineidentifyingprocess,so the observer/Kalman filteridentification (OKID) [12,13] is applied to estimatetheinitialparametersoftheNARMAXmodelandorder determination fortheonlinerecursiveextended-least-squares (RELS)identification inthispaper.Thewell-knownprocessof on-line systemidentification ofARMA/NARMAXmodel-based state-space self-tuningcontrolforthesystemwithoutinput– output feed-throughtermrequitestheone-steppastcontrolinput and someothermeasurementstodeterminethecurrentcontrol input.However,forthecaseofthesystemwithinput–output feed- through term,itrequirestohavethecurrentcontrolinput,which implies thereisacausalproblem.Toovercomethisproblem,a modified NARMAXmodel-basedsystemidentification forthe unknown nonlinearsystemwiththeinput–output feed-through term willbeproposedinthispaper.TheOKID [12,13] is performed in off-line,sothereisnocausalproblemtoidentifytheinput– output feed-throughterm.However,itdoesnotworkfortheon- line case.Totheauthor'sknowledge,noon-lineOKIDhasbeen proposed inliterature.Theidentified observerofthestate-space self-tuning controlisinthestate-spaceinnovationform;however, the oneidentified bytheOKIDisinthegeneralcoordinateform. So, thetransformationbetweenthesetwowillbebriefly intro- duced inthispaper.Then,basedonthemodified NARMAXmodel and itscorrespondingstatespaceinnovationform,adigital controller designtodealwiththesystemwithadirecttransmis- sion term [11] is presented. One pointmustbenoticedthatthestate-spaceself-tuning control (STC)schemefornonlinearstochastichybridsystems proposed byGuoetal. [14] estimatesthesystemparametersat every samplinginstant,thendesignsanadaptivecontrollerbased on theestimatedparametersalsoateverysamplinginstant.The frameworkofthestate-spaceSTCseemstoagreewiththatofthe activefaulttoleranceinarealtime.Forfaultysystemrecovery,we use themodified Kalman filter estimationalgorithmbyutilizing the modified covariancematricesfromestimatederrorsto improvetheparameterestimation [15], insteadofutilizingthe estimatedcovariancematriceswhichisobtainedfromtheRELS algorithm intheconventionalSTCschemeforadaptingparameter variations.Aboutthefaults,abruptfaultsandgradualfaultsare considered inthispaper. This paperisorganizedasfollows.Problemdescriptionand motivationofthispaperisgivenin Section 2. Section 3 summaries some preliminaryfortheproposedmethod. Section 4 presents the modified NARMAX(inpolynomial)model-basedstate-spaceself- tuner forunknownnonlinearstochastichybridsystemswiththe input–output feed-throughterm.In Section 5, afaulttolerance scheme bymodifyingtheconventionalstate-spaceself-tuning controlapproachfortheunknownmultivariablestochasticsystem with input–output feed-throughtermisproposed.Finally,an illustrativeexampleisshownin Section 6. 2. Problemdescriptionandmotivation Considertheclassofcontinuous-timenonlinearstochasticsystems as follows: _xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðtÞþw′ðtÞ; ð1aÞ yðtÞ ¼ hðxðtÞÞþdðxðtÞÞuðtÞþv′ðtÞ; ð1bÞ where f : ℜn-ℜn, g : ℜn-ℜnm, h : ℜn-ℜp, d : ℜn-ℜpm, uðkÞAℜm is thecontrolinput, xðkÞAℜn is thestatevector, yðtÞAℜp isthemeasurableoutputvector, w′ðtÞ and v′ðtÞ areuncorrelatedwhite noise processes.Theon-linesystemidentification methodologiesof ARMAXand/orNARMAX(inpolynomialand/orrational)model-based state-spaceself-tuningcontrolwith/withoutfaulttoleranceforthe known/unknownlinear/nonlinearsystemwithoutinput–output feed- throughtermestimatethecurrentsystemparametersandstateat time index t ¼ kT based oncontrolinputuptotimeindex t ¼ kTT, uðkTTÞ, andoutputmeasurementsuptoeither t ¼ kTT or t ¼ kT. Then, determinethecurrentcontrolparameter uðkTÞ basedonthe estimatedstate ^xoðkTÞ, where ^xoðkTÞ denotestheestimatedcurrent statefortheconstructedobserverrepresentedintheobserver canonical form,sothatthesystemoutput yðtÞ canwelltrackthe desiredreference ΓðtÞ at timeindex t ¼ kTþT, i.e. yðkTþTÞffiΓðkTþTÞ, butnot yðkTÞffiΓðkTÞ. Theinterpretationofthis comment isthatthecurrent uðkTÞ is determinedbythecurrentstate ^xoðkTÞ=xðkTÞ, whichimplies yðkTÞ determinedby uðkTTÞ exists already.So, uðkTÞ cannotaffect yðkTÞ anymore.Theaboveobservation showsthatoneneeds uðkTTÞ first,thenidentifies thesystem parameter/state,anddeterminesthecurrentcontrolinput uðkTÞ finally,whichisthewell-knownon-lineprocessofthesystem identification methodologyforthestate-spaceself-tuningcontrol. However,whenthesystemhastheinput-outputfeed-through term,oneneedstohavethecurrentcontrolinput uðkTÞ first forthe on-line systemidentification, thendeterminesthecontrolinput uðkTÞ later,whichinducestheso-calledcasualproblem.Toover- come thisproblem,amodified NARMAmodel-basedsystem identification fortheunknownnonlinearsystemwiththeinput– output feed-throughtermwillbeproposedinthispaper. The structureofthestate-spaceSTCschemeincludesapara- meter andstateestimatorandacontrollerdesign.Atypicalstate- space STCstructureisillustratedin Fig. 1. Fig. 1. Block diagramofatypicalstate-spaceself-tuningcontrol. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 57
  • 3. Underthisframework,parametersandstateoftheunknown model areestimatedfromthecontrolinput ðud nðkTÞ; udððk1ÞTÞ; udððk2ÞTÞ;…Þ and thesystemoutput ðyðkTÞ; yððk1ÞTÞ; yððk2ÞTÞ;…Þ, where ud nðkTÞ is tobeestimatedbased on somepredictionconceptpresentedin Section 4. Considering the complexityofthefaulttolerancecontrol,thispapertakesthe NARMAXmodelinpolynomialexpansionform,butnotinrational expansionform.Theextensionofthemodified NARMAXmodel- based methodologyforthefault-tolerancecontrolfromitspoly- nomial expansionformtorationalexpansionformcanbecon- sideredasafutureresearchwork.Basedontheestimated parameter θðkÞ of themodified NARMAXmodel,anappropriate controllercanbedesignedin Section 4. Then,thedesigned adaptivecontrollergeneratesreal-timecontrolactionsforthe unknown dynamicsystem.Thedetailofthetraditionalalgorithm to estimatethesystemparameters θðkÞ is describedin Section 2. Then, theprocesscycleisrepeateduntilthecontrolgoalis achieved. Noticethatifthecontrolinputispersistentlyexcited, the convergencetothetruesystemparametersisguaranteedby Ljung [16]. It iswell-knownthatonecanformulateanARMAXmodel suitable fortheunknownrealsystem.However,insomecases,the ARMAX modelforself-tuningcontrolcannotsimulatetheoriginal true systemaccurately.Inthispaper,wewillproposethemodified NARMAXmodelinpolynomialexpansionformforthefault toleranceself-tuningcontrol(STC)scheme. The expressionofmodified NARMAXmodelforthe m-input p-output systemisgivenby ~yiðkÞ ¼ Fi½y1ðk1Þy2ðk1Þ…ypðk1Þ…y1ðknnyÞy2ðknnyÞ…ypðknnyÞ u1 nðkÞun 2ðkÞ⋯un mðkÞu1ðk1Þu2ðk1Þ…umðk1Þ…u1ðknnuÞ u2ðknnuÞ…umðknnuÞε1ðk1Þε2ðk1Þ…εpðk1Þ⋯ε1ðknneÞ ε2ðknneÞ…εpðknneÞ ¼ Σ j ¼ 1n θijðkÞϕijðkÞ ¼ θiðkÞTϕiðkÞ; for i ¼ 1; 2;…; p; ð2Þ where ~yiðkÞ is theestimatedvalueof yiðkÞ, uαðkÞ and yβðkÞ denote the α th input(α¼1, 2, …,m) andthe β th output(β¼1, 2, …,p) at time k (k¼0, 1, …). Notation εðkÞ is theresidualscalar, nny, nnu, nne aretheordersof y, u, ε, respectively, n is theamountofthe linear/nonlinear variables ðy; u; εÞ of theNARMAXmodel (2), θijðkÞ denotesthe j-th coefficient oftheNARMAXmodelforthe i-th estimatedoutput~yiðkÞ. Besides, ϕijðkÞ denotesthe j-th linear/non- linear variables(y, u, ε) oftheNARMAXmodelforthe i-th estimatedoutput ~yiðkÞ. Thewholemodelisnonlinear,i.e. FiðdÞ arenonlinearpolynomialsfor i ¼ 1; 2;⋯; p. Notation n denotesthe lags and ϕ ðkÞ can beanynonlinearfunctionin FiðdÞ. Each estimatedoutput ~yiðkÞ is identified fromeachclassof nonlinear ϕiðkÞ as ~yiðkÞ ¼ θi T ðkÞϕiðkÞ; i ¼ 1; 2;…; p; ð3aÞ and thestandardRELSalgorithmisappliedby θiðkÞ ¼ θiðk1Þþ Siðk1ÞϕiðkÞ λðkÞþϕi T ðkÞSiðk1ÞϕiðkÞ εiðkÞ; ð3bÞ SiðkÞ ¼ 1 λðkÞ Siðk1Þ Siðk1ÞϕiðkÞϕiðkÞTSiðk1Þ λðkÞþϕi T ðkÞSiðk1ÞϕiðkÞ ! ; ð3cÞ where λðkÞ is theforgettingfunctiontodiscounttheoldmeasure- ments, andcanbedeterminedbythe first-order difference equation, λðkÞ ¼ λ0λðk1Þþð1λ0Þ, withtheinitialcondition 0:9oλð0Þo1; and theupdatingfactor0oλ0o1. Also, SiðkÞAℜnn is theparametersestimationerrorcovariancematrixwith Sið0Þ ¼ αiInn, where αi is thepositivescalar,andtheresidualvector of eachoutputisgivenby εiðkÞ ¼ yiðkÞθi T ðk1ÞϕiðkÞ: ð4Þ Fordifferentselectionsof FiðUÞ, manyclassesofNARMAXmodels can bechosen.Tosimplifythewholecontrolschemeforthe complicateon-linefault-tolerancecontrol,itisdesiredtochoose some simplestructuresofdynamicnonlinearmodels.Thus,the self-tuning controlschemewiththeNARMAXmodelfornonlinear stochasticsystemscanworkmoreprecisely. 3. Preliminary In thissection,webriefly reviewtheRELS-basedobserver/ Kalman filterstate-spaceformandOKID-basedgeneralcoordinate form, sincethemodelconversionfromOKID-basedgeneral coordinatetotheRELS-basedstate-spaceinnovateformisneces- sary.Oncehavingtheestimatedparameters θiðkÞ from thestan- dard RELSalgorithm,theNARMAXmodelfortheSTCschemecan accuratelyapproximatetheresponsesofthenonlinearsystem. Moreover,theinitialparameters θiðkÞ of NARMAXmodelwillaffect the convergentspeedofRELSprocess.Inordertogetsuitable initial parameters θið0Þ toshortenthetransientprocessofRELS, we applyOKIDtoevaluateithere. The regressor ϕiðkÞ in ~yiðkÞ ¼ θi T ðkÞϕiðkÞ is composedof ðy1ðk1Þ; y1ðk2Þ;…; y1ðknnyÞ; y2ðk1Þ; y2ðk2Þ;…y2ðknnyÞ;…; ypðk1Þ ypðk2Þ;…; ypðknnyÞ; u1 nðkÞ; u1ðk1Þ;…; u1ðknnuÞ; u2 nðkÞ; u2ðk1Þ;…u2ðknnuÞ;…um nðkÞ; umðk1Þ;…; umðknnuÞ; ε1ðk1Þ; ε1ðk2Þ;…; ε1ðknneÞ; ε2ðk1Þ; ε2ðk2Þ;⋯; ε2ðknneÞ;⋯; εpðk1Þ; εpðk2Þ;⋯; εpðknneÞÞ: Components of ϕiðkÞ are notindependentfactors,soitis difficult todesigndigitalcontrollerdirectlyfromtheSTCscheme with theNARMAXmodel.Forthisreason,onecouldapplythe optimallinearizationtotheNARMAXmodeltoconfigure alinear discrete-timestate-spaceobserverfordesigningthedigitalcon- trolleroftheSTCscheme. 3.1.RELS-basedobserver/Kalman filter instate-space innovationform A preliminarystructureofthediscretestate-spaceobserverof the linearsystemispresentedin [3]. Considerthefollowinglinear discretestochasticsystemas xðkþ1Þ ¼ GxðkÞþHuðkÞþwðkÞ; ð5aÞ yðkÞ ¼ CxðkÞþDuðkÞþvðkÞ; ð5bÞ where GAℜnn, HAℜnm, CAℜpn and DAℜpm are systemmatrices, xAℜn, uAℜm, and yAℜp arestatevector,inputvector,andoutput vector,respectively, wAℜnand vAℜp arezero-meanwhitenoise sequenceswithcovariancematricesas E wðkÞ vðkÞ # wT ðlÞ vT ðlÞ ( h i) ¼ Q S S R δk;l; ð6Þ QZ0, R40, δk;l ¼1 if k ¼ l, and δk;l ¼0 if kal, k; l ¼ 0; 1; 2;…. System (5) can betransferredintotheblockobservableform,ifthe rankofthefollowingobservabilitymatrix Θ ¼ ½ðCGr1 ÞT ; ðCGr2 ÞT…ðCGÞT ; CT T ð7Þ is equalto n. Notethattheobservabilityindexof Θ is ρ ¼ n=p, ifitisan integer(otherwise,itisundefined). Thisconstraintmeansthatthe Kroneckerindicesofsystem (5) areallsuchintegers ρs satisfying n ¼ ρp. Whensystem (5) is blockobservable,itcanbetransformed J.S.-H. Tsaietal./ISATransactions53(2014)5658 –75
  • 4. into theblockobservablecompanionformasfollows xoðkþ1Þ ¼ GoxoðkÞþHouðkÞþwoðkÞ; ð8aÞ yðkÞ ¼ CoxoðkÞþDouðkÞþvoðkÞ; ð8bÞ where To ¼ ½Gr1To1; Gr2To1;…; GTo1; To1; To1 ¼ Θ1CT o xoðkÞ ¼ T1 o xðkÞ Go ¼ T1 o GTo ¼ Go1 Ip 0p ⋯ 0p Go2 0p Ip ⋯ 0p ⋮ ⋮ ⋮⋱⋮ Goρ1 0p 0p ⋯ Ip Goρ 0p 0p ⋯ 0p 2 6666664 3 7777775 ; Ho ¼ T1 o H ¼ ½HT o1;HT o2;…;HT oρT xoðkÞ ¼ ½xT o1ðkÞ; xT o2ðkÞ;…; xT oρðkÞT Co ¼ CTo ¼ ½Ip; 0p;…; 0p Do ¼ D woðkÞ ¼ T1 o wðkÞ; voðkÞ ¼ vðkÞ; E woðkÞ voðkÞ # wo T ðlÞ vo T ðlÞ ( h i) ¼ T1 o QðT1 o ÞT T1 o S ðT1 o SÞT R # ¼ Qo So So Ro # δk;l; in which Ip and 0p are pp identity andzeromatrices,respectively. System (8) can berepresentedbyastate-spaceinnovation model [17] as ^xoðkþ1jkÞ ¼ Go ^xoðkjk1ÞþHouðkÞþKoðkÞeoðkÞ; ð9aÞ yoðkÞ ¼ Co ^xoðkjk1ÞþDouðkÞ; ð9bÞ where KoðkÞ is theKalmangain,whichcanbecomputedbythe following algorithm [18]: KoðkÞ ¼ ½GoPoðkÞCo T þSo½CoPoðkÞCT o þRo1; ð10aÞ Poðkþ1Þ ¼ ½GoKoðkÞCoPoðkÞ½GoKoðkÞCoT þKoðkÞRoKT o ðkÞSoKT o ðkÞKoðkÞST o þQo ¼ Ef~xoðkþ1jkÞ~xoðkþ1jkÞTg ð10bÞ Poð0Þ ¼ Ef½xoð0Þ^xoð0Þ½xoð0Þ^xoð0ÞT g; ð10cÞ in which ^xoðkjk1Þ is theoptimalestimateof xoðkÞ by themeasure- mentdataupto yðk1Þ, i.e., yðiÞ for i ¼ 0; 1;…; k1, ~xoðkjk1Þ ¼ xoðkÞ^xoðkjk1Þ is theestimateerror, eoðkÞ ¼ yðkÞCo ^xoðkjk1Þ DouðkÞ ¼ Co ~xoðkÞþvoðkÞ isthezero-meanwhitenoisesequencewith Re ¼ EfeoðkÞeT o ðkÞg ¼ CoPoðkÞCT o þRo, where eoðkÞ is calledtheinnova- tion process. If thepair ðGo; CoÞ is detectableandthepair ðGoSoR1 o Co; ^Q oÞ, with ^Q o ^Q T o ¼ QoSoR1 o ST o , isstable,then PoðkÞ-Po, where Po is the stationary errorcovariancematrix,sothat KoðkÞ-Ko (the station- ary Kalmangain)as k-1. Furthermore,theeigenvaluesof GoKoCo areallinsidetheunitcircle.Let z1 be thebackward time-shiftoperatorandset Ko ¼ ½KT o1; KT o2;…; KT oρT Aℜnp. Then,the input–output relationshipofthesteady-stateinnovationrepre- sentation (9) can berewrittenas yðkÞ ¼ Co½InGoz11½Hoz1uðkÞþKoz1eoðkÞ þDouðkÞþeoðkÞ ¼ ½Glðz1Þ1½Hlðz1ÞuðkÞþ½Glðz1Þ1½Kelðz1ÞeoðkÞ; ð11Þ where Glðz1Þ ¼ IpþGo1z1þGo2z2þ…þGoρzρ; Hlðz1Þ ¼ Doþ ~H o1z1þ ~H o2z2þ…þ ~H oρzρ; ~H oi ¼ HoiþGoiDo; Kelðz1Þ ¼ IpþKeo1z1þKeo2z2þ…þKeoρzρ Keoi ¼ GoiþKoi; i ¼ 1; 2;…; ρ: Notethatallthezerosofdet½Kelðz1Þ must beinsidetheunitcircle in themultivariableARMAXmodel (11). Iftheparametersmatrices Goi, Hoi, Coiand Doi, i ¼ 1; 2;…; ρ, in (8) are known,andthe covariancematricesthereinareavailable,therecursiveestimation algorithm (10a) can beappliedtodeterminetheKalmangain KoðkÞ. Thus,thestate xoðkÞ can beoptimallyestimatedusingthe algorithmin (9). TheestimatedKalmangain, ^K oiðkÞ, isgivenby ^K oiðkÞ ¼ ^K eoiðkÞ ^G oiðkÞ; i ¼ 1; 2;…; ρ: ð12Þ and theestimatedstateintheblockobservableformis xoðkþ1jkÞ ¼ ^G oðkjk1Þxoðkjk1Þþ ^H oðkÞuðkÞ þ ^K oðkÞeoðkÞ; ð13aÞ eoðkÞ ¼ yðkÞCoxoðkjk1ÞDouðkÞ; ð13bÞ where ^G oðkÞ, ^H oðkÞ, and ^K oðkÞ contain theestimatedparameters matrices ^G oiðkÞ, ^H oiðkÞ, and ^K oiðkÞ, i ¼ 1; 2;…; ρ. Whenallthese estimatedparametersmatricesconvergetothetruevalues,the estimated xoðkjk1Þ and eoðkÞ convergetotheoptimalstate estimate ^xoðkjk1Þ and innovationprocess eoðkÞ. Itisimportant tonotethataslongasthematrix Gc ¼ GoKoCo ¼ Keo1 Ip 0p ⋯ 0p Keo2 0p Ip ⋯ 0p ⋮ ⋮ ⋮⋱⋮ Keoρ1 0p 0p ⋯ Ip Keoρ 0p 0p ⋯ 0p 2 6666664 3 7777775 is asymptoticallystable,theboundaryofthenoisesequences implies thattheestimationerrorwillalwaysbebounded.When- ever KeoiðkÞ ¼ 0p, for i ¼ 1; 2;…; ρ, itdesignatesadead-beat-like property. 3.2. OKID-basedobserver/Kalman filter ingeneralcoordinateform Consider thefollowingdiscrete-timestate-spaceequationsofa multivariablelinearsystem xðkþ1Þ ¼ GxðkÞþHuðkÞ; ð14aÞ yðkÞ ¼ CxðkÞþDuðkÞ; ð14bÞ where GAℜnn, HAℜnm, CAℜpnand DAℜpm aresystemmatrices, and xðkÞAℜn, yðkÞAℜp, uðkÞAℜm are statevector,outputvector, inputvector,respectively.WhenthecombinedobserverMarkov parametersaredetermined,theeigensystemrealizationalgorithm (ERA) methodisusedtoobtainthedesireddiscretesystem realization ½ ^G ; ^H ; ^C ; ^D ; F throughsingularvaluedecomposition (SVD) oftheHankelmatrix [12,13]. The ERAprocessesthefactorizationofthecorresponding Hankel matrix,usingthesingularvaluedecomposition ^H ð0Þ ¼ VΣST , wherethecolumnsofmatrices V and S areortho- normal and Σ is arectangularmatrixoftheformas Σ¼ Σ~ n 0 0 0 ; ð15Þ where Σ~ n ¼ diag½s1; s2;…; snmin ; snmin þ1;…; s~ n contains monotoni- cally non-increasingentries s1Zs2Z…ZsnminZsnmin þ1Z …Zs~ n40. Here,somesingularvalues snmin þ1;…; s~ n are relatively small ðsnmin þ15snmin Þ and negligibleinthesensethattheycontain more noiseinformationthansysteminformation.Inorderto construct theloworderobserverofthesystem,let'sdefine Σnmin ¼ diag½s1; s2;…; snmin . Inotherwords,thereducedmodel J.S.-H. Tsaietal./ISATransactions53(2014)56–75 59
  • 5. of order nmin afterdeletingsingularvalues snmin þ1;…; s~ n is then consideredastherobustlycontrollableandobservablepartofthe realizedopen-loopsystemwithanacceptableperformance.Simul- taneous realizationsofthesystemandobserverbytheERAare givenas x^ðkÞ ¼ G^ xðk1ÞþH^ uðk1ÞþF½yðk1Þy^ ðk1Þ; ð16aÞ ^yðkÞ ¼ ^CxðkÞþ D^ uðkÞ; ð16bÞ where ^G ¼Σ1=2 nmin VT nmin Hð1ÞSnminΣ1=2 nmin ; ð16cÞ ½ H^ F ¼ First ðmþpÞ columns of Σ1=2 nminST nmin ; ð16dÞ ^C ¼ FirstprowsofVnminΣ1=2 nmin ; ð16eÞ ^D ¼ Y0: ð16fÞ The definition of Hð1Þ can bereferredto [12,13]. 3.2.1.OKIDformulationforrelationshiptoaKalman filter Let thesystem (14) be extendedtoincludeprocessand measurementnoisedescribedas xðkþ1Þ ¼ GxðkÞþHuðkÞþwðkÞ; ð17aÞ yðkÞ ¼ CxðkÞþDuðkÞþvðkÞ; ð17bÞ where wðkÞ is theprocessnoiseassumedtobeGaussian,zero- mean andwhitewiththecovariancematrix Q and vðkÞ is the measurementnoisesatisfies thesameassumptionas wðkÞ with a different covariancematrix R. Thesequences wðkÞ and vðkÞ are independent ofeachother.Then,atypicalKalman filterforthe system, (17a) and (17b), canbewrittenas ^xðkþ1Þ ¼ G^xðkÞþHuðkÞþKεrðkÞ; ð18aÞ ^yðkÞ ¼ C^xðkÞþDuðkÞ; ð18bÞ where ^xðkÞ is theestimatedstate, K is theKalman filtergain,and εrðkÞ is defined asthedifferencebetweentherealmeasurement yðkÞ and theestimatedmeasurement ^yðkÞ. The measurementequationbecomes yðkÞ ¼ C^xðkÞþDuðkÞþεr ðkÞ: ð19Þ Systems (16a) and (18a) areidenticalwhen F ¼K and εrðkÞ ¼ 0, and soareMarkovparameters.Inpractice,anyobserversatisfying a least-squaressolutionwillproducethesameinput–output map as aKalman filterdoes,providedthatthedatalengthissufficiently long andtheorderoftheHankelmatrixissufficiently large,sothat the truncationerrorisnegligible [12]. Therefore,whentheresidual εrðkÞ is awhitesequenceoftheKalman filter residual,theobserver gain F convergestothesteady-stateKalman filtergain K such that F ¼K. 3.3. Optimallinearization The optimallinearization [19,20] wasproposedforcontinuous- time nonlinearsystemsfollowedbystabilizingcontrollerdesign for uncertainnonlinearsystemsusingfuzzymodels.Theproposed optimallinearizationattheoperatingstate,notnecessarilythe equilibriumstate,yieldstheexactlinearmodel.Also,ityieldsthe optimallinearmodeldefined bysomeconvexconstraintoptimiza- tion criterioninthevicinityoftheoperatingstate. Consider theclassofnonlinearsystemsdescribedas xðkþ1Þ ¼ f ðxðkÞÞþgðxðkÞÞuðkÞ; ð20Þ where f : Rn-ℜn and g : ℜn-ℜm are nonlinearwithcontinuous partial derivativeswithrespecttoeachoftheirvariablesatall steps k, where xðkÞAℜn is thestatevectorattimeindex k, and uðkÞARm is thecontrolinputvectorattimeindex k. Itisdesiredto haveanexactlocallinearmodelðAðkÞ; BðkÞÞ at anoperatingstateof interest, xopðkÞAℜn, intheformof xðkþ1Þ ¼ AðkÞxðkÞþBðkÞuðkÞ; ð21Þ where AðkÞ and BðkÞ areconstantmatricesofappropriatedimensions. Suppose thatwearegivenanoperatingstate xopðkÞa0, which is notnecessarilyanequilibriumofthegivensystem.Thegoalisto construct alocalmodel,linearin x and alsolinearin u, thatcan wellapproximatethedynamicalbehaviorsof (20), inthevicinity of theoperatingstate xopðkÞ. Inotherwords,onehas f ðxÞþgðxðkÞÞuðkÞ AðkÞxðkÞþBðkÞuðkÞ; f oranyuðkÞ; ð22aÞ f ðxÞþgðxðkÞÞuðkÞ ¼ AðkÞxopðkÞþBðkÞuðkÞ; f orany: ð22bÞ Since thecontrolinput u is tobedesignedanditisarbitrary,one must have gðxðkÞÞ ¼ BðkÞ, sothat (22a) and (22b) become quite simple f ðxðkÞÞ AðkÞxðkÞ ð23Þ and f ðxopðkÞÞ ¼ AðkÞxopðkÞ: ð24Þ Tosatisfythese,let ai Tdenotethe ith rowofthematrix AðkÞ, and represent (23) and (24) as f iðxÞ ai Tx; i ¼ 1; 2;…; n ð25Þ and f iðxopðkÞÞ ¼ ai TxopðkÞ; i ¼ 1; 2;…; n; ð26Þ where f i : ℜn-ℜ is the i-th componentof f. Then,expandingthe left-handsideof (25) about xopðkÞ and neglectingthesecondand higher orderterms,onehas f iðxopðkÞÞþ½∇f iðxopðkÞÞT ðxðkÞxopðkÞÞ ai TxðkÞ; ð27Þ where ∇f iðxopðkÞÞ : ℜn-ℜn is thegradientcolumnvectorof f i evaluatedat xðkÞ. Now,using (26), wecanrewrite (27) as ½∇f iðxopðkÞÞT ðxðkÞxopðkÞÞ ai T ðxðkÞxopðkÞÞ; ð28Þ in which xðkÞ is arbitrarybutshouldbe “close” to xopðkÞ so thatthe approximationisgood.Todetermineaconstantvector ai T, itis “as close aspossible” to ½∇f iðxopðkÞÞT and alsosatisfies ai TxopðkÞ ¼ f iðxopðkÞÞ. Then,wemayconsiderthefollowingconstrainedmini- mization problem: min E ¼ 1 2‖∇f iðxopðkÞÞai‖22 subject to ai TxopðkÞ ¼ f iðxopðkÞÞ: ð29Þ Noticethatthisisaconvexconstrainedoptimizationproblem; therefore,the first ordernecessaryconditionforaminimumof E is also sufficient, whichis ∇aiEþλ∇ai ðai TxopðkÞf iðxopðkÞÞÞ ¼ 0; ð30Þ ai TxopðkÞ ¼ f iðxopðkÞÞ; ð31Þ where λ is theLagrangemultiplierandthesubscript ai in ∇ai indicatesthegradientistakenwithrespectto ai. Itfollowsfrom (30) that ai∇f iðxopðkÞÞþλxopðkÞ ¼ 0: ð32Þ Recallthatwearestudyingthecasewhere xopðkÞa0, sobysolving (32), weobtain λ ¼ xT opðkÞ∇f iðxopðkÞÞf iðxopðkÞÞ ‖xopðkÞ‖22 : ð33Þ J.S.-H. Tsaietal./ISATransactions53(2014)5660 –75
  • 6. Substituting (33) into (32) gives ai ¼ ∇f iðxopðkÞÞþ f iðxopðkÞÞxT opðkÞ∇f iðxopðkÞÞ ‖xopðkÞ‖22 xopðkÞ; ð34Þ where xopðkÞa0. Itiseasilyverified thatwhen xopðkÞ ¼ 0, Eq. (32) yields ai ¼ ∇f iðxopðkÞÞ ð35Þ The controllabilitymatrixforthenonlinearsystemin (20) at the operatingstate xopðkÞ is derivedfromtheoptimallinearmodel ðAðkÞ; BðkÞÞ, resultingin C ¼ BðkÞ AðkÞBðkÞ A2 ðkÞBðkÞ … An1 ðkÞBðkÞ h i ; ð36Þ where AðkÞ and BðkÞ areconstructedviathefollowingrule:the j-th columns ofAðkÞand BðkÞ are settobezerowheneverthe j-th corresponding componentsof xopðkÞ and uðkÞ arezero,respectively. 4. Modified NARMAXmodel-basedstate-spaceself-tuning control forunknownnonlinearstochastichybridsystemswith an input–output directfeed-throughterm By takingtheproposedNARMAXmodel (2) for theself-tuning control, thediscrete-timestate-spaceinnovationmodel (9) is constructed todesignthecontrolinput ud for theunknownreal system.Sincethemodified NARMAXmodelisnonlinear,the optimallinearizationmethodin Section 3.3 is presentedto linearize theNARMAXmodelasalinearARMAXmodelatthe operating statewithoutanyapproximation.Besides,itisalsothe optimaloneinthesenseofminimizingoptimizationproblem (29) in thevicinityofoperatingstate. In thispaper,weselectanadaptiveclassofthemodified NARMAXmodelinpolynomialformwith m-inputs, p-outputs and ρ-time-steps asfollows: where BiðyÞ ¼ ½Bi01ðyÞ;…; Bi0mðyÞ; Bi11ðyÞ;…; Bi1mðyÞ; Bi21ðyÞ;…; Bi2mðyÞ;…; Biρ1ðyÞ;…; BiρmðyÞAR1mρ KeiðyÞ ¼ ½Kei11ðyÞ;…; Kei1pðyÞ; Kei21ðyÞ;…; Kei2pðyÞ;…; Keiρ1ðyÞ; :::; KeiρpðyÞAR1pρ U ¼ ½un 1ðkÞ;…; un mðkÞ; u1ðk1Þ;…; umðk1Þ; u1ðk2Þ;…; umðk2Þ;…; u1ðkρÞ;…; umðkρÞT ARmρ1; E ¼ ½ε1ðk1Þ;…; εpðk1Þ; ε1ðk2Þ;…; εpðk2Þ;…; ε1ðkρÞ;…; εpðkρÞT ARpρ1 the function FiðUÞ is nonlinear,theoutputs,inputsandresiduals are yiðkÞ;yiðk1Þ;…;yið0Þ; uj nðkÞ; ujðk1Þ;ujðk2Þ;…; ujð0Þ and εiðk1Þ; εiðk2Þ;…; εið0Þ, respectively, i ¼ 1; 2; 3; :::; p and j ¼ 1; 2; 3; :::;m. ThisadaptiveNARMAXmodel (37) has thefeature that BiðyÞU is linearinallitemsof u and KeiðyÞE is linearinallitems of ε. Rewritethemodel (37) to separatelinear/nonlinearvariables and itscoefficients asfollows: ~yiðkÞ ¼ FiðyÞþBiðyÞUþKeiðyÞE ¼ Σ j ¼ 1n θijðkÞϕijðkÞ ð38Þ ~yiðkÞ ¼ θi T ðkÞϕiðkÞ i ¼ 1; 2; 3;…; p; ð39Þ where ~yiðkÞ is theestimatedvalueof yiðkÞ, θiðkÞ ¼ ½θi1ðkÞ;…; θinðkÞT is coefficient matrix, ϕiðkÞ ¼ ½ϕi1ðkÞ;…; ϕinðkÞT is linear/nonlinear variablematrix.Getthecoefficient matrix θiðkÞ by thestandard RELSalgorithm (3) to approximatetherealsystem. FiðyÞ only include theoutput yi's delays,andtheyarenonlinearfunctionsof yi. Forgettingthecorrespondinglinearmodelofthenonlinear model (37), thefunctions FiðyÞ must needtobelinearizedbythe optimallinearization. Performing theoptimallinearizationapproachon FiðyÞ in (38) yields FiðyÞ ¼ AiRYF f ori ¼ 1; 2; 3;…; p; ð40Þ where YF ¼ ½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞT Aℜ1pρ and AiR ¼ ∇FiðYFÞþ FiðYFÞYTF ðkÞ∇FiðYF Þ ‖YF‖22 YF ¼ ½ai11R;…; ai1pR; ai21R;…; ai2pR;…; aiρ1R;…; aiρpRAℜ1pρ: Substitute (40) into (38) to have ~yiðkÞþðAiRÞYF ¼ BiUþKeiE; i.e. ~yiðkÞþ ~A iYF ¼ ~B iUþ ~K eiE; ð41Þ where i ¼ 1; 2; 3;…; p; ~A i ¼ ~A i11 ⋯ ~A i1p ~A i21 ⋯ ~A i2p ⋯⋯ ~A iρ1 ⋯ ~A iρp ¼AiR; ~B i ¼ ~B i01 ⋯ ~B i0m ~B i11 ⋯ ~B i1m ⋯⋯ ~B iρ1 ⋯ ~B iρm h i ¼ Bi; ~K ei ¼ ~K ei11 ⋯ ~K ei1p ~K ei21 ⋯ ~K ei2p⋯⋯ ~K eiρ1 ⋯ ~K eiρp ¼ Kei: Let z1 denotethebackwardshiftoperator.Onecouldtransform (41) to give ~y1ðkÞþ ~A 111z1y1ðkÞþ…þ ~A 11pz1ypðkÞþ…þ ~A 1ρ1zρy1ðkÞ þ…þ ~A 1ρpzρypðkÞ ¼ ~B 101u1 nðkÞþ…þ~B 10mum nðkÞþ…þ~B 1ρ1zρu1ðkÞ þ…þ~B 1ρmzρumðkÞ þ ~K e111z1ε1ðkÞþ…þ ~K e11pz1εpðkÞþ…þ ~K e1ρ1zρε1ðkÞ þ…þ ~K e1ρpzρεpðkÞ; ~y2ðkÞþ ~A 211z1y1ðkÞþ…þ ~A 21pz1ypðkÞ þ…þ ~A 2ρ1zρy1ðkÞþ…þ ~A 2ρpzρypðkÞ ¼ ~B 201u1 nðkÞþ…þ~B 20mum nðkÞþ…þ~B 2ρ1zρu1ðkÞ þ…þ~B 2ρmzρumðkÞ þ ~K e211z1ε1ðkÞþ…þ ~K e21pz1εpðkÞþ…þ ~K e2ρ1zρε1ðkÞ þ…þ ~K e2ρpzρεpðkÞ; ⋮~ypðkÞþ ~A p11z1y1ðkÞþ…þ ~A p1pz1ypðkÞ þ…þ ~A pρ1zρy1ðkÞþ…þ ~A pρpzρypðkÞ ¼ ~B p01u1 nðkÞþ…þ~B p0mum nðkÞþ…þ~B pρ1zρu1ðkÞ ~y1ðkÞ ¼ F1½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþB1ðyÞUþKe1ðyÞE; ~y2ðkÞ ¼ F2½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþB2ðyÞUþKe2ðyÞE; ⋮ ~ypðkÞ ¼ Fp½y1ðk1Þ…ypðk1Þ; y1ðk2Þ…ypðk2Þ;…; y1ðkρÞ…ypðkρÞþBpðyÞUþKepðyÞE; ð37Þ J.S.-H. Tsaietal./ISATransactions53(2014)56–75 61
  • 7. þ…þ~B pρmzρumðkÞ þ ~K ep11z1ε1ðkÞþ…þ ~K ep1pz1εpðkÞþ…þ ~K epρ1zρε1ðkÞ þ…þ ~K epρpzρεpðkÞ: ð42Þ From (42), onecangetthecorrespondingARMAXmodelas Glðz1ÞyðkÞ ¼ Hlðz1ÞuðkÞþξðkÞ ¼ Hlðz1ÞuðkÞþKelðz1ÞeoðkÞ; ð43Þ where yðkÞ ¼ y1ðkÞ y2ðkÞ … ypðkÞ h iT ; uðkÞ ¼ u1ðkÞ u2ðkÞ … umðkÞ h iT ; eoðkÞ ¼ eo1ðkÞ eo2ðkÞ … eopðkÞ h iT ; Glðz1Þ ¼ IpþGo1z1þ⋯þGoρzρ; Goiði ¼ 1; 2;…; ρÞAℜpp; Hlðz1Þ ¼ Ho0þHo1z1þ⋯þHoρzρ; Hoiði ¼ 0; 1;…; ρÞAℜpm Kelðz1Þ ¼ IpþKeo1z1þ⋯þKeoρzρ; Keoiði ¼ 1; 2;…; ρÞAℜpp; Goi ¼ ~A 1i1 ⋯ ~A 1ip ⋮ ⋱ ⋮ ~A pi1 ⋯ ~A pip 2 664 3 775 ; Hoi ¼ ~B 1i1 ⋯ ~B 1im ⋮ ⋱ ⋮ ~B pi1 ⋯ ~B pim 2 664 3 775 ; Keoi ¼ ~K e1i1 ⋯ ~K e1ip ⋮ ⋱ ⋮ ~K epi1 ⋯ ~K epip 2 664 3 775 : The specialcharacteristicofthemodified ARMAXmodelisthatit includes the Ho0 matrix, soit fits thesystemwithadirect transmissionmatrix. An alternativerepresentationoftheARMAXmodel (43) is givenby yðkÞ ¼ Gl1 ðz1ÞHlðz1ÞuðkÞþGl1 ðz1ÞKelðz1ÞeoðkÞ; ð44Þ in which (44) is intheleftmatrixfractiondescriptionform(LMFD) [3]. The first andsecondtermsintheright-handsideof (44) share the sameleftcharacteristicmatrixpolynomial Gl1 ðz1Þ, which representstheeffectsofthecontrolandthedisturbances.Once Gl1 ðz1Þ has beenspecified tocharacterizethedynamicsofthe plant, theresidualvectormodel Gl1 ðz1ÞDlðz1ÞeoðkÞ presents an adjustable movingaverageprocessofthenoiseinput Kelðz1ÞeoðkÞ. UnderthelinearizedNARMAXmodel (44), asysteminan observableblockcompanionformcanberepresentedinthe state-space innovationform [21–23] as ^xoðkþ1Þ ¼ Go ^xoðkÞþHouðkÞþKoðkÞeoðkÞ; ð45Þ eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ; ð46Þ where Go ¼ Go1 Ip 0p ⋯ 0p Go2 0p Ip ⋯ 0p ⋮ ⋮ ⋮⋱⋮ Goρ1 0p 0p ⋯ Ip Goρ 0p 0p ⋯ 0p 2 6666664 3 7777775 ; Ho ¼ Ho1 Ho2 ⋮ Hoρ 2 66664 3 77775 ;Hoi ¼ ~H oiGoiDo; i ¼ 1; 2;⋯; ρ Co ¼ Ip 0p ⋯ 0p h i ; Do ¼ Ho0; Ko ¼ Ko1 Ko2 ⋯ Koρ h i ; Koi ¼ KeoiGoi ; i ¼ 1; 2;⋯; ρ ^xoðkÞ ¼ ^xT o1ðkÞ ^xT o2ðkÞ ⋯ ^xT oρðkÞ h iT ; ^xoiðkÞAℜρ for i ¼ 1; 2;⋯; ρ, 0p is a p p null matrix, ^xoðkÞ is the estimation ofsystemstate xðkÞ in theobservercoordinates,andthe initial stateisgivenas ^xoð0Þ ¼ C†y, where C† is thepseudo-inverse of matrix C and eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ. However,thezerosof Kelðz1Þ in (44) may notbeallintheunit circle,sothattheeigenvaluesoftheobservergain KoðkÞ in (45) may notalllieintheunitcircleeither.InsteadoftheKalmangain KoðkÞ, onecoulddesignthedigitalestimatorgain LoðkÞ toreplace KoðkÞ. Thedigitalestimatorgainisindirectlydesignedviathe discrete-timeobserverdesignbasedon (47), ratherthandirectly estimatedfromtheidentified parametersofthemodified NARMAXmodel (44). Therefore,theclosed-loopestimatormatrix GoðkÞLoðkÞCo has allitseigenvaluesstrictlylyinginsidetheunit circle. The observergainis LoðkÞ ¼ ððCo^P ðkÞCo T þRoÞ1Co^P ðkÞGo T ðkÞÞT ; ð47Þ where ^P ðkÞis thesolutionoftheRiccatiequation GoðkÞ^P ðkÞGo T ðkÞ^P ðkÞðGoðkÞ^P ðkÞCo T ÞðCo^P ðkÞCo T þRoÞ1ðCo^P ðkÞGo T ðkÞÞ þQo ¼ 0 ð48Þ in whichweightingmatrices QoZ0 and Ro40 withappropriate dimensions. Thenthecorrespondingstate-spaceinnovationform of (45) is givenas ^xoðkþ1Þ ¼ GoðkÞ^xoðkÞþHoðkÞuðkÞþLoðkÞeoðkÞ; ð49Þ eoðkÞ ¼ yðkÞCo ^xoðkÞDouðkÞ: ð50Þ 4.1.TheinitialparametersofNARMAXmodelbasedonOKID The initialparameters θið0Þ of themodified NARMAXmodel significantly affecttheconvergentspeedofRELSprocess.Inorder toincreasetheconvergentspeedofRELSalgorithm,onecan predicttheinitialparameters θið0Þ of themodified NARMAXmodel by OKID.Forgettingtheinitialparameters θið0Þ of RELSalgorithm (3), weperformtheoff-linesystemidentification scheme,OKID,in Section 3.2 to obtainthediscretesystemrealization ^G , ^H , ^C , ^ D, and F firstly.Then,transferthem(^G , ^H , ^C , ^ D, F) intothecorresponding observer form(Go, Ho, Co, Do, Ko) in (45) by To ¼ ½Gρ1To1; Gρ2To1;…; GTo1; To1; To1 ¼ Θ1CT o ; Co ¼ CTo ¼ ½Ip; 0p;…; 0p:Do ¼ Ho0; Go ¼ T1 o GTo;Ho ¼ T1 o H ¼ ½HT o1;HT o2;…;HT oρT : Ko ¼ T1 o Lo Based on (43)–(45), wehavethemodified ARMAXmodelas yðkÞþGo1yðk1ÞþGo2yðk2Þþ⋯þGoρyðkρÞ ¼ Ho0uðkÞnþHo1uðk1Þþ⋯þHoρuðkρÞ þKe1eðk1ÞþKe2eðk2Þþ⋯þKeρeðkρÞ ð51Þ where Goi ¼ Goi11 ⋯ Goi1p ⋮ ⋱ ⋮ Goip1 ⋯ Goipp 2 64 3 75 ; Hoi ¼ Hoi01 ⋯ Hoi0m ⋮ ⋱ ⋮ Hoip1 ⋯ Hoipm 2 64 3 75 ; Keoi ¼ Keoi11 ⋯ Keoi1p ⋮ ⋱ ⋮ Keoip1 ⋯ Keoipp 2 64 3 75 62 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 8. and i ¼ 1; 2;⋯ρ. From (43) and (51), onehastherelationshipas Goi ¼ ~A 1i1 ⋯ ~A 1ip ⋮ ⋱ ⋮ ~A pi1 ⋯ ~A pip 2 664 3 775 ¼ Goi11 ⋯ Goi1p ⋮ ⋱ ⋮ Goip1 ⋯ Goipp 2 64 3 75 ; ð52aÞ Hoi ¼ ~B 1i1 ⋯ ~B 1im ⋮ ⋱ ⋮ ~B pi1 ⋯ ~B pim 2 664 3 775 ¼ Hoi01 ⋯ Hoi0m ⋮ ⋱ ⋮ Hoip1 ⋯ Hoipm 2 64 3 75 ; ð52bÞ Keoi ¼ ~K e1i1 ⋯ ~K e1ip ⋮ ⋱ ⋮ ~K epi1 ⋯ ~K epip 2 664 3 775 ¼ Keoi11 ⋯ Keoi1p ⋮ ⋱ ⋮ Keoip1 ⋯ Keoipp 2 64 3 75 : ð52cÞ Then,onehasthecoefficientmatrices ð~A i; ~B i; ~K eiÞ ofthelinearized NARMAXmodelin (41). Basedontheoptimallinearizationin Section3.3, wecansolvesimultaneousequations AiR in (40) that showtherelationshipbetweentheunknowncoefficientsofthe modified NARMAXmodel (39) andtheknowncoefficientsof thelinearizedNARMAXmodel (41) togettheparameters θi ofthe modified NARMAXmodel (39) bythepseudoinverseoperation. Thus,theparameters θi of themodifiedNARMAXmodelcanbe utilizedastheinitialparameters θið0Þ ofRELSmethod (3) in STC. 4.2. Thedigitaltrackerforsampled-datalinearsystemwithadirect transmissionterm This sectionpresentsadigitalcontrollermethodforthelinear systemwithadirecttransmissionterm.Consideralineardiscrete- time systemasfollows xðkþ1Þ ¼ GxðkÞþHudðkÞ; ð53aÞ yðkÞ ¼ CxðkÞþDudðkÞ; ð53bÞ where xðkÞAℜn is thestatevector, udðkÞAℜm is thecontrolinput vector,and yðkÞAℜp is themeasurableoutputvector.Parameters G,H,C and D are estimated(orgiven)constantsystemmatricesof appropriatedimensions. Define theperformanceindex [24] as Jd ¼ 1 2 Σ k f k ¼ 0 ½CðkÞxðkÞþWDðkÞudðkÞΓnðkÞTQ½CðkÞxðkÞþWDðkÞudðkÞ ( ΓnðkÞþuT dðkÞRudðkÞ ) ; ð54Þ where tf ¼kf Ts is the final time,and Ts is thesampletime, Q is the positivesemi-definite matrix, R is thepositivedefinite matrix, ΓnðkÞAℜp is thepre-specified referenceinputvector,and W is a weightingmatrixtoadjustthecontrollergainmatrix.Thisoptimal controlisgivenby [24] udðkÞ¼KdðkÞxðkÞþEdðkÞΓnðkÞ; ð55Þ where KdðkÞ ¼ ½~R ðkÞþHT ðkÞPHðkÞ1½HT ðkÞPGðkÞþNT ðkÞ; ð56aÞ EdðkÞ ¼ ½~R ðkÞþHT ðkÞPHðkÞ1fHT ðkÞ½IðGðkÞHðkÞKdðkÞÞT 1 ½WDðkÞKdðkÞCðkÞT þðWDðkÞÞT gQ; ð56bÞ ~R ðkÞ ¼ RþðWDðkÞÞTQWDðkÞ and NðkÞ ¼ CT ðkÞQWDðkÞ; ð56cÞ ΓnðkÞ ¼ ΓðkÞðkþ1Þ for thetrackingpurpose [25,26], and P is the positivedefinite andsymmetricsolutionofthefollowingRiccati equation P ¼ GT ðkÞPGðkÞþCT ðkÞQCðkÞðGT ðkÞPHðkÞ þNðkÞÞð~R ðkÞþHT ðkÞPHðkÞÞ1ðHT ðkÞPGðkÞþNT ðkÞÞ: ð57Þ It iswell-knownthatthehigh-gaincontrollerinducesahigh qualityperformanceontrajectorytrackingdesignandstate estimation, anditalsocansuppresssystemuncertaintiessuchas nonlinear perturbations,parametervariations,modelingerrors and externaldisturbances.Forthesereasons,thedigitalcontroller with ahigh-gainpropertyisadoptedinourapproach.Thehigh- gain propertycontrollercanbeobtainedbychoosingasufficiently high ratioof Q to R (to beshownin Lemma 1) in (54) so thatthe systemoutputcancloselytrackthepre-specified trajectory. Lemma 1. [27] Giventheanalogsysteminthepairofsystem matrices fA; B; Cg, letapairofweightingmatrices fQ; Rg be givenas diagonalmatrices Q ¼ qIPbR and R ¼ rIm40. Thereexiststhe lowerboundofweightingmatrices fQn; Rng, i.e. Qn ¼ qnIp and Fig. 2. Structureofthehybridstate-spaceself-tuningcontrolwiththemodified NARMAXmodelandOKIDforunknownnonlinearstochastichybridsystem. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 63
  • 9. Rn ¼ rnIm, determinedby κn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi :BTB::CTC: :ATA: qn rn vuut ; as longasthepropertyofthehigh-gaincontrolstillholds,thatis, P244ζP1, for ζ ¼ κ2=κ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð:BTB::CTC:=:ATA:Þðq2=r2Þ q = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð:BTB::CTC:=:ATA:Þðq2=r1Þ q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðq2=r2Þ p = ffiffiffiffiffiffiffiffiffiffiffiffi q1=r1 p and κ24κ1Zκn; where P2 and P1 are thesymmetricpositive-definite solutionof the followingRiccatiequations,respectively, ATP1þP1AP1BR1 1 BTP1þCTQ1C ¼ 0; ATP2þP2AP2BR1 2 BTP2þCTQ2C ¼ 0: In thefollowing,weshowthedesignproducefortheclassof MIMO modelfor ρ42. Theresultscanbeextendedtothegeneral multivariablecasefor ρ42. Thestructureoftheproposedstate- space self-tuningcontrolwiththemodified NARMAXmodelis shown in Fig. 2. The designprocedureisgivenasfollows: Step(1)Fortheunknowncontinuous-timenonlinearstochastic system(1),chooseanappropriatemodified NARMAXmodel (37) tobeusedtoidentifythissystem. (i) Performtheoff-linesystemidentification schemein Section 3.2 to obtainsystemandobserver-gainMarkov parametersoftheOKIDmodel,thenusetheERAmethod to obtainthediscretesystemrealization ^G , ^H , ^C , ^ Dand F, then transferthemtoobserverform Go, Ho, Co, Do and Ko. (ii) Basedonthestate-spaceinnovationform (45) and the optimallinearizationoftheNARMAXmodel (38)–(45), initial parameters θið0Þ of theNARMAXmodelcanbe reverselyobtainedby Go, Ho, Co, Do and Ko. Step(2)Whenthemodified NARMAXmodelischosen,perform the parameteridentification ateachsamplingperiod T. (i) Setsomereasonableinitialparameterstoperformthe state-space RELSalgorithmin (3). Letthenumberof θi be θin. Also,set Sið0Þ ¼ αiI ðinÞðinÞAℜθinθin40, 0oλ0o1, 0:9oλð0Þo1, ^xoð0Þ, andtheinitialcoefficients matrix θið0Þ which isobtainedbyOKIDinStep1. (ii) Predictthecontrolinput un dð0Þ for theon-linesystem identification as un dð0Þ¼Kdð0Þ^xoð0ÞþEdð0ÞΓð1Þ, where the Kdð0Þ and Edð0Þ are obtainedby (56a) and (56b), and ^xoð0Þ ¼ C þ ydð0Þ: (iii) Foron-lineidentifyingthegivencontinuous-timenon- linear stochasticsystem(1)withprecise-constantcontrol input,utilizetheinformationofinputsandoutputsto determine theupdatedparameters θiðkÞ at eachsampling period T by RELSalgorithm,wherethepredictioncontrol input un dðkÞ fortheon-linesystemidentificationisdeter- mined by un dðkÞ¼Kdðk1ÞxoðkÞþEdðk1ÞΓðkþ1Þ for kZ1. Step(3)LinearizetheNARMAXmodelbytheoptimallinear- ization methodandestimatestatesateachsamplingperiod T. Based ontheestimatedparameters θi, linearize FiðyÞ in (40) by the optimallinearizationmethodology.Underthislinearized NARMAXmodel,estimatethepredictedstate ^xoðkþ1jkÞ in (58). Select appropriate fQo; Rog in (48) tohavethehigh-gain propertydigitalestimatorgainin (47). Theassociatedstate- space observer (49), forinstance ρ ¼ 2, isgivenby ^xoðkþ1jkÞ ¼ GoðkÞ^xoðkjk1ÞþHoðkÞuðkÞþLoðkÞeoðkÞ; ^yoðkjk1Þ ¼ Co ^xoðkjk1ÞþDouðkÞ; ð58Þ where eoðkÞ ¼ yðkÞCo ^xoðkjk1ÞDouðkÞ; GoðkÞ ¼ Go1ðkÞ Ip Go2ðkÞ 0p # Aℜ2p2p; HoðkÞ ¼ Ho1ðkÞ Ho2ðkÞ # Aℜ2pp Ho1ðkÞ ¼ ~H o1Go1Do; Ho2ðkÞ ¼ ~H o2Go2Do; DoðkÞ ¼ Ho0ðkÞAℜpp Co ¼ ½Ip; 0pAℜp2p; ^xoðkjk1ÞAℜ2p LoðkÞ ¼ fðCo^P ðkÞCo T þRoÞ1Co^P ðkÞGo T ðkÞgT AR2pp where GoðkÞ^P ðkÞGo T ðkÞ^P ðkÞðGoðkÞ^P ðkÞCo T Þ ðCo^P ðkÞCo T þRoÞ1ðCo^P ðkÞGo T ðkÞÞþQo ¼ 0 Step(4)Generatethedigitalcontrolinputateachsampling period T: (i) Selectappropriateweightingmatrices fQd; Rdg in (57) havethehigh-gainpropertydigitalcontrollawin (55) and (56b). (ii) Computethedigitalcontrolgains KdðkÞ and EdðkÞ, bythe digital controlformulain (56a) and (56b) as follows. ~D ðkÞ¼WDoðkÞ and Wis aweightingmatrixtoadjustthe controllergainmatrix, ~R ðkÞ ¼ Rþ ~D T ðkÞQ ~D ðkÞ; NðkÞ ¼ CT oQ ~D ðkÞ; KdðkÞ ¼ ½~R ðkÞþHT o ðkÞPðkÞHoðkÞ1 ½HT o ðkÞPðkÞGoðkÞþNT ðkÞ; EdðkÞ ¼ ½~R ðkÞþHT o ðkÞPðkÞHoðkÞ1fHT o ðkÞ ½IðGoðkÞHoðkÞKdðkÞÞT 1 ½~D ðkÞKdðkÞCðkÞT þ ~D T ðkÞgQ; where PðkÞ ¼ GT o ðkÞPðkÞGoðkÞþCT o ðkÞQCoðkÞ ðGT o ðkÞPðkÞHoðkÞþNðkÞÞð~R ðkÞ þHT o ðkÞPðkÞHoðkÞÞ1ðHT o ðkÞPðkÞGoðkÞþNT ðkÞÞ: (iii) Set k¼kþ1. GotoStep2-(ii)andcontinuetheadaptive controlprocess. 5. Self-tuningcontrolwithfaulttolerance Consider theclassofcontinuous-timenonlinearstochastic system(1).Ifthesystemstatesorinputsareinpartialfaults,the Fig. 3. (a) Thegradualfailurefunctionand(b)theabruptfailurefunction. 64 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 10. systemdynamicscanberepresentedby _xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðtÞ þ Σ Z ζ ¼ 1 βζ ðtτζ Þ½f ζ ðxÞþgζ ðuÞþwðtÞ; ð59Þ where f ζ ðxÞþgζ ðuÞ representsthedynamicchangescausedbythe unknown andunanticipatedfailuremodesofstatesorinputs. Two typicalfaults,gradualfaultsandabruptfaultsarecon- sidered online.Theircharacteristicsaredescribedbythetime- varyingfunction βζ ðUÞ as shownin Fig. 3 by [28], where UðUÞ denotestheunit-stepfunction. f ζðxÞþgζ ðuÞ, βζ ðUÞ, and τζ are unknown duetothepossibleoccurrenceofunanticipatedfaults. If Z ¼ 1, system (59) has asinglefault.If Z ¼ 2; 3; 4; :::, itmeansthe multiple-fault case Accordingto [20], anoptimallylinearizedmodelofanonlinear systemcanbedeterminedandappliedtoawideclassofnonlinear systems.Asaresult,thenonlinearsystem(1)canbeaccurately linearized asthefollowinglinearstate-dependencemodel: _xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞuðtÞþwðtÞ: ð60Þ Similarly,thesystemwithfailuredynamicscanalsobeapproxi- mated asthestate-dependencetime-varyingmodel: _xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞuðtÞþ Σ Z ζ ¼ 1 βζ ðtτζ Þ½Aζ ðxðtÞÞxðtÞ þBζ ðxðtÞÞuðtÞþwðtÞ_xðtÞ ¼ ½AðxðtÞÞþ Σ Z ζ ¼ 1 βζ ðtτζ ÞAζðxðtÞÞxðtÞ þ½BðxðtÞÞþ Σ Z ζ ¼ 1 βζ ðtτζ ÞBζ ðxðtÞÞuðtÞþwðtÞ: ð61Þ The systemcouldcontainlargeuncertaintieswhenthefailure dynamics in (61) arelarge.Underthissituation,thecontrollerhas to takeanappropriatecontrolactionfortheuncertaintiesoccur- ring atanytimeinstant τζ . Thisisanadaptivecontrolproblem,in which controllerparametersareadjustedbasedontheestimated plant parameters.Themethodbasedonthemodified STCscheme is proposedtoaccomplishtheFTC. There arethreeassumptionsoftheproposedmethodthatare addressed asfollows: Assumption1. The controlledsystemiscontrollableandobser- vableeveniffaultsoccur. Assumption2. The controlinputispersistentlyexcited. Assumption3. Before thefaultoccurs,thesystemishealthyor has fullyrecoveredfromthepreviousfault. TheSTCschemeshouldbemodified tocopewithparameter variationsduetosystemfaults.Whenapartialfaultoccurs,the systemparametersvaryaccordingly.Theestimatedstate-depen- dencetime-varyingparametersobtainedviatheRELSalgorithmin theconventionalSTCschemewouldgivelargeparametererrorsand resultinapoorsystemperformance.However,basedontheKalman filterinterpretationalgorithmofRELSmethod [29], a modified scheme isproposedtoestimateparametervariations.Theabove modified state-spaceself-tuningcontrolschemecanbeappliedto the multivariablestochasticfaulty systemwithoutpriormessageof systemparametersandnoiseproperties. In short,inthebeginning,ahealthyandunknownsystemis welltunedbytheconventionalSTCscheme,andthentheself- tuning structurewiththeresetcovariancematricesofparameter estimateismodified toenhancetheparameterestimationand output responsewhenthesystemand/orinputsarepartially faulty by [15]. It postulatesthattheestimatedparameterisnotconstantbut varieslikearandomwalk θiðkÞ ¼ θiðk1ÞþwiðkÞ; ð62Þ εiðkÞ ¼ yiðkÞθT iðk1ÞϕiðkÞ; ð63Þ E½wiðkÞwi T ðkÞ ¼ R1i; ð64Þ E½εTi ðkÞεiðkÞ ¼ R2i; ð65Þ where i ¼ 1; 2;…; p; wiðkÞ is thewhiteGaussiannoisesequence. The Kalman filterthenstillgivestheconditionalexpectationand 1414.51515.51616.51717.51818.519-0.3-0.2-0.100.10.20.3 Magnitude System output Y1ARMAX identified output Y11414.51515.51616.51717.51818.519-0.2-0.100.10.20.3 Megnitude Time (sec) System output Y1NARMAX identified output Y1 Fig. 4. The trajectoriesofOutput1byRELSmethodwithARMAXmodelandmodified NARMAXmodel. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 65
  • 11. covarianceof θiðkÞ as ^θ iðkÞ ¼ ^θ iðk1ÞþMiðkÞεi T ðkÞ; ð66Þ MiðkÞ ¼ Siðk1ÞϕiðkÞ R2iþϕi T ðkÞSiðk1ÞϕiðkÞ ; ð67Þ SiðkÞ ¼ Siðk1Þ Siðk1ÞϕiðkÞϕi T ðkÞSiðk1Þ R2iþϕi T ðkÞSiðk1ÞϕiðkÞ þR1i; ð68Þ with Sið0Þ ¼ E½^θ ið0Þθið0Þ ½^θ ið0Þθið0ÞT : ð69Þ SiðkÞ is thecovariancematrixoftheparameterestimate ^θ iðkÞ. Usually,theestimatedresidualortheinnovationerrorvector εiðkÞ ¼ yiðkÞ^θ i T ðk1ÞϕiðkÞ will benearwhiteifthemodelwith parameterestimateisingoodagreementwithitstruesystem. TomodifyKalman filter interpretationoftheRELSmethod, some appropriateinitializationsof R1i, R2i, and Sið0Þ in (67)–(69) areassumedtobepre-specified beforetheparameterestimation process.Whenunanticipatedsystemfaultsbringtheprocesswith large parametervariations,theyneedtobereasonablyreset. TomodifytheconventionalSTCprocesswiththeRELSestimate algorithmforthefaultysystem,approximate R1i, R2i, and Sið0Þ by the followingmovingwindow-basedstatisticalquantities: R2i 1 Nk1 Σ N1 k ¼ k1 εTi ðkÞεiðkÞ ð70Þ 051015202530-0.2-0.100.10.20.3 megnitude System output Y1Identified output Y1051015202530-0.2-0.100.10.2 error 1 Time (sec) 051015202530-0.3-0.2-0.100.10.20.3 megnitude System output Y2Identified output Y2051015202530-0.2-0.100.10.2 error 1 Time (sec) Fig. 5. The outputresponsesofthemodified NARMAXmodelbyRELSmethodwithoutOKID. 66 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 12. and Sið0Þ diag 1 Nk1 Σ N1 k ¼ k1½^θ iðkÞθiðNÞ ½^θ iðkÞθiðNÞT ( ) ; ð71Þ where k1 is thetimeindexaftertheestimate ^θ iðkÞ in steady-state, and N is thelasttimeinstantoftheSTC.Itshouldbenotedthatthe elements of ^θ iðkÞ in (71) wouldnotbeindependentwitheach other,when Nk11 in (71) is notlargeenough.Similarly, R1i can be approximatedbycomparing (62) with (66) as follows: R1i ½MiðNÞεi T ðNÞ ½MiðNÞεi T ðNÞT ; ð72Þ where MiðNÞ ¼ Sið0ÞϕiðNÞ R2iþϕi T ðNÞSið0ÞϕiðNÞ : The STCwiththealgorithm (66)–(69) and theinitialization (70)–(72) worksonlyfortheplantwithslowlytime-varying parameters.Thiscanbeinterpretedbythefactthattheinitialized R1i obtained from (72) is sosmallwhilethesystemishealthyin general;hence θiðkÞffiθiðk1Þ in (62). Asaresult,itcannotreflect the realparametervariationinducedbytheunanticipatedsystem faults. Therefore, SiðkÞ, R2i, and R1i in (68) need tobeappropriately reset whenafaultisdetectedattimeinstant kf . Althoughthe algorithm withanappropriatelyresetforgettingfactor λðkf Þ could improveestimationsofparametervariationfortheconventional STC scheme,theresetforgettingfactor λðkf Þ would needsome trials forvariousfailuremodes.Nevertheless,theresetsof Siðkf Þ, R1i, andR2i proposed in [15] is asystematicapproachforvarious failure modes. Because thefactthattheparametervariationsinducedbyfaults areunknown,theruleofthumbtoresetthecovariancematricesof the parameterestimate SiðkÞ in (68) online isgivenasfollows. When thefaultbedetectedattimeinstant kf , thevariationof parameterestimationsbeforeandafterthefaultcanbeapproxi- mated as δ^θ iðkfÞ ^θiðkf Þ^θ iðkhÞ; for khokf ; ð73Þ where ^θ iðkhÞ is theparameterestimateofthehealthysystem.Then, based onthephysicalinterpretationof (69), Siðk1Þ in (68) can be reasonablyresetas Siðkf1Þ diagf½^θ iðkf Þ^θ iðkhÞ ½^θ iðkf Þ^θ iðkhÞT g δ2diag½^θ iðkf Þ^θ iðkf ÞT : ð74Þ Duetotheadditiveuncertaintiesconsidered,wecanassumethe averageparametervariationisintherangeofthesameorderof magnitudeofthefaultsystem.So,itisreasonabletoset δ ¼ 1, which denotestheworstcaseofthisassumption.Somenumericalexamples arealsogivenin [15] toshowthesensitivityofvarious δ's tothemean valueofthetrackingerrortoverifytheeffectivenessofthisruleof thumb forresettingthecovariancematricesoftheparameterestimate. Toimprovetheparameterestimationfortheunanticipated faulty systems, R2i in (70) needs toberesetbyamovingwindow with theresidual R2i 1 kfkiþ1 Σ k f κ ¼ ki εi T ðκÞεiðκÞ; ð75Þ where 1oðkfkiÞo5 usually.Similarly, R1i in (68) should bereset by substituting (69) and (70) into (67) and then (66) to obtain R1i ½Miðkf Þεi T ðkf Þ ½Miðkf Þεi T ðkf ÞT : ð76Þ In theSTCscheme,theestimatedresidualisupdatedforevery samplingtime.Consequently,itisconvenienttouseitasthe informationoffaultdetection. Therefore,thetimeinstant kf of the faultoccurrencecouldbedetectedbyutilizingtheratiowith theresidual R2i in (75) andtheaveragenormoftheinnovation vectorsas R2i Rf i 4γεi; ð77Þ where Rf i ¼ ð1=kf1ÞΣkf k ¼ 1εi T ðkÞεiðkÞ and γεi isapresetthreshold. The followingsummarizestheFTCusingthemodified STC methodology withthefaultdetectionandcovariancematrices resetting: 1) Applythemodified NARMAXmodel-basedSTCalgorithmin Section 4 to thehealthysystemuntilitwelltracksthepre- specified trajectory. 2) SwitchtheconventionalRELSestimationalgorithmin Section 4 Step-(ii)tothemodified Kalman filter estimationalgorithm (66)–(68) with initialized R1i,R2i, and Sið0Þ via (70)–(72). 3) Performthemodified STCschemeandthefaultdetection. 4) Wheneverafaultisdetectedandtheerrorislargeenoughfor the ratio ðR2i=Rf iÞ4γεi; reset R1i, R2i, and Siðkf Þ by (74)–(76). 5) Whenthefaulthasrecovered,gotoStep(3),andrepeatthe modified STCprocess. 6. Anillustrativeexample 6.1.Identification byusingtheRELSmethod 6.1.1.NonlinearNARMAXmodelsystem Assume thetwo-input-two-outputsystemisunknown,and choose anappropriatetwo-inputtwo-outputNARMAXmodelfor the RELSmethod. Consider thenonlinearNARMAXmodelasfollows y1ðkÞ¼0:2ð0:2y1ðk1Þþ0:2y2ðk1Þ cos ðy1ðk1ÞÞþy21 ðk2Þ þ0:4y1ðk1Þu1ðk1Þþu1ðk1Þþ0:8e1ðk1Þ þ0:7y1ðk2Þe1ðk2Þþu1ðkÞÞþe1ðkÞ; ð78aÞ y2ðkÞ¼0:2ð0:2y2ðk1Þþ0:3y2ðk1Þ cos ðy2ðk2ÞÞþy22 ðk2Þ þ0:1y2ðk1Þu2ðk1Þþu2ðk1Þþ0:8e2ðk1Þ þ0:5y1ðk2Þe2ðk2Þþu2ðkÞÞþe2ðkÞ; ð78bÞ 051015202530-0.4-0.200.20.40.60.811.21.4Time (sec) Parameter Fig. 6. Estimated parametersin θðkÞ of RELSmethodforthemodified NARMAX model withoutOKID. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 67
  • 13. where y1ðkÞ and y2ðkÞ areoutputs, u1ðkÞ and u2ðkÞ are inputs, e1ðkÞand e2ðkÞ arenoiseswhicharezero-meanGaussiansequences with variances s2 e1 ¼ s2 e2 ¼ 0:01. BecausethesystemEqs. (78a) and (78b), isunknown,onlythedataofinputandoutputatsampling instants areavailabletoidentifythesystem.Thesamplingperiod T is takenas0.1sathere. The resultsofsystemidentification throughtheRELSmethod with themodified ARMAXmodel [11] and theproposedmodified NARMAXmodelareshownin Fig. 4, respectively. ThetrajectoriesofOutput2byRELSmethodwithARMAXmodel and modifiedNARMAXmodelhavethesimilarperformanceofthe caseforOutput1.Allthesesimulationsshowthattheresultof systemidentificationthroughtheRELSmethodwiththemodified NARMAXmodel,ratherthanthemodifiedARMAXmodel,achievesa betterperformance. 6.1.2.Theinitialparameter θð0Þ of themodified NARMAXmodel Comparison ofthesystemidentification ofRELSmethodwith the NARMAXmodelbasedontheintuitiveinitialparameter θð0Þ ¼ ½I211 I212 0212 I26T and theinitialparameterobtainedby the off-lineOKIDisshownasfollows. 1) The NARMAXmodelwiththeintuitiveinitialparameter θð0Þ ¼ ½I211 I212 0212 I26T Let thesystem (78) be excitedby the controlforce uðtÞ ¼ ½u1ðtÞ u2ðtÞT with whitenoisehaving a zeromeanandcovariance diagðcovðuÞÞ ¼ 0:1I2, wherethe sampling period T is 0.1s.Theresultsofidentification are shown in Figs. 5 and 6. 2) The modified NARMAXmodelwiththeinitialparametersobtained the byOKID. Thesystemandobservergain Go, Ho, Co, Doand Ko in (58) areobtainedbytheOKID.Basedontheoptimal 051015202530-0.2-0.100.10.20.3 megnitude System output Y1Identified output Y1051015202530-0.2-0.100.10.2 error 1 Time (sec) 051015202530-0.2-0.100.10.2 megnitude System output Y2Identified output Y2051015202530-0.2-0.100.10.2 error 1 Time (sec) Fig. 7. The outputsresponsesofthemodified NARMAXmodelbyRELSmethodwithOKID. 68 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 14. linearization method,wecanobtaintheinitialparameters θð0Þ which isclosetotheconvergentvalueof θðkÞ. Aftertheinitial parameters θð0Þ are obtained,theRELSmethod (3) is appliedto identify thissystem.Theresultofidentification isshownin Figs. 7 and 8. 6.2. Activefaulttoleranceusingmodified NARMAXmodel-based state-space self-tuningcontrol In fact,thesystemmodelisunknown (78), wehaveonly information aboutinputandoutputdata.Thesamplingperiod T is selectedas0.1sfortheoff-lineOKIDandtheon-linestate-space self-tuning control.First,chooseanappropriatetwo-input-two- output modified NARMAXmodelviatheoff-lineOKIDfortheself- tuning controlwithfaulttoleranceusingtheestimationalgorithm and thefaultdetectionisusedtoadapttothefaulttolerance control. Noticethattheinitialparameter θð0Þof thedetermined NARMAXmodelfortheon-lineRELSisobtainedbyoff-lineOKID. If afaultisdetectedat t ¼ kf , matrices R1i, R2i, and Siðkf Þ with the reset parameter δ ¼ 1 in (71) is automaticallyresetagain.Thefault detection thresholdsare γε1 and γε2 are 3.0.Noticethatthis NARMAXmodelcouldapproximateothertwo-input-two-output systems,notjustonlyforthisexample. The proposedtwo-input-two-outputmodified NARMAXmodel is givenby (79). Inordertoshortentheexpressions,oneassumes y 10 , ¼ F11ðyÞþB1UþKe1E; y 20 , ¼ F21ðyÞþB2UþKe2E; ð79Þ where y i j ,¼ yiðkj , Þ; u kl ,¼ ukðkl , Þ; ε mn, ¼ εmðkn, Þ; F11ðyÞ ¼ a11y 11 ,þa12y 21 ,þa13y 12 ,þa14y 22 ,þa15y2 11 , þa16y 11 ,y 21 ,þa17y 11 ,y 12 ,þa18y 11 ,y 22 , þa19y 12 ,y 21 ,þa110y2 12 ,þa111y 12 ,y 22 ,; F21ðyÞ ¼ a21y 11 ,þa22y 21 ,þa23y 12 ,þa24y 22 ,þa25y 21 ,y 11 , þa26y2 21 ,þa27y 21 ,y 12 ,þa28y 21 ,y 22 , þa29y 22 ,y 11 ,þa210y 22 ,y 12 ,þa211y2 22 ,; BT 1 ¼ b101þb103y 11 ,þb105y 12 , b102þb104y 11 ,þb106y 12 , b11þb15y 11 ,þb19y 12 , b12þb16y 11 ,þb110y 12 , b13þb17y 11 ,þb111y 12 , b14þb18y 11 ,þb112y 12 , 2 666666666666664 3 777777777777775 ; BT 2 ¼ b201þb203y 21 ,þb205y 22 , b202þb204y 21 ,þb206y 22 , b21þb25y 21 ,þb29y 22 , b22þb26y 21 ,þb210y 22 , b23þb27y 21 ,þb211y 22 , b24þb28y 21 ,þb212y 22 , 2 666666666666664 3 777777777777775 KT e1 ¼ d11þd15y 11 ,þd19y 12 , d12þd16y 11 ,þd110y 12 , d13þd17y 11 ,þd111y 12 , d14þd18y 11 ,þd112y 12 , 2 66666664 3 77777775 ; KT e2 ¼ d21þd25y 21 ,þd29y 22 , d22þd26y 21 ,þd210y 22 , d23þd27y 21 ,þd211y 22 , d24þd28y 21 ,þd212y 22 , 2 66666664 3 77777775 U ¼ u 10 , n u 20 , n u 11 , u 21 , u 12 , u 22 , 2 6666666666664 3 7777777777775 ; E ¼ ε 11 , ε 21 , ε 12 , ε 22 , 2 666664 3 777775 : Simplify themodeltoformalinear-in-the-parametersexpression ~y1ðkÞ ¼ θ1 T ðkÞϕ1ðkÞ; ~y2ðkÞ ¼ θ2 T ðkÞϕ2ðkÞ; ð80Þ where θ1ðkÞ ¼ ½a11a12 ⋯ a111 b11b12 ⋯ b112 d11d12 ⋯ d112 b101b102 ⋯ b106T Aℜ411; θ2ðkÞ ¼ ½a21a22 ⋯ a211 b21b22 ⋯ b212 d21d22 ⋯ d212 b201b202 ⋯ b206T Aℜ411; θðkÞ ¼ θ1ðkÞ θ2ðkÞ h i ; ϕ1ðkÞ and ϕ2ðkÞ are therelatedtermstoeachparameter, nθ ¼ n ¼ 41 isthenumberofparametersin θ1ðkÞ, soisin θ2ðkÞ. Estimatetheparameters θ1ðkÞ and θ3ðkÞ using thestandard recursiveextended-least-squaresalgorithm.Theinitialparameters θð0Þ is obtainedbyOKID,where λ0 ¼ 0:9, λð0Þ ¼ 0:9 and S1ð0Þ ¼ S2ð0Þ ¼ 1 Inθ . The optimallinearizationmethod,thelinearmodelsof F11ðyÞ and F21ðyÞ at samplingtime kT are gottenas F11ðyÞ ¼ a11Ry 11 ,þa12Ry 21 ,þa13Ry 12 ,þa14Ry 22 ,; ð81aÞ F21ðyÞ ¼ a21Ry 11 ,þa22Ry 21 ,þa23Ry 12 ,þa24Ry 22 ,; ð81bÞ where a11R a12R a13R a14R 2 6664 3 7775 ¼ a11þ2a15y 11 ,þa16y 21 ,þa17y 12 ,þa18y 22 , a12þa16y 11 ,þa19y 12 , a13þa17y 11 ,þa19y 21 ,þ2a110y 12 ,þa111y 22 , a14þa16y 11 ,þa111y 12 , 2 66666664 3 77777775 þλ1R y 11 , y 21 , y 12 , y 22 , 2 6666664 3 7777775 ; λ1R ¼ 1 ‖ðy 11 ,; y 21 ,; y 12 ,; y 22 ,Þ‖22 ða15y2 11 ,þa16y 11 ,y 21 ,þa17y 11 ,y 12 , þa18y 11 ,y 22 ,þa19y 12 ,y 21 ,þa110y2 12 ,þa111y 12 ,y 22 ,Þ ; 051015202530-1-0.500.51Time (sec) Parameter Fig. 8. Estimated parametersin θðkÞ of RELSmethodforthemodified NARMAX model withOKID. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 69
  • 15. a21R a22R a23R a24R 2 6664 3 7775 ¼ a21þa25y 21 ,þa29y 22 , a22þa25y 11 ,þ2a26y 21 ,þa27y 12 ,þa28y 22 , a23þa27y 21 ,þa210y 22 , a24þa28y 21 ,þa29y 11 ,þa210y 12 ,þ2a211y 22 , 2 66666664 3 77777775 þλ2R y 11 , y 21 , y 12 , y 22 , 2 6666664 3 7777775 ; λ2R ¼ 1 ‖ðy 11 ,; y 21 ,; y 12 ,; y 22 ,Þ‖22 ða25y 21 ,y 11 ,þa26y2 21 ,þa27y 21 ,y 12 , þa28y 21 ,y 22 ,þa29y 22 ,y 11 ,þa210y 22 ,y 12 ,þa211y2 22 ,Þ ; GoðkÞ and HoðkÞ in theassociatedstate-spaceinnovationform (58) aredeterminedas GoðkÞ ¼ Go1ðkÞ I2 Go2ðkÞ 02 # ; HoðkÞ ¼ Ho1ðkÞ Ho2ðkÞ # ; Co ¼ I2 02 ; Do ¼ Ho0ðkÞ ð82Þ 012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y2012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.511.5Time (sec) magnitude Y2Reference 2System output Y2012345678910-1-0.500.51 magnitude Y1Reference 1System output Y1012345678910-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y20.10.150.20.250.30.350.40.450.50.550.65678910111213141516weighting factor w the convergence of weighting factor Fig. 9. The comparisonbetween(i)Output y1ðtÞ and reference r1ðtÞ and (ii)Output y2ðtÞ and reference r2ðtÞ: (a) W ¼ 0:2 I2, (b) W ¼ 0:1 I2, (c) W ¼0:4 I2, and (d) theconvergenceoferrorsvs.weightingmatrices. 70 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 16. where Go1 ¼ a11R a12R a21R a22R # ; ~H o1ðkÞ ¼ b11þb15y 11 ,þb19y 12 , b12þb16y 11 ,þb110y 12 , b21þb25y 21 ,þb29y 22 , b22þb26y 21 ,þb210y 22 , 2 64 3 75 ; Go2 ¼ a13R a14R a23R a24R # ; ~H o2ðkÞ ¼ b13þb17y 11 ,þb111y 12 , b14þb18y 11 ,þb112y 12 , b23þb27y 21 ,þb211y 22 , b24þb28y 21 ,þb212y 22 , 2 64 3 75 ; Ho0ðkÞ ¼ b101þb103y 11 ,þb105y 12 , b102þb104y 11 ,þb106y 12 , b201þb203y 21 ,þb205y 22 , b202þb204y 21 ,þb206y 22 , 2 64 3 75 ; Ho1ðkÞ ¼ ~H o1Go1Do; Ho2ðkÞ ¼ ~H o2Go2Do: 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 10. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 11. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithFTC. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 71
  • 17. The weightingmatricesare fQ ¼ 108 I2; R ¼ I2g in (54) and fQo ¼ 108 I4; Ro ¼ I2g in (48). 1) Determination oftheweightingmatrix. Here, severalcaseswillbegiventodiscusstheeffectsfor different weightingmatrices.Wecanselectanappropriate weightingfactortoimprovethetrackingperformanceofthe on-line systemcontrol.Sometypicalexamplesforthesystem (78) are illustratedfollows. From Fig. 9, theweightingfactorischosenas W ¼ 0:2I2 to minimize theoutputtrackingerrordefined. Then,theFTCwith an abruptinputfaultandagradualinputfaultisconsideredas follows 2) Fault scenario1:anabruptinputfault. Weusethemodified NARMAXmodeltoidentifythenonlinear system,andswitchittotheFTCatthe5thsecond.Atthe20th second, theInput1isassumedtobeabruptlyaddedto5times of itsfunction,andInput2isassumedtobeabruptlyadded to 0.8timesofitsfunction,thensimulationresultsin Fig. 10. The simulationresultsusingtheFTCwiththemodified STC 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 12. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 13. The outputresponseswithanabruptinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithFTC. 72 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 18. methodology areshownin Fig. 11. Forthefaulttolerance,a comparison ofthenewmethodisgivenin Figs. 10–13, which showsourproposedapproachismuchsuperiorthan [11]. 3) Faultscenario2:agradualinputfault. Weusethemodified NARMAXmodeltoidentifythenonlinear system,thenswitchtotheFTCwhichusingthemodified STC methodology when5thsecond.Afterthe20thsecond,the Input1isassumedtobeabruptlyaddedto10:8ð1eðt20ÞÞ times ofitsfunctions,thensimulationresultsin Fig. 14. Andthe simulation resultswiththeFTCwhichusingthemodified STC methodology isshownin Fig. 15. Forthefaulttolerance,a comparison ofthenewmethodisgivenin Figs. 14–17, which showsourproposedapproachismuchsuperiorthan [11]. 7. Conclusions A polynomial-expansion-formmodified NARMAXmodel-based fault-tolerantstate-spaceself-tunerfortheunknownnonlinear stochastichybridsystemwithaninput-outputfeed-throughterm 05101520-1-0.500.51 magnitude Y1 Reference 1System output Y105101520-1-0.500.51Time (sec) magnitude Y2 Reference 2System output Y2 Fig. 14. The outputresponses(divergingtoaninfinity valuebefore23s)withagradualinputfaultoccurringatthe20thforthemodified NARMAXmodelsecond without FTC. 05101520253035404550-1-0.500.51 magnitude Y1Reference 1System output Y105101520253035404550-1-0.500.51Time (sec) magnitude Y2Reference 2System output Y2 Fig. 15. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified NARMAXmodelwithFTC. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 73
  • 19. has beenproposedinthispaper.Themaincontrolschemesofthis paperare(i)initializationfortheon-linepolynomial-expansion-form NARMAX-basedsystemidentification obtainedbytheoff-lineOKID is proposedtospeeduptheparameteridentificationprocess,(ii)an optimal trackerbasedontheidentified modelwithadirecttransmis- sion termfrominputtooutputisutilizedfortheunknownnonlinear systemwithadirecttransmissionmatrix,and(iii)whenthe unknownsystemhasinputfault,thecontrolschemefocuseson designinganactivefaulttolerancestate-spaceself-tunerusingthe modified NARMAXmodel-basedsystemidentification. Totheauthor’s knowledge,theNARMAXmodel-basedstate- space optimaltrackerwithfaulttolerancefortheregularnonlinear sampled-data systemcontainingthedirecttransmissionterm from inputtooutputhasnotbeenproposedinliterature.Con- sidering thecomplexityofthefaulttolerancecontrol,thispaper takes theNARMAXmodelinpolynomialexpansionform,butnot in rationalexpansionform.Theextensionofthemodified NAR- MAX model-basedmethodologyforthefault-tolerancecontrol from itspolynomialexpansionformtorationalexpansionform can beconsideredasafutureresearchwork. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 16. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithoutFTC. 05101520253035404550-1-0.500.51 magnitude Reference 1Output Y105101520253035404550-1-0.500.51Time (sec) magnitude Reference 2Output Y2 Fig. 17. The outputresponseswithagradualinputfaultoccurringatthe20thsecondforthemodified ARMAXmodelwithFTC. 74 J.S.-H. Tsaietal./ISATransactions53(2014)56–75
  • 20. Acknowledgments This workwassupportedbytheNationalScienceCouncilof RepublicofChinaundercontractsNSC102-2221-E-208-MY3and NSC102-2221-E-006-199. References [1] WarwickK.Self-tuningregulatorsastate-spaceapproach.International Journal ofControl1981;33:839–58. [2] TsayYT,ShiehLS.State-spaceapproachforself-tuningfeedbackcontrolwithpole assignment.ControlTheoryandApplications,IEEProceedingsD1981;123:93–101. [3] Shieh LS,BaoYL,ChangFR.State-spaceself-tuningregulatorsforgeneral multivariablestochasticsystems.ControlTheoryandApplications,IEEPro- ceedings D1989;136:17–27. [4] Aström KJ,WittenmarkB.AdaptiveControl.NY:Addison-Wesley;1989. [5] Leontaritis IJ,BillingsSA.Input–output parametricmodelsfornonlinear systems,PartsIandII.InternationalJournalofControl1985;41(2):303–44. [6] Li J,ChenW,LiJ,FangY.AdaptiveNNoutput-feedbackstabilizationforaclass of stochasticnonlinearstrict-feedbacksystems.ISATransactions2009;48(4): 468–75. [7] TsaiJSH,WangCT,KuangCC,GuoSM,ShiehLS,ChenCW.ANARMAXmodel- based state-spaceself-tuningcontrolfornonlinearstochastichybridsystems. Applied MathematicalModeling2010;34:3030–54. [8] Sontag ED.PolynomialResponseMaps.LectureNotesinControlandidenti- fication Science,vol.13.Berlin:Springer-Verlag;1979. [9] Lewis FL.Asurveyoflinearsingularsystems.Circuits,SystemsandSignal Processing 1986;5:3–36. [10] Dai L.SingularControlSystems.Berlin,Germany:Springer-Verlag;1989. [11] WangJH,TsaiJSH,HuangJS,GuoSM,ShiehLS.Alow-orderactivefault- tolerantstatespaceself-tunerfortheunknownsampled-datanonlinear singular systemusingOKIDandmodified ARMAXmodel-basedsystem identification. AppliedMathematicalModeling2013;37:1242–74. [12] JN. AppliedSystemIdentification. EnglewoodCliffs.NJ:Prentice-Hall;1994. [13] TsaiJSH,ChengFM,YuTY,ShiehLS.Efficient decentralizediterativelearning trackerforunknownsampled-datainterconnectedlarge-scalestate-delay systemswithclosed-loopdecouplingproperty.ISATransactions2012;51(1): 81–94. [14] Guo SM,ShiehLS,ChenG,LinCF,ChandraJ.State-spaceself-tuningcontrolfor nonlinear stochasticandchaotichybridsystem.InternationalJournalof Bifurcation andChaos2001;11(4):1079–113. [15] TsaiJSH,LeeYY,Cofie P,ShiehLS,ChenXM.Activefaulttolerantcontrolusing state-space self-tuningcontrolapproach.InternationalJournalofSystems Science 2006;37(11):785–97. [16] Ljung L.SystemIdentification TheoryfortheUser.EnglewoodCliffs.NJ: Prentice-Hall; 1987. [17] Kailath T.Aninnovationapproachtoleast-squaresestimation.PartI:Linear filtering inadditivewhitenoise.IEEETransactionsonAutomaticControl1968; AC-13:646–55. [18] Polites ME.Idealstatereconstructorfordeterministicdigitalcontrolsystems. InternationalJournalofControl1989;49:2001–11. [19] DabneyJB,HarmanTL.MasteringSimulink.EnglewoodCliffs,NJ:Prentice-Hall; 1998. [20] TeixeiraMCM,ZakSH.Stabilizingcontrollerdesignforuncertainnonlinear systemsusingfuzzymodels.IEEETransactionsonFuzzySystems1999;7(2): 133–42. [21] TsayYT,ShiehLS,BarnettS.StructuralAnalysisandDesignofMultivariable Control Systems:anAlgebraicApproach.Berlin,Heidelberg:Springer-Verlag; 1988. [22] Shieh LS,TsayYT.Transformationsofaclassofmultivariablecontrolsystems to blockcompanionforms.IEEETransactionsonAutomaticControl1982;AC- 27:199–203. [23] Shieh LS,WangCT,TsayYT.Multivariablestatefeedbackself-tuningcon- trollers. StochasticAnalysisandApplications1985;3(2):189–212. [24] WangJH,J.S.H.Tsai,ChenYC,GuoSM,ShiehLS.Anactivelow-orderfault- tolerantstatespaceself-tunerfortheunknownsample-datalinearregular systemwithaninput–output directfeed-throughterm.AppliedMathematical Sciences 2012;6(97)(4813–4355). [25] Guo SM,ShiehLS,ChenG,LinCF.Effectivechaoticorbittracker:Aprediction- based digitalredesignapproach.IEEETransactionCircuitsandSystems-I: Fundamental TheoryandApplications2000;47(11):1557–70. [26] TsaiJSH,DuYY,HuangPH,GuoSM,ChenCW,ShiehLS,etal.Iterative learning-based decentralizedadaptivetrackerforlarge-scalesystems:a digital redesignapproach.ISATransactions2011;50:344–56. [27] TsaiJSH,DuYY,ZhuangWZ,GuoSM,ChenCW,ShiehLS.Optimalanti- windup digitalredesignofmulti-inputmulti-outputcontrolsystemsunder inputconstraints.IETControlTheoryApplications2011;5:447–64. [28] YenGG,HoLW.Onlinemultiple-model-basedfaultdiagnosisandaccommo- dation. IEEETransactionsonIndustrialElectronics2003;50:296–312. [29] Soderstrom T,StoicaP.SystemIdentification. EnglewoodCliffs:Prentice-Hall; 1989. J.S.-H. Tsaietal./ISATransactions53(2014)56–75 75