SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 3 Issue 5ǁ May 2014 ǁ PP.67-72
www.ijesi.org 67 | Page
Dry Sliding Wear Behavior Of Carburized 20mncr5 Alloy Steel
Sandeep S Kadam1
, Prof. S. D. Ambekar2
1,
Research Scholar Post graduate Student, Mechanical Engineering Department,
2,
Asst. Professor, Mechanical Engineering Department
Department of Mechanical Engineering, Government College of Engineering Aurangabad
Dr. Babasaheb Ambedkar University Aurangabad, India
ABSTRACT: This research is limited to study the wear resistance of carburized 20MnCr5 (SAE 5120) alloy
steel, which has wide application in industries like gears, shafts, bearings, pins etc. The abrasive wear study is
performed on pin-on-disc tribotester. Sliding velocity of 0.8 m/s, 1.6 m/s, 2.4 m/s, Sliding Distance of 1200 m,
1400 m, 1600 m and Load of 3 kg, 4 kg and 5 kg were used to evaluate the wear resistance.
KEYWORD: Carburizing, Abrasive wear
I. INTRODUCTION
The equation that relates the wear rate with the applied load was at first established by Holm in 1940.
This citation can be found in Archard’s paper, which is considered as the main reference for the modeling of
wear rate in sliding systems. Holm assumed the wear as an atomic process. The wear rate (worn volume per unit
sliding distance) W isgiven by
Where Z is the number of atoms removed per atomicencounter, F is the applied load, and is the flow pressure
of worn surface. Furthermore, the term Z can only be interpreted as a probability of atomic removal. 1
This modeling depends on the kind of deformationassumed for the asperities, which Holm considered theplastic
deformation as predominant for the materialremoval. To this problem, Archard demonstrated that tosatisfy a
linear relationship between the wear rate and theapplied load, some hypothesis on the shape of debrisshould be
made, which implies in a new comprehension onthe effective mechanism of material removal.Greenwood and
Williansomadded to the Archardtheory, the nature of deformation, considering the heightsof asperities in
contact. Their work and many others applied a probabilistic approach for the roughness of Surfaces in contact.
However, there are few models withthis approach for the wear coefficient.
II. ARCHARD MODEL AS AN INITIAL VALUE PROBLEM
The plastic contact area can be defined as,
where F and py were defined in Eq. (1). Following the Archard model the worn volume V is given by,
where k is the wear coefficient and x is the sliding distance. Putting Eq. (2) in Eq. (3) one can obtain,
On the other hand, the worn volume can be defined by the following equation
where A is the apparent contact area and h is an averageheight corresponding to the material removal.
Theidentities defined in Eqs. (4) and (5) lead to
Dry Sliding Wear Behavior Of Carburized…
www.ijesi.org 68 | Page
where p is the average normal stress.
Steel has many practical applications in every aspects of life. The steel is being divided as low carbon
steel, medium carbon steel, high carbon steel, Low carbon steel has carbon steel has carbon content of 0.15%-
0.45%. As the carbon content increases, the metal becomes harder and stronger but less ductile and more
difficult to weld.
20MnCr5 (SAE 5120) categorized as the low carbon alloy steel grade.
Category Steel
Class Alloy steel
Type Standard
Designations
United States: ASTM A322,
ASTM A331 , ASTM A519 , SAE J404 ,
SAE J770 , UNS G51200
France: AFNOR 20 MC 5
Germany: DIN 1.7147
III. CARBURIZED HEAT TREATMENT
Carburizing, a surface treatment applied to a part to ensure beneficial surface compressive stresses and
increased hardness, improves wear and fatigue resistance.In many machine parts it is required to have hard case
comparative to the core e.g. Shafts, gears etc. so that the core can stand the shocks, impact and hard case can
stand wear as with increase in the hardness materials loses its ductility and weld ability and becomes brittle.
Carburizing introduces a gradient in the surface microstructure and mechanical properties. The hardness and
strength of martensite increase with increasing carbon content.
3.1 Sequence of the Heat treatment done on 20MnCr5
Sequence Process Temperature
I Carburizing 900⁰C, 2 hr
II Quenching 680 ⁰C, Oil quenched
III Tempering 160 ⁰C , 1.5 hr
3.2 Chemical analysis after Carburizing Heat treatment
Elements RAW Sample Carburized Sample
% C 0.17 0.201
% Mn 1.19 1.12
% Cr 1 1.1
% Ni 0.1 0.1
% Mo 0.02 0.02
% S 0.021 0.023
% P 0.024 0.027
% Si 0.25 0.24
IV. SPECIMEN AND TRIBOLOGY
Case carburized Specimens of 20Mncr5 are prepared for 25 mm length and 10 mm
diameter.Combination of Tribological conditions i.e. load, sliding velocity and sliding distance were analyzed
Dry Sliding Wear Behavior Of Carburized…
www.ijesi.org 69 | Page
for studying the wear property of the samples on Pin-On-Disc tribotester.Material Samples were used as a Pin
for the experimentation and Alumina used as Counterpart (Disc).Experiment is carried out for the three levels of
load, Sliding velocity and Sliding distance
Load (kg) 3 4 5
Sliding velocity (m/s) 0.8 1.6 2.4
Sliding Distance (m) 1200 1400 1600
Taguchi L9 array is selected for carrying out the experimentation and weight loss in grams is measured after
every trial.
V. TAGUCHI L9 ARRAY
Table 1
Load
Sliding
Velocity
Sliding
Distance
Material
loss
3 0.8 1200 0.0064333
3 1.6 1400 0.0176663
3 2.4 1600 0.0168667
4 0.8 1400 0.0208667
4 1.6 1600 0.0182327
4 2.4 1200 0.0064333
5 0.8 1600 0.0655530
5 1.6 1200 0.0170000
5 2.4 1400 0.0074611
Table 1 Taguchi L9 Array
VI. RESULTS
6.1 Main effect Plots
MeanofAvg.Materialloss
543
0.03
0.02
0.01
2.41.60.8
160014001200
0.03
0.02
0.01
load sliding velocity
sliding distance
Main Effects Plot for mean : Carburizing sample
Frommain effect plot it is observed load and sliding distance has direct effect and sliding velocity has inverse
effect on material loss.Behavior of wear with respect to load is in compliment with the findings of Xiaoliang
Shieta,Min-Soo Suh eta, H.X. Zhu eta, M. Singh eta.
Dry Sliding Wear Behavior Of Carburized…
www.ijesi.org 70 | Page
Behavior of wear with respect to sliding distance is in compliment with the findings of Yasin
Alemdageta,Min-Soo Suh eta, J.D. Bressan eta, Temel Savaskan eta.Behavior of wear with respect to sliding
velocity is in compliment with the findings of Xiaoliang Shieta
6.2 Interaction Plot
Load
Sliding Velocity
Sliding Distance
2.41.60.8 160014001200
0.050
0.025
0.000
0.050
0.025
0.000
Load
5
3
4
Sliding
2.4
Velocity
0.8
1.6
Interaction Plot for carburised sample
Wear is reduced with increase in sliding velocity with decrease in loading condition for different sliding
distance conditions.For different load conditions, wear is increased with increase in sliding distance with
reduces sliding velocity. Time required for completing a particular wear distance is reduced with increase in
sliding velocity. When load is 3 kg and sliding distance is increasing, wear is decreasing. When load is 4 kg and
5kg and increase in sliding distance, wear decreases initially and then increases.Maximum wear is observed
when sliding velocity is at minimum and sliding distance is increasing and minimum wear is obtained when
sliding velocity is at maximum and sliding distance is increasing.
6.3 ANOVA table
Table 2
Source DF Seq SS Adj SS Adj MS F P
Load 2 0.0035246 0.0035246 0.0017623 20.68 0.046
Sliding
Velocity
2 0.0012767 0.0012767 0.0006383 7.49 0.118
Sliding
Distance
2 0.0053023 0.0053023 0.0026512 31.10 0.031
Error 2 0.0001705 0.0001705 0.0000852
Total 8 0.0102741
Table 2 Anova table
S = 0.00923220 R-Sq = 98.34% R-Sq(adj) = 93.36%
From table it is observed that the sliding distance is the most effecting parameter followed by load and sliding
velocity.
6.4 Regression analysis
Therelationship between the control factors Sliding Velocity, load, Sliding distance and the output
performance wear are obtained by regression analysis.
Wear = - 0.0576 + 0.0101 Load - 0.0171 Sliding Velocity + 0.000045 Sliding Distance
Dry Sliding Wear Behavior Of Carburized…
www.ijesi.org 71 | Page
VII. MICROSTRUCTURE
7.1 Raw Material
7.2 Carburized Sample
Carburized sample shows Low carbon tempered martensite with bainitic structure& 5 % free ferrite is
observed in martensitic matrix.
Raw material shows normalized ferrite
VIII. CONCLUSION
[1] Carburizedheat treatment improves the microstructure and wear property of the material as amount of free
ferrite observed in carburized heat treatment is less as compared to rawmaterial.
[2] Carbon percentage is increased after carburizing heat treatment hence carburizing heat treatment is
successfully done.
[3] Minimum wear of cryogenically treated samples is obtained when load is 4 kg sliding distances 1200 m and
sliding velocity is 2.4 m/s.
Dry Sliding Wear Behavior Of Carburized…
www.ijesi.org 72 | Page
REFFERENCES
[1] Claudio R. Avila da Silva Jr., Giuseppe Pintaude, “Uncertainty analysis on the wear coefficient of Archard model” , Elsevier
,Tribology International 41 (2008) 473–481
[2] J.P. Wise, G. Krauss, D.K. Matlock, “Microstructure and Fatigue Resistance of Carburized Steels”, 20th ASM Heat Treating
Society Conference Proceedings, 9-12 October 2000.
[3] P. Rangaswamy, C.P. Scherer, M.A.M. Bourke, “Experimental measurements and numerical simulation of stress and microstructure
in carburized 5120 steel disks”, Materials Science and Engineering A298 (2001) 158–165, Elsevier.
[4] Xiaoliang Shi, Mang Wang , Wenzheng Zhai, Zhiwei Zhu,Zengshi Xu, Qiaoxin Zhang, Siyuan Song, Jie Yao, Abid Qamar ud Din,
“ Friction and wear behaviour of NiAl-10wt%Ti3SiC2 composites”, wear 303(2013) 9-20,Elsevier.
[5] H.X. Zhu, S.K. Liu, X.J. Bai, Z.J. Li, “Sliding wear behaviour of planar random zinc-alloy matrix composites”, wear 199 (1996) 82-
88, Elsevier.
[6] Min-Soo Suh, Young-Hun Chae, Seock-Sam Kim, “Friction and wear behaviour of structural ceramics sliding against Zirconia”,
wear (2008) 800-806, Elsevier.
[7] M. Singh, D. P. Mondal, O. P. Modi, A. K. Jha, “Two-body abrasive wear behaviour of aluminium alloy-sillimanite particle
reinforced composite”, wear 253 (2002) 357-368, Elsevier.
[8] Yasin Alemdag, Temel Savaskan, “Mechanical and tribological properties of Al-40Zn-Cu alloys”, Tribology International
42(2009) 176-182, Elsevier.
[9] J.D. Bressan, D. P. Daros, A. Sokolowski, R. A. Mesquita, C.A. Barbosa, “ Influence of hardness on the wear resisitance of 17-4
PH stainless steel evaluated by the pin- on-disc testing”, Journal of material processing technology 205 (2008) 353-359, Elsevier.
[10] Temel Savaskan, Osman Bican, Yasin Alemdag, “Developing aluminium-zinc-based a new alloy for tribological application”, J
Mater Sci (2009) 44:1969-1976
[11] Temel Savaskan, Osman Bican, “Dry sliding friction and wear properties of Al-25Zn-3Cu-3Si alloy”, Tribology International
43(2010)1346-1352, Science direct.
[12] Mechanical Engineering (NCAME-2012)”, World Journal of Science and Technology 2012, 2(4):53-59

More Related Content

What's hot

Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloy
Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloyDry sliding wear behaviour of sand cast cu 11 ni-6sn alloy
Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloyeSAT Publishing House
 
Effect of orientation and applied load on abrasive wear property of alumun
Effect of orientation and applied load on abrasive wear property of alumunEffect of orientation and applied load on abrasive wear property of alumun
Effect of orientation and applied load on abrasive wear property of alumunIAEME Publication
 
Material Technology
Material TechnologyMaterial Technology
Material TechnologyMalaysia
 
Compression.docx
Compression.docxCompression.docx
Compression.docxbelalamer3
 
Compression ahmad sarbast.docx
Compression ahmad sarbast.docxCompression ahmad sarbast.docx
Compression ahmad sarbast.docxbelalamer3
 
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...eSAT Journals
 
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 SteelsTorsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 SteelsFluxtrol Inc.
 
To find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys
To find effects of GMAW parameters on Mechanical Properties of Aluminum AlloysTo find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys
To find effects of GMAW parameters on Mechanical Properties of Aluminum AlloysIJERA Editor
 
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...IRJET Journal
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatment
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface TreatmentComparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatment
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatmentijceronline
 
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blanking
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blankingVacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blanking
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blankingEVP Vacuum pump
 

What's hot (18)

Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloy
Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloyDry sliding wear behaviour of sand cast cu 11 ni-6sn alloy
Dry sliding wear behaviour of sand cast cu 11 ni-6sn alloy
 
Dr.R.Narayanasamy - Super Plasticity
Dr.R.Narayanasamy - Super PlasticityDr.R.Narayanasamy - Super Plasticity
Dr.R.Narayanasamy - Super Plasticity
 
Effect of orientation and applied load on abrasive wear property of alumun
Effect of orientation and applied load on abrasive wear property of alumunEffect of orientation and applied load on abrasive wear property of alumun
Effect of orientation and applied load on abrasive wear property of alumun
 
Material Technology
Material TechnologyMaterial Technology
Material Technology
 
Compression.docx
Compression.docxCompression.docx
Compression.docx
 
Compression ahmad sarbast.docx
Compression ahmad sarbast.docxCompression ahmad sarbast.docx
Compression ahmad sarbast.docx
 
D0413019023
D0413019023D0413019023
D0413019023
 
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...
Wear characteristics of pure aluminium, al alloy & al-alumina metal mtrix...
 
L013167279
L013167279L013167279
L013167279
 
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 SteelsTorsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels
Torsional Fatigue Performance of Induction Hardened 1045 and 10V45 Steels
 
30120140501015
3012014050101530120140501015
30120140501015
 
To find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys
To find effects of GMAW parameters on Mechanical Properties of Aluminum AlloysTo find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys
To find effects of GMAW parameters on Mechanical Properties of Aluminum Alloys
 
j.ijrmhm.2020.105280.pdf
j.ijrmhm.2020.105280.pdfj.ijrmhm.2020.105280.pdf
j.ijrmhm.2020.105280.pdf
 
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...
Comparative Study on the High-Stress Abrasive Wear Behaviour of Zinc and Copp...
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Ijmet 10 01_145
Ijmet 10 01_145Ijmet 10 01_145
Ijmet 10 01_145
 
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatment
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface TreatmentComparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatment
Comparison of Fatigue Characteristic for AISI 1039 Steel with Surface Treatment
 
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blanking
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blankingVacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blanking
Vacuum furnace simuwu_improved_vacuum_heat-treatment_for_fine-blanking
 

Viewers also liked

Microstructure prediction in cutting of Titanium
Microstructure prediction in cutting of TitaniumMicrostructure prediction in cutting of Titanium
Microstructure prediction in cutting of TitaniumHongtao Ding
 
10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer ExperienceYuan Wang
 
How to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanHow to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanPost Planner
 
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika AldabaLightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldabaux singapore
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting PersonalKirsty Hulse
 

Viewers also liked (6)

Microstructure prediction in cutting of Titanium
Microstructure prediction in cutting of TitaniumMicrostructure prediction in cutting of Titanium
Microstructure prediction in cutting of Titanium
 
10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience10 Insightful Quotes On Designing A Better Customer Experience
10 Insightful Quotes On Designing A Better Customer Experience
 
How to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media PlanHow to Build a Dynamic Social Media Plan
How to Build a Dynamic Social Media Plan
 
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika AldabaLightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
Lightning Talk #9: How UX and Data Storytelling Can Shape Policy by Mika Aldaba
 
SEO: Getting Personal
SEO: Getting PersonalSEO: Getting Personal
SEO: Getting Personal
 
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job? Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
Succession “Losers”: What Happens to Executives Passed Over for the CEO Job?
 

Similar to K0351067072

Dry sliding wear behavior of hybrid metal matrix composites
Dry sliding wear behavior of hybrid metal matrix compositesDry sliding wear behavior of hybrid metal matrix composites
Dry sliding wear behavior of hybrid metal matrix compositeseSAT Publishing House
 
Abrasive Wear of Digger Tooth Steel
Abrasive Wear of Digger Tooth SteelAbrasive Wear of Digger Tooth Steel
Abrasive Wear of Digger Tooth SteelCSCJournals
 
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...IJERD Editor
 
Investigation of mechanical properties of carbidic ductile cast iron
Investigation of mechanical properties of carbidic ductile cast ironInvestigation of mechanical properties of carbidic ductile cast iron
Investigation of mechanical properties of carbidic ductile cast ironRSIS International
 
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...IAEME Publication
 
Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...eSAT Journals
 
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...eSAT Publishing House
 
Analysis of Conditions in Boundary Lubrications Using Bearing Materials
Analysis of Conditions in Boundary Lubrications Using Bearing  MaterialsAnalysis of Conditions in Boundary Lubrications Using Bearing  Materials
Analysis of Conditions in Boundary Lubrications Using Bearing MaterialsIJMER
 
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...IRJET Journal
 
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...AM Publications
 
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCC
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCCIRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCC
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCCIRJET Journal
 
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...IRJET Journal
 
Wear and Tribology Experimental Lab report
Wear and Tribology Experimental Lab reportWear and Tribology Experimental Lab report
Wear and Tribology Experimental Lab reportBoda Omkareshwar
 
Analyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesAnalyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesIRJET Journal
 
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...IRJET Journal
 
Buckling behavior of straight slot tubesunder oblique loading – A comparative...
Buckling behavior of straight slot tubesunder oblique loading – A comparative...Buckling behavior of straight slot tubesunder oblique loading – A comparative...
Buckling behavior of straight slot tubesunder oblique loading – A comparative...IJAEMSJORNAL
 
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...IJSRD
 
Mechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium AlloyMechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium AlloyDr. Amarjeet Singh
 

Similar to K0351067072 (20)

Dry sliding wear behavior of hybrid metal matrix composites
Dry sliding wear behavior of hybrid metal matrix compositesDry sliding wear behavior of hybrid metal matrix composites
Dry sliding wear behavior of hybrid metal matrix composites
 
Abrasive Wear of Digger Tooth Steel
Abrasive Wear of Digger Tooth SteelAbrasive Wear of Digger Tooth Steel
Abrasive Wear of Digger Tooth Steel
 
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...
Effect of PVD Coating and Carburizing on Wear Characteristics of Low Carbon S...
 
Investigation of mechanical properties of carbidic ductile cast iron
Investigation of mechanical properties of carbidic ductile cast ironInvestigation of mechanical properties of carbidic ductile cast iron
Investigation of mechanical properties of carbidic ductile cast iron
 
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...
EFFECT OF AL2O3 ON WEAR RESISTANCE IN ALUMINUM MATRIX COMPOSITE PRODUCED BY S...
 
Hy3613901394
Hy3613901394Hy3613901394
Hy3613901394
 
Hy3613901394
Hy3613901394Hy3613901394
Hy3613901394
 
Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...
 
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...
Wear behaviour of si c reinforced al6061 alloy metal matrix composites by usi...
 
Analysis of Conditions in Boundary Lubrications Using Bearing Materials
Analysis of Conditions in Boundary Lubrications Using Bearing  MaterialsAnalysis of Conditions in Boundary Lubrications Using Bearing  Materials
Analysis of Conditions in Boundary Lubrications Using Bearing Materials
 
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...
IRJET- Improvement in the Wear Resistance and Mechanical Properties of Carbur...
 
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...
Experimental Study of Wear Rate Coefficient of Aluminium Hybrid Composites Ma...
 
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCC
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCCIRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCC
IRJET- Evaluation of Corrosion Rate in Steel Reinforcement of RCC
 
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
Comparison of Effect of Heat Treatment Schedules and Shot Peening Parameters ...
 
Wear and Tribology Experimental Lab report
Wear and Tribology Experimental Lab reportWear and Tribology Experimental Lab report
Wear and Tribology Experimental Lab report
 
Analyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samplesAnalyzing the Effect of Alloying Addition in Steel samples
Analyzing the Effect of Alloying Addition in Steel samples
 
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...
IRJET - Tribological Characteristics of Al-SIC-MOS2 Cylindrical Powder Prefor...
 
Buckling behavior of straight slot tubesunder oblique loading – A comparative...
Buckling behavior of straight slot tubesunder oblique loading – A comparative...Buckling behavior of straight slot tubesunder oblique loading – A comparative...
Buckling behavior of straight slot tubesunder oblique loading – A comparative...
 
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...
Experimental Investigation of Wear Properties of Aluminium LM25 Red Mud Metal...
 
Mechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium AlloyMechanism of Fracture in Friction Stir Processed Aluminium Alloy
Mechanism of Fracture in Friction Stir Processed Aluminium Alloy
 

K0351067072

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3 Issue 5ǁ May 2014 ǁ PP.67-72 www.ijesi.org 67 | Page Dry Sliding Wear Behavior Of Carburized 20mncr5 Alloy Steel Sandeep S Kadam1 , Prof. S. D. Ambekar2 1, Research Scholar Post graduate Student, Mechanical Engineering Department, 2, Asst. Professor, Mechanical Engineering Department Department of Mechanical Engineering, Government College of Engineering Aurangabad Dr. Babasaheb Ambedkar University Aurangabad, India ABSTRACT: This research is limited to study the wear resistance of carburized 20MnCr5 (SAE 5120) alloy steel, which has wide application in industries like gears, shafts, bearings, pins etc. The abrasive wear study is performed on pin-on-disc tribotester. Sliding velocity of 0.8 m/s, 1.6 m/s, 2.4 m/s, Sliding Distance of 1200 m, 1400 m, 1600 m and Load of 3 kg, 4 kg and 5 kg were used to evaluate the wear resistance. KEYWORD: Carburizing, Abrasive wear I. INTRODUCTION The equation that relates the wear rate with the applied load was at first established by Holm in 1940. This citation can be found in Archard’s paper, which is considered as the main reference for the modeling of wear rate in sliding systems. Holm assumed the wear as an atomic process. The wear rate (worn volume per unit sliding distance) W isgiven by Where Z is the number of atoms removed per atomicencounter, F is the applied load, and is the flow pressure of worn surface. Furthermore, the term Z can only be interpreted as a probability of atomic removal. 1 This modeling depends on the kind of deformationassumed for the asperities, which Holm considered theplastic deformation as predominant for the materialremoval. To this problem, Archard demonstrated that tosatisfy a linear relationship between the wear rate and theapplied load, some hypothesis on the shape of debrisshould be made, which implies in a new comprehension onthe effective mechanism of material removal.Greenwood and Williansomadded to the Archardtheory, the nature of deformation, considering the heightsof asperities in contact. Their work and many others applied a probabilistic approach for the roughness of Surfaces in contact. However, there are few models withthis approach for the wear coefficient. II. ARCHARD MODEL AS AN INITIAL VALUE PROBLEM The plastic contact area can be defined as, where F and py were defined in Eq. (1). Following the Archard model the worn volume V is given by, where k is the wear coefficient and x is the sliding distance. Putting Eq. (2) in Eq. (3) one can obtain, On the other hand, the worn volume can be defined by the following equation where A is the apparent contact area and h is an averageheight corresponding to the material removal. Theidentities defined in Eqs. (4) and (5) lead to
  • 2. Dry Sliding Wear Behavior Of Carburized… www.ijesi.org 68 | Page where p is the average normal stress. Steel has many practical applications in every aspects of life. The steel is being divided as low carbon steel, medium carbon steel, high carbon steel, Low carbon steel has carbon steel has carbon content of 0.15%- 0.45%. As the carbon content increases, the metal becomes harder and stronger but less ductile and more difficult to weld. 20MnCr5 (SAE 5120) categorized as the low carbon alloy steel grade. Category Steel Class Alloy steel Type Standard Designations United States: ASTM A322, ASTM A331 , ASTM A519 , SAE J404 , SAE J770 , UNS G51200 France: AFNOR 20 MC 5 Germany: DIN 1.7147 III. CARBURIZED HEAT TREATMENT Carburizing, a surface treatment applied to a part to ensure beneficial surface compressive stresses and increased hardness, improves wear and fatigue resistance.In many machine parts it is required to have hard case comparative to the core e.g. Shafts, gears etc. so that the core can stand the shocks, impact and hard case can stand wear as with increase in the hardness materials loses its ductility and weld ability and becomes brittle. Carburizing introduces a gradient in the surface microstructure and mechanical properties. The hardness and strength of martensite increase with increasing carbon content. 3.1 Sequence of the Heat treatment done on 20MnCr5 Sequence Process Temperature I Carburizing 900⁰C, 2 hr II Quenching 680 ⁰C, Oil quenched III Tempering 160 ⁰C , 1.5 hr 3.2 Chemical analysis after Carburizing Heat treatment Elements RAW Sample Carburized Sample % C 0.17 0.201 % Mn 1.19 1.12 % Cr 1 1.1 % Ni 0.1 0.1 % Mo 0.02 0.02 % S 0.021 0.023 % P 0.024 0.027 % Si 0.25 0.24 IV. SPECIMEN AND TRIBOLOGY Case carburized Specimens of 20Mncr5 are prepared for 25 mm length and 10 mm diameter.Combination of Tribological conditions i.e. load, sliding velocity and sliding distance were analyzed
  • 3. Dry Sliding Wear Behavior Of Carburized… www.ijesi.org 69 | Page for studying the wear property of the samples on Pin-On-Disc tribotester.Material Samples were used as a Pin for the experimentation and Alumina used as Counterpart (Disc).Experiment is carried out for the three levels of load, Sliding velocity and Sliding distance Load (kg) 3 4 5 Sliding velocity (m/s) 0.8 1.6 2.4 Sliding Distance (m) 1200 1400 1600 Taguchi L9 array is selected for carrying out the experimentation and weight loss in grams is measured after every trial. V. TAGUCHI L9 ARRAY Table 1 Load Sliding Velocity Sliding Distance Material loss 3 0.8 1200 0.0064333 3 1.6 1400 0.0176663 3 2.4 1600 0.0168667 4 0.8 1400 0.0208667 4 1.6 1600 0.0182327 4 2.4 1200 0.0064333 5 0.8 1600 0.0655530 5 1.6 1200 0.0170000 5 2.4 1400 0.0074611 Table 1 Taguchi L9 Array VI. RESULTS 6.1 Main effect Plots MeanofAvg.Materialloss 543 0.03 0.02 0.01 2.41.60.8 160014001200 0.03 0.02 0.01 load sliding velocity sliding distance Main Effects Plot for mean : Carburizing sample Frommain effect plot it is observed load and sliding distance has direct effect and sliding velocity has inverse effect on material loss.Behavior of wear with respect to load is in compliment with the findings of Xiaoliang Shieta,Min-Soo Suh eta, H.X. Zhu eta, M. Singh eta.
  • 4. Dry Sliding Wear Behavior Of Carburized… www.ijesi.org 70 | Page Behavior of wear with respect to sliding distance is in compliment with the findings of Yasin Alemdageta,Min-Soo Suh eta, J.D. Bressan eta, Temel Savaskan eta.Behavior of wear with respect to sliding velocity is in compliment with the findings of Xiaoliang Shieta 6.2 Interaction Plot Load Sliding Velocity Sliding Distance 2.41.60.8 160014001200 0.050 0.025 0.000 0.050 0.025 0.000 Load 5 3 4 Sliding 2.4 Velocity 0.8 1.6 Interaction Plot for carburised sample Wear is reduced with increase in sliding velocity with decrease in loading condition for different sliding distance conditions.For different load conditions, wear is increased with increase in sliding distance with reduces sliding velocity. Time required for completing a particular wear distance is reduced with increase in sliding velocity. When load is 3 kg and sliding distance is increasing, wear is decreasing. When load is 4 kg and 5kg and increase in sliding distance, wear decreases initially and then increases.Maximum wear is observed when sliding velocity is at minimum and sliding distance is increasing and minimum wear is obtained when sliding velocity is at maximum and sliding distance is increasing. 6.3 ANOVA table Table 2 Source DF Seq SS Adj SS Adj MS F P Load 2 0.0035246 0.0035246 0.0017623 20.68 0.046 Sliding Velocity 2 0.0012767 0.0012767 0.0006383 7.49 0.118 Sliding Distance 2 0.0053023 0.0053023 0.0026512 31.10 0.031 Error 2 0.0001705 0.0001705 0.0000852 Total 8 0.0102741 Table 2 Anova table S = 0.00923220 R-Sq = 98.34% R-Sq(adj) = 93.36% From table it is observed that the sliding distance is the most effecting parameter followed by load and sliding velocity. 6.4 Regression analysis Therelationship between the control factors Sliding Velocity, load, Sliding distance and the output performance wear are obtained by regression analysis. Wear = - 0.0576 + 0.0101 Load - 0.0171 Sliding Velocity + 0.000045 Sliding Distance
  • 5. Dry Sliding Wear Behavior Of Carburized… www.ijesi.org 71 | Page VII. MICROSTRUCTURE 7.1 Raw Material 7.2 Carburized Sample Carburized sample shows Low carbon tempered martensite with bainitic structure& 5 % free ferrite is observed in martensitic matrix. Raw material shows normalized ferrite VIII. CONCLUSION [1] Carburizedheat treatment improves the microstructure and wear property of the material as amount of free ferrite observed in carburized heat treatment is less as compared to rawmaterial. [2] Carbon percentage is increased after carburizing heat treatment hence carburizing heat treatment is successfully done. [3] Minimum wear of cryogenically treated samples is obtained when load is 4 kg sliding distances 1200 m and sliding velocity is 2.4 m/s.
  • 6. Dry Sliding Wear Behavior Of Carburized… www.ijesi.org 72 | Page REFFERENCES [1] Claudio R. Avila da Silva Jr., Giuseppe Pintaude, “Uncertainty analysis on the wear coefficient of Archard model” , Elsevier ,Tribology International 41 (2008) 473–481 [2] J.P. Wise, G. Krauss, D.K. Matlock, “Microstructure and Fatigue Resistance of Carburized Steels”, 20th ASM Heat Treating Society Conference Proceedings, 9-12 October 2000. [3] P. Rangaswamy, C.P. Scherer, M.A.M. Bourke, “Experimental measurements and numerical simulation of stress and microstructure in carburized 5120 steel disks”, Materials Science and Engineering A298 (2001) 158–165, Elsevier. [4] Xiaoliang Shi, Mang Wang , Wenzheng Zhai, Zhiwei Zhu,Zengshi Xu, Qiaoxin Zhang, Siyuan Song, Jie Yao, Abid Qamar ud Din, “ Friction and wear behaviour of NiAl-10wt%Ti3SiC2 composites”, wear 303(2013) 9-20,Elsevier. [5] H.X. Zhu, S.K. Liu, X.J. Bai, Z.J. Li, “Sliding wear behaviour of planar random zinc-alloy matrix composites”, wear 199 (1996) 82- 88, Elsevier. [6] Min-Soo Suh, Young-Hun Chae, Seock-Sam Kim, “Friction and wear behaviour of structural ceramics sliding against Zirconia”, wear (2008) 800-806, Elsevier. [7] M. Singh, D. P. Mondal, O. P. Modi, A. K. Jha, “Two-body abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite”, wear 253 (2002) 357-368, Elsevier. [8] Yasin Alemdag, Temel Savaskan, “Mechanical and tribological properties of Al-40Zn-Cu alloys”, Tribology International 42(2009) 176-182, Elsevier. [9] J.D. Bressan, D. P. Daros, A. Sokolowski, R. A. Mesquita, C.A. Barbosa, “ Influence of hardness on the wear resisitance of 17-4 PH stainless steel evaluated by the pin- on-disc testing”, Journal of material processing technology 205 (2008) 353-359, Elsevier. [10] Temel Savaskan, Osman Bican, Yasin Alemdag, “Developing aluminium-zinc-based a new alloy for tribological application”, J Mater Sci (2009) 44:1969-1976 [11] Temel Savaskan, Osman Bican, “Dry sliding friction and wear properties of Al-25Zn-3Cu-3Si alloy”, Tribology International 43(2010)1346-1352, Science direct. [12] Mechanical Engineering (NCAME-2012)”, World Journal of Science and Technology 2012, 2(4):53-59