SlideShare a Scribd company logo
1 of 7
Download to read offline
ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 02 ||February – 2016 ||
International Journal of Computational Engineering Research (IJCER)
www.ijceronline.com Open Access Journal Page 13
A Comparative Analysis of Additional Overhead Imposed by
Internet Protocol Security (IPsec) on IPv4 and IPv6 Enabled
Communication
1
Muhammed NuraYusuf, 2
Badamasi Imam Ya’u
1,2
Faculty of Science AbubakarTafawa Balewa University, P.M.B 0248 TafawaBalewa Way, Bauchi State,
Nigeria.
I. Introduction
It is a well-known fact that internet protocol version 4 (IPv4) the most widely adopted internet protocol as of
today for packet transmission is vulnerable to a number of attacks at the network layer of the open system
interconnect (OSI) and transmission control protocol/internet protocol (TCP/IP) protocol stack[1]. The optional
provision of Internet Protocol Security (IPSec)protocol on IPv4 deployment in technologies such as virtual
private network (VPN) has been in the rescue for the vulnerable operation of plain IPv4, the technology
provides immunity and protection against network layer attacks by ensuring secured end-to-end transmission
channel. In the other hand, IPv6 is yet another Internet protocol that is set to replace the use of IPv4completely
in the near future in the computer networking industry [2]. It has been around the corner for many years now, in
fact it services is already being exploited in some parts of the world. IPv6 can simply be seen as an upgrade
version of IPv4 [2]; it introduces so many features to address the defect of the existing IPv4. Among the new
features introduced is the compulsory implementation of IPSec protocol. This implies that by default IPv6 is
protected against any possible network layer attack.
Both Internet protocol version (IPv4) with Internet protocol security (IPSec) enabled and (IPv6) introduced
additional overheads to the actual IP datagram, which may be significant to performance parameters such as
end-2-end delay, throughput, round trip time etc. Hence, the need for a study/analysis to investigate the
overheads introduced by the protocols for their proper deployment and suitable selection of configuration
options among them, considering scarce resources such as bandwidth and processing speed etc.
The general objectives of the study was to provide a practical working, network administration guidance for
making a right selection of configurations under a pre-defined and strict networking condition, IPSec protocols
suite had to offer to suit a particular network environment while bearing in mind the cost/penalty of overheads
involvement on performance. While the basic objectives of this study include were to investigate the impact of
IPSec overheads on Ipv6 network compared to Ipv4 network, to evaluate the processing and space overheads
Abstract
IPSec, an Internet layer three (3)-security protocol suite is often characterising with introducing
an additional space and processing overhead when implemented on a network for secured
communication using either internet protocol version 4 or 6; IPv4 or IPv6. The use of Internet
protocol security (IPSec) on IPv4 is an alternative that offers solutions and addresses the
security vulnerabilities in network layer of the open system interconnect (OSI) and
transmission control protocol/internet protocol (TCP/IP) protocol stack. In IPv6, IPSec is one
among many other features added to the earlier Internet protocol to enhance efficiency and
security. This paper, set as its objective to reports on the impact of processing and space
overhead introduced by IPSec on both IPv4 and IPv6 in relation to packet end-to-end delay
based on different IPSec transformations with different authentication and encryption algorithms
deployed in different scenarios simulated using NS2. The experiment result reveals that the cost
of IPSec added overhead is relatively small when smaller packet sizes are involved for both
protocols in comparison with large packet sizes that were IPSec protected with the same
configuration as the smaller packet, unless in the cases whereby the packet was very large which
has to be fragmented. This paper can therefore, serve as a guide for network administrators to
trade up between processing cost and larger address space specifically for transmission
involving larger IP packets.
Keywords: end-to-end delay, Internet Protocols,IP Security, Overhead, Packets, Processing,
Space,
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 14
imposed by different cryptographic algorithms on IPv4 and IPv6 networks currently supported by IPSec. This is
because, [4] put forward that over time, the future of Internet communication is certain to be occupied by IPv6.
This is in spite of the fact that IPv4 is still in use for Internet communication, a scenario that could probably be
so for many more years ahead, the reasons for that is obtained from the post made by Nicolas Boillot 1st
Jun
2006 on IEEE Spectrum website ―But migration to the Internet IPv6 is proving to be painfully slow. Originally,
that was because it took a long time for computer scientists and engineers to hammer out the details. During that
initial delay, a stopgap, called Network Address Translation (NAT), did such a good job of relieving the need
for more IP addresses that it has become a permanent part of the IPv4 landscape. And it lets the administrators
of the world’s biggest networks continue to put off the dreary task of changing over to IPv6.‖ So will the
Internet and your home or work computer ever move to IPv6? Certainly that’s the future. Most of the Internet
routers that your data travels through can now accommodate IPv6. For some years, leading manufacturers such
as Alcatel, Avici, Cisco, Juniper, Lucent, and Nortel have been adding the necessary software to their wares. All
the leading operating systems—such as Windows, Mac OS X, and Linux—support IPv6, and the U.S.
Department of Defence has mandated IPv6 for its own networks by 2008.Yet a June 2005 survey by Juniper
Networks, Sunnyvale, Calif., found that ‖few organizations are in the process of migrating from the current
standard of IPv4 to the improved IPv6.‖ For one thing, IPv6 is not backward compatible with IPv4. This means
companies will have to support two protocols simultaneously.
IPv4 and IPv6 may have to coexist for some time. IPv4 can finally be jettisoned only when all carriers, ISPs,
routers, switches, firewalls, and servers accommodate packets that use IPv6. Asia will probably lead the way.
Demand for IPv6 is highest there, says Tony Downes, principal technologist at Data Connection Ltd., a London-
based maker of networking and communications products. Another option is running the both protocols as dual
stack, but running that depends on your network. But in most cases for an infrastructure network providing IP
transit, it's fairly easy. For a lot of content providers it won't be too complicated, but there are some things that
they're going to need to keep in mind, depending on the way their particular site is implemented. Where it's
going to be hardest is going to be the enterprise networks, because they've become so ingrained with the
technology known as network address translation and, you know, certain ways of doing things that just don't
scale to an IPv6 world[5]. An ISP ―Hurricane Electric is fully deployed in dual stack and completely ready to
serve everybody's‖
II. Materials and Method (The Experiment Design Approach).
Network Simulator 2 (NS2) a discrete event computer network simulator was used to design and simulate
the experiment. The experiment was performed on a network consisting of clients, a gateway and a server as
illustrated on the physical topology in figure 1. Clients’ access severs through a gateway via a duplex link
channel set up at 2mbs and 10ms. The queue limit size is setup at 10;transmission control protocol (TCP)
agents are attached to the clients’ nodes with the following parameters:
fid_ 1, window size-_ 50, maxburst _ 50,maxcwnd_ 50, while tcpbase_hdr_size was set at 64, and
aggressive maxburst was kept at 50. For the tcp packet size, it was set according to the IPSec configuration
setting being used.
Different sizes of the protected packet were calculated. File transfer protocol (FTP) traffic was attached to
the transmission control protocol (TCP)agent while a TCP sink is attached to receivers and connects to the
traffic agents as shown in figure 1.
Figure (1)The Experiment Network Design Diagram
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 15
III. The Simulation Experiments Scenarios.
The simulation experiments were conducted using NS2 by employing different scenarios. The scenarios
involved the two different IPSec modes (tunnel mode and transport mode of operations). Authentication and
encryption algorithm are deployed in a different scenario as outline below. The investigation is carried out on
end-to-end delay performance parameter; by examining FTP traffic in different IPSecenabled network scenarios
of IPv4 and IPv6. The scenarios include:
Test Case 1: IPv4 only, under the following scenarios.
a. Plain IPv4 Packet with no IPSec: in this scenario the packet is encapsulated plainly and transmitted
with out any IP security with IPv4 protocol
b. IPv4 with Authentication Header (AH): Here the send packet is transmitted using IPv4 transmission
protocol and encapsulated in IPSec header enforcing and ensuring authentication only.
c. IPv4 with Encapsulation Security Payload (ESP): while in this scenario the send packet is transmitted
using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring confidentiality of the
datagram only.
d. IPv4 with both AH & ESP: while in this scenario the send packet is transmitted using IPv4
transmission protocol and encapsulated in IPSec header enforcing and ensuring both authentication and
confidentiality of the datagram.
Test case 2: IPv6 only, under the following scenarios.
a. Plain Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted
with out any modified IP security with IPv6 protocol
b. IPv6 with AH (e.g.MD5, SHA-1): Here the send packet is transmitted using IPv6 transmission protocol
and encapsulated in IPSec header enforcing and ensuring authentication only.
c. IPv6 with ESP: while in this scenario the send packet is transmitted using IPv6 transmission protocol
and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only.
d. IPv6 with Both AH and ESP: while in this scenario the send packet is transmitted using IPv6
transmission protocol and encapsulated in IPSec header enforcing and ensuring both authentication and
confidentiality of the datagram.
Test case 3: IPv4 vs. IPv6 under the following scenarios (For Authentication Check).
a. Plain IPv4 with no IPSec: in this scenario the packet is encapsulated plainly and transmitted with out
any IP security with IPv4 protocol
b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with
out any modified IP security with IPv6 protocol
c. IPv4 with AH: Here the send packet is transmitted using IPv4 transmission protocol and encapsulated
in IPSec header enforcing and ensuring authentication only.
d. IPv6 with AH: Here the send packet is transmitted using IPv6 transmission protocol and encapsulated
in IPSec header enforcing and ensuring authentication only.
Test case 4: IPv4 vs. IPv6 under the following scenarios (for confidentiality Check).
a. Plain IPv4: in this scenario the packet is encapsulated plainly and transmitted with out any IP security
with IPv4 protocol
b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with
out any modified IP security with IPv6 protocol
c. IPv4 with ESP: while in this scenario the send packet is transmitted using IPv4 transmission protocol
and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only.
d. IPv6 with ESP: while in this scenario the send packet is transmitted using IPv6 transmission protocol
and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only.
Test case 5: IPv4 vs. IPv6 under the following scenarios (For Combine Authentication And
Confidentiality Check)
a. Plain IPv4 Packet with no IPSec:in this scenario the packet is encapsulated plainly and transmitted with
out any IP security with IPv4 protocol
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 16
b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with
out any modified IP security with IPv6 protocol
c. IPv4 with AH plus ESP (3DES + MD5, AES + MD5): in this scenario the send packet is transmitted
using IPv4 transmission protocol and encapsulated in IPSec header enforcing both authentication and ensuring
confidentiality of the datagram.
d. IPv6 with AH plus ESP (3DES + MD5, AES + MD5) while in this scenario the send packet is
transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing both authentication
and ensuring confidentiality of the datagram.
IV. Results and Discussion.
To accomplish the objectives setup by the paper as outlined. Different experiment scenarios involving
distinct combination of IPSec mode of operation, authentication and encryption algorithms as shown were
configured, Regardless of the fact that IPSec ensures effective and efficient information protection of network
connectivity between two endpoints, yet there exists is a worrisome cost of overheads associated with it in terms
of latency, router processing and memory, in addition to processing support for other networking functions [6].
However, the scenarios were deployed to investigate their discrepancies and similarities with respect to Internet
protocol versions 4 and 6. Similarly, the performance metric investigated is: end-to-end delay.
AWK scripting language, an interpreted programming language was used to extract, process and manipulate
the NS2 trace file output, it was used to measure and calculates the end-to-end delay experienced during the
transmission of the FTP traffic of different file sizes under the different IPSecconfiguration deployed. The file
sizes used are 1byte, 10bytes 100bytes, 1024bytes 10240bytes, 102400bytes, 1048576bytes, 1024460bytes, and
104857600bytes plus the IPSec header of the IPSec transform employed. The data is then exported, and
analysedto illustrate the behaviour of the IP protocols with respect to different IPSec transform.
Earlier studies have shown that the overheads introduced by IPSec on networks vary with respect to the
adopted IPSec security scenario; the algorithms used for its deployments, the transmitting medium and the file
size. For instance, algorithms like HMAC-SHA1 introduced an additional 9% increase in packet transfer time
than HMAC-MD5. Hence network load involved due to AH authentication and ESP encryption on small files
had a greater ratio of increase when relate to authentication and encryption by ESP alone. This indicates that the
choice of ESP for authentication purpose ahead of traditional AH when both encryption and authentication are
needed for small files is better; especially when the number of encryption and authentication occurrences is
significant and the bandwidth is limited. Moreover, wireless transmission medium significantly suffer more
from IPSec overheads with respect to transfer time. This is because more time is needed to affect the transfer
compared to the wired medium [7]
[1]in similar study indicated that IPSec overheads affects overall performance with respect to packet transfer
time and increase in the network load, they also stated that these overheads are relative to different protocol, file
size, algorithm, network traffic and services employed on the network. The research gap here is that the study
has not go further to carry out specific investigation on how different file sizes/user datagram secured using
different authentication (AH) and encapsulation Security pay load (ESP) algorithm transmitted using different
either of the following protocols; (IPv4 or IPv6) can affect end to end delay; although [8] investigated the
effects of some these parameters but with respect to bandwidth and processing time, ignoring the end-to-end
delay which our study considered. Other performance matrix such as throughput were earlier confirmed to
suffer depreciation due encryption and decryption process of datagram for authentication and confidentiality
check of packets, because both the ciphering and IPSec encapsulation enlarges the eventual packet that will be
transmitted thus building up space overheads. [9]
The result presented in Figure (2) shows the end-to-end delay experience while using IPv6, it could be
noticed that based on the result displayed on the graph there was insignificant/small difference in the average
end-to-end delay between, when AH only is used or when ESP only is used or when both AH plus ESP put
together or when no IPSec was used at all. This happened when the packet size was between 1byte to
102400byte. Noticeable/significant difference in the end-to-end delay among the different IPSec configuration
employed with respect to the Internet protocol in play began to emerge and show clearly when the file size was
large. The packet transmission experience higher delay, when AH & ESP put together; followed by a situation
when ESP header was used.
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 17
The same trend in the average delay is noticed when IPv4 was used as Figure (3) indicated. The results from
figure (3) and figure (2) suggested that both IPv4 and IPv6 behave alike with regard to addition of IPSec header
on the packet. They both experience low end–to-end delay when the file size was small, small between 1byte
and 102400byte and the delay was significant/small when the packet size increased to 102400byte upward. In
both cases the end-to-end delay was higher when AH plus ESP was used to provide the IP security. Similarly,
AH when used alone bring on lower delay compared to when ESP is used alone.
However, the result displayed in Figure (4) compares the difference in the average end-to-end delay between
IPv4 and IPv6 when AH header was added to the packet. The result indicated that IPv6 with AH caused higher
end-to-end delay than IPv4. Figure (5) and Figure (6) show the difference in the situation when ESP and when
AH plus ESP were used respectively. In both cases IPv6 end-to-end delay was higher than the end-to-end delay
incurred with IPv4. This of course, could be attributed to the space and processing overhead cost as a result of
authentication and encryption of packet during transmission was higher in IPv6 than in IPv4 in all cases, even
though, IPSec header added the same number of bytes on both IPv4 and IPv6. The reason in this case was that
the packet is very large that it has to be fragmented, as such IPv6 experienced higher overhead than IPv4. This
happened due to the fact that the manner at which IPv6 handles fragmented packet when IPSec is involved was
completely different with the way IPv4 tackles it. IPv6 applied IPSec header to all fragmented portion of the
packet while IPv4 applied it to the very initial fragment only.
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 18
Figure (4) Test Case 3 Result (IPv4 vs. IPv6 with AH only)
0.0
100.0
200.0
300.0
400.0
1byte
10byte
100byte
1024byte
10240byte
102400byte
1048576
byte
10485760
byte
104857600
byte
Averageend-to-enddelay
inseconds Internet Protocol version 4 vs 6 with IPSect AH
IPv4 Plain Packet with no IPSec IPv4 With AH
IPv6 Plain Packet with no IPSec IPv6 With AH
A Comparative Analysis of Additional Overhead Imposed…
www.ijceronline.com Open Access Journal Page 19
V. Conclusion
This paper as initially stated and set as its objective to reports on the impact of processing and space
overhead introduced by internet protocol security (IPSec) on both internet protocol version 4 and 6, (IPv4 and
IPv6) in relation to packet end-to-end delay based on different IPSec transformations under different
authentication and encryption algorithms deployed in different scenarios simulated using NS2, had
demonstrated how the said IPSec headers under different protocol configurations setup introduced the additional
processing and space overhead with respect to different file size on the two different Internet protocols I.e.
version 4 and 6; (IPv4 and IPv6). The idea is to investigate the impact of IPSec overheads on Ipv6 network
compared to Ipv4 network, to evaluate the processing and space overheads imposed by different cryptographic
algorithms on IPv4 and IPv6 networks currently supported by IPSec.
The study indicated that the cost of IPSec added overhead was smaller when smaller packet sizes were
involved for both protocols compare to larger packet sizes that are IPSec protected with the same configuration
as the smaller packet. The only exception wasin the cases whereby the packet is very large that it has to be
fragmented. In such case IPv6 experienced higher overhead than IPv4. This happened due to the fact that the
manner at which IPv6 handles fragmented packet when IPSec is involved was completely different with the way
IPv4 tackles it. IPv6 applied IPSec header to all fragmented portion of the packet while IPv4 applied it to the
very initial fragment only.Therefore,the general objectives of the study was to provide a practical working,
network administration guidance for making a right selection of configurations under a pre-defined and strict
networking condition, IPSec protocols suite had to offer to suit a particular network environment while bearing
in mind the cost/penalty of overheads involvement on performance.
References
[1] A.A. Muhammad, M. Zaka-Ul, T. Usman, S.M. Ahsan, A.N. Muhammad, R. Imran, and A. Muhammad. Overhead Analysis of
Security Implementation Using IPSec. (PP 1-7)(2009)
[2] K.S.Mohd, H. Rosilah, and P. Ahmed P. A Comparative Review of IPv4 and IPv6 for Research Test Bed. 2009 International
Conference on Electrical Engineering and Informatics 5-7 Selangor, Malaysia, Institute of Electrical Electronics Engineers (IEEE
Xplore Digital Library), pp. 1-7, August 2009.
[3] L. Lambros.andK. Peter. Integrating Voice over IP services in IPv4 and IPv6 networks. Proceedings of the International Multi-
Conference on Computing in the Global Information Technology (ICCGI'07) Institute of Electrical Electronics Engineers (IEEE
Xplore Digital Library), pp.1-6, 2007
[4] R. Radhakrishnan.,M. Jamil., S. Mehfuz., and Moinuddin; Security issues in IPv6, Third International Conference on Networking
and Services (ICNS), 2007, pp.110, 19-25, 2007,
[5] E. Gregory. Iterative Block Ciphers’ Effects on Quality of Experience for VoIPUnicast Transmissions under Different Coding
Schemes. A thesis submitted to the University of Bedfordshire in partial fulfillment of the requirements for the degree of Doctor
of Philosophy November 2010.
[6] S. Iftikhar.andP. Atul. Cost Overhead Analysis Associated with IPSec in the Next Generation Satellite Network.IEEEAC paper
#1647, Version 2, Updated December 16, 2007 Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp. 1-
6, 2007.
[7] C.H. George.,J. Nathaniel., I.V. Davis, F. Scott. andF. Midkif. IPSec Overhead in Wireline and Wireless Networks for Web and
Email Applications, IEEE Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp. 1-5, 2003.
[8] S.P.Meenakshi and S.V. Raghavan. Impact of IPSec Overhead on Web Application Servers, Institute of Electrical Electronics
Engineers (IEEE Xplore Digital Library), pp 1-6, 2006.
[9] X. Christos.,L. Nikolaos., M. Lazaros, and S. Ioannis. A generic characteristic of the overheads imposed by IPSec and associated
cryptographic algorithms, ScienceDirect computer networks 50(2006):3225-3241, 2006.

More Related Content

What's hot

Performance Analysis of Ipv4 Ipv6 Transition Techniques
Performance Analysis of Ipv4 Ipv6 Transition TechniquesPerformance Analysis of Ipv4 Ipv6 Transition Techniques
Performance Analysis of Ipv4 Ipv6 Transition TechniquesAndy Juan Sarango Veliz
 
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPT
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPTImplementation of isp mpls backbone network on i pv6 using 6 pe routers main PPT
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPTSatish Kumar
 
Implementation of Steganographic Method Based on IPv4 Identification Field ov...
Implementation of Steganographic Method Based on IPv4 Identification Field ov...Implementation of Steganographic Method Based on IPv4 Identification Field ov...
Implementation of Steganographic Method Based on IPv4 Identification Field ov...IJERA Editor
 
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACK
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACKAN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACK
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACKIJCNCJournal
 
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODS
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODSREVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODS
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODSIJNSA Journal
 
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...IRJET Journal
 
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...CSCJournals
 
Performance Evaluation of Ipv4, Ipv6 Migration Techniques
Performance Evaluation of Ipv4, Ipv6 Migration TechniquesPerformance Evaluation of Ipv4, Ipv6 Migration Techniques
Performance Evaluation of Ipv4, Ipv6 Migration TechniquesIOSR Journals
 
Systems Support for Many Task Computing
Systems Support for Many Task ComputingSystems Support for Many Task Computing
Systems Support for Many Task ComputingEric Van Hensbergen
 
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...IJECEIAES
 
Benefits of programmable topological routing policies in RINA-enabled large s...
Benefits of programmable topological routing policies in RINA-enabled large s...Benefits of programmable topological routing policies in RINA-enabled large s...
Benefits of programmable topological routing policies in RINA-enabled large s...ICT PRISTINE
 

What's hot (18)

14 564
14 56414 564
14 564
 
Performance Analysis of Ipv4 Ipv6 Transition Techniques
Performance Analysis of Ipv4 Ipv6 Transition TechniquesPerformance Analysis of Ipv4 Ipv6 Transition Techniques
Performance Analysis of Ipv4 Ipv6 Transition Techniques
 
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPT
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPTImplementation of isp mpls backbone network on i pv6 using 6 pe routers main PPT
Implementation of isp mpls backbone network on i pv6 using 6 pe routers main PPT
 
Implementation of Steganographic Method Based on IPv4 Identification Field ov...
Implementation of Steganographic Method Based on IPv4 Identification Field ov...Implementation of Steganographic Method Based on IPv4 Identification Field ov...
Implementation of Steganographic Method Based on IPv4 Identification Field ov...
 
1670 1673
1670 16731670 1673
1670 1673
 
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACK
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACKAN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACK
AN EXPERIMENTAL STUDY OF IOT NETWORKS UNDER INTERNAL ROUTING ATTACK
 
H04845157
H04845157H04845157
H04845157
 
G04844450
G04844450G04844450
G04844450
 
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODS
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODSREVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODS
REVIEW ON IPV6 SECURITY VULNERABILITY ISSUES AND MITIGATION METHODS
 
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...
IRJET- Assessment of Network Protocol Packet Analysis in IPV4 and IPV6 on Loc...
 
Ip sec
Ip secIp sec
Ip sec
 
Slideshare
SlideshareSlideshare
Slideshare
 
publication
publicationpublication
publication
 
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...
Throughput Analysis of IEEE WLAN "802.11 ac" Under WEP, WPA, and WPA2 Securit...
 
Performance Evaluation of Ipv4, Ipv6 Migration Techniques
Performance Evaluation of Ipv4, Ipv6 Migration TechniquesPerformance Evaluation of Ipv4, Ipv6 Migration Techniques
Performance Evaluation of Ipv4, Ipv6 Migration Techniques
 
Systems Support for Many Task Computing
Systems Support for Many Task ComputingSystems Support for Many Task Computing
Systems Support for Many Task Computing
 
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...
Design and implementation of proposed 320 bit RC6-cascaded encryption/decrypt...
 
Benefits of programmable topological routing policies in RINA-enabled large s...
Benefits of programmable topological routing policies in RINA-enabled large s...Benefits of programmable topological routing policies in RINA-enabled large s...
Benefits of programmable topological routing policies in RINA-enabled large s...
 

Viewers also liked

Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...
Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...
Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...ijceronline
 
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...ijceronline
 
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...ijceronline
 
Dimension of Land Use Conversion in Ado-Ekiti Metropolis
Dimension of Land Use Conversion in Ado-Ekiti MetropolisDimension of Land Use Conversion in Ado-Ekiti Metropolis
Dimension of Land Use Conversion in Ado-Ekiti Metropolisijceronline
 
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...ijceronline
 
Based On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeter
Based On Oil Analysis Applicable To Transportation Fleets Using A ViscosimeterBased On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeter
Based On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeterijceronline
 
Stabilization of soil using Rice Husk Ash
Stabilization of soil using Rice Husk AshStabilization of soil using Rice Husk Ash
Stabilization of soil using Rice Husk Ashijceronline
 
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...ijceronline
 
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...ijceronline
 
Firefly Algorithm based Optimal Reactive Power Flow
Firefly Algorithm based Optimal Reactive Power FlowFirefly Algorithm based Optimal Reactive Power Flow
Firefly Algorithm based Optimal Reactive Power Flowijceronline
 
Chronic diseases based on cloud computing platform (hypertension) intelligent...
Chronic diseases based on cloud computing platform (hypertension) intelligent...Chronic diseases based on cloud computing platform (hypertension) intelligent...
Chronic diseases based on cloud computing platform (hypertension) intelligent...ijceronline
 
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...ijceronline
 
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...ijceronline
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...ijceronline
 
Significance and Need of Computational Analysis and Finite Element Modelling ...
Significance and Need of Computational Analysis and Finite Element Modelling ...Significance and Need of Computational Analysis and Finite Element Modelling ...
Significance and Need of Computational Analysis and Finite Element Modelling ...ijceronline
 
Information Model and Its Element for Displaying Information on Technical Con...
Information Model and Its Element for Displaying Information on Technical Con...Information Model and Its Element for Displaying Information on Technical Con...
Information Model and Its Element for Displaying Information on Technical Con...ijceronline
 
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...ijceronline
 
A Paper on Problems Generated By Junk Food in India
A Paper on Problems Generated By Junk Food in IndiaA Paper on Problems Generated By Junk Food in India
A Paper on Problems Generated By Junk Food in Indiaijceronline
 
Description of condensation and evaporation processes in cylindrical-type por...
Description of condensation and evaporation processes in cylindrical-type por...Description of condensation and evaporation processes in cylindrical-type por...
Description of condensation and evaporation processes in cylindrical-type por...ijceronline
 
Effect on heat transfer for laminar flow over Backward Facing Step with squar...
Effect on heat transfer for laminar flow over Backward Facing Step with squar...Effect on heat transfer for laminar flow over Backward Facing Step with squar...
Effect on heat transfer for laminar flow over Backward Facing Step with squar...ijceronline
 

Viewers also liked (20)

Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...
Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...
Mining Environment Harmful Gas Detection And Alarm System Using Kiel And Prot...
 
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...
Comparison ofTraditional-Trainingon theOpen E-TrainingPlatform s and Traditio...
 
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...
Fault Vertical Segmentation Growth and Determination of Oil Source Fault in F...
 
Dimension of Land Use Conversion in Ado-Ekiti Metropolis
Dimension of Land Use Conversion in Ado-Ekiti MetropolisDimension of Land Use Conversion in Ado-Ekiti Metropolis
Dimension of Land Use Conversion in Ado-Ekiti Metropolis
 
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...
Learner Ontological Model for Intelligent Virtual Collaborative Learning Envi...
 
Based On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeter
Based On Oil Analysis Applicable To Transportation Fleets Using A ViscosimeterBased On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeter
Based On Oil Analysis Applicable To Transportation Fleets Using A Viscosimeter
 
Stabilization of soil using Rice Husk Ash
Stabilization of soil using Rice Husk AshStabilization of soil using Rice Husk Ash
Stabilization of soil using Rice Husk Ash
 
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...
Simulation of the Hydrodynamic Conditions of a Rotating Cage for Evaluating C...
 
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
 
Firefly Algorithm based Optimal Reactive Power Flow
Firefly Algorithm based Optimal Reactive Power FlowFirefly Algorithm based Optimal Reactive Power Flow
Firefly Algorithm based Optimal Reactive Power Flow
 
Chronic diseases based on cloud computing platform (hypertension) intelligent...
Chronic diseases based on cloud computing platform (hypertension) intelligent...Chronic diseases based on cloud computing platform (hypertension) intelligent...
Chronic diseases based on cloud computing platform (hypertension) intelligent...
 
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...
Sidelobe reduction in Synthetic Aperture Radar (SAR) using Multi Stages of Li...
 
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
Energy-Mass-Size balance model for dynamic control of a wet open circuit grin...
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...
 
Significance and Need of Computational Analysis and Finite Element Modelling ...
Significance and Need of Computational Analysis and Finite Element Modelling ...Significance and Need of Computational Analysis and Finite Element Modelling ...
Significance and Need of Computational Analysis and Finite Element Modelling ...
 
Information Model and Its Element for Displaying Information on Technical Con...
Information Model and Its Element for Displaying Information on Technical Con...Information Model and Its Element for Displaying Information on Technical Con...
Information Model and Its Element for Displaying Information on Technical Con...
 
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...
EOQ Inventory Models for Deteriorating Item with Weibull Deterioration and Ti...
 
A Paper on Problems Generated By Junk Food in India
A Paper on Problems Generated By Junk Food in IndiaA Paper on Problems Generated By Junk Food in India
A Paper on Problems Generated By Junk Food in India
 
Description of condensation and evaporation processes in cylindrical-type por...
Description of condensation and evaporation processes in cylindrical-type por...Description of condensation and evaporation processes in cylindrical-type por...
Description of condensation and evaporation processes in cylindrical-type por...
 
Effect on heat transfer for laminar flow over Backward Facing Step with squar...
Effect on heat transfer for laminar flow over Backward Facing Step with squar...Effect on heat transfer for laminar flow over Backward Facing Step with squar...
Effect on heat transfer for laminar flow over Backward Facing Step with squar...
 

Similar to A Comparative Analysis of Additional Overhead Imposed by Internet Protocol Security (IPsec) on IPv4 and IPv6 Enabled Communication

Da3210751081
Da3210751081Da3210751081
Da3210751081IJMER
 
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...IOSR Journals
 
Look at ipv6 security advantages over ipv4
Look at ipv6 security advantages over ipv4Look at ipv6 security advantages over ipv4
Look at ipv6 security advantages over ipv4Alexander Decker
 
Procedia Computer Science 46 ( 2015 ) 1072 – 1078 187.docx
Procedia Computer Science   46  ( 2015 )  1072 – 1078 187.docxProcedia Computer Science   46  ( 2015 )  1072 – 1078 187.docx
Procedia Computer Science 46 ( 2015 ) 1072 – 1078 187.docxAASTHA76
 
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologies
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls TechnologiesPerformance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologies
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologiesiosrjce
 
IRJET- Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIP
IRJET-  	  Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIPIRJET-  	  Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIP
IRJET- Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIPIRJET Journal
 
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...IJCNCJournal
 
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...IJCNCJournal
 
A Scenario-Based Review Of IPv6 Transition Tools
A Scenario-Based Review Of IPv6 Transition ToolsA Scenario-Based Review Of IPv6 Transition Tools
A Scenario-Based Review Of IPv6 Transition ToolsTye Rausch
 
Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things IJECEIAES
 
A Survey On Next Generation Internet Protocol IPv6
A Survey On Next Generation Internet Protocol  IPv6A Survey On Next Generation Internet Protocol  IPv6
A Survey On Next Generation Internet Protocol IPv6Carrie Romero
 
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)Vanitha Joshi
 

Similar to A Comparative Analysis of Additional Overhead Imposed by Internet Protocol Security (IPsec) on IPv4 and IPv6 Enabled Communication (20)

Da3210751081
Da3210751081Da3210751081
Da3210751081
 
N017147679
N017147679N017147679
N017147679
 
M017147275
M017147275M017147275
M017147275
 
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...
Performance Evaluation of IPv4 Vs Ipv6 and Tunnelling Techniques Using Optimi...
 
Look at ipv6 security advantages over ipv4
Look at ipv6 security advantages over ipv4Look at ipv6 security advantages over ipv4
Look at ipv6 security advantages over ipv4
 
Procedia Computer Science 46 ( 2015 ) 1072 – 1078 187.docx
Procedia Computer Science   46  ( 2015 )  1072 – 1078 187.docxProcedia Computer Science   46  ( 2015 )  1072 – 1078 187.docx
Procedia Computer Science 46 ( 2015 ) 1072 – 1078 187.docx
 
my project publication
my project publicationmy project publication
my project publication
 
A010630103
A010630103A010630103
A010630103
 
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologies
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls TechnologiesPerformance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologies
Performance Evaluation and Comparisons for IPv4&IPv6 using mpls Technologies
 
IRJET- Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIP
IRJET-  	  Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIPIRJET-  	  Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIP
IRJET- Evaluating the Impact of IPv4 to IPv6 Tunneling with MPLS on VOIP
 
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
 
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
PERFORMANCE EVALUATION OF OSPF AND RIP ON IPV4 & IPV6 TECHNOLOGY USING G.711 ...
 
A Scenario-Based Review Of IPv6 Transition Tools
A Scenario-Based Review Of IPv6 Transition ToolsA Scenario-Based Review Of IPv6 Transition Tools
A Scenario-Based Review Of IPv6 Transition Tools
 
Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things Efficient End-to-End Secure Key Management Protocol for Internet of Things
Efficient End-to-End Secure Key Management Protocol for Internet of Things
 
Ip sec technote-en
Ip sec technote-enIp sec technote-en
Ip sec technote-en
 
Dual stack approach ipv4 ipv6
Dual stack approach ipv4 ipv6Dual stack approach ipv4 ipv6
Dual stack approach ipv4 ipv6
 
A Survey On Next Generation Internet Protocol IPv6
A Survey On Next Generation Internet Protocol  IPv6A Survey On Next Generation Internet Protocol  IPv6
A Survey On Next Generation Internet Protocol IPv6
 
main_phase1 _3.pptx
main_phase1 _3.pptxmain_phase1 _3.pptx
main_phase1 _3.pptx
 
RASHMI VT REPORT
RASHMI VT REPORTRASHMI VT REPORT
RASHMI VT REPORT
 
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)
Implementation of IPSec VPN on Cisco routers and Configuring it on ISP. (1)
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 

A Comparative Analysis of Additional Overhead Imposed by Internet Protocol Security (IPsec) on IPv4 and IPv6 Enabled Communication

  • 1. ISSN (e): 2250 – 3005 || Volume, 06 || Issue, 02 ||February – 2016 || International Journal of Computational Engineering Research (IJCER) www.ijceronline.com Open Access Journal Page 13 A Comparative Analysis of Additional Overhead Imposed by Internet Protocol Security (IPsec) on IPv4 and IPv6 Enabled Communication 1 Muhammed NuraYusuf, 2 Badamasi Imam Ya’u 1,2 Faculty of Science AbubakarTafawa Balewa University, P.M.B 0248 TafawaBalewa Way, Bauchi State, Nigeria. I. Introduction It is a well-known fact that internet protocol version 4 (IPv4) the most widely adopted internet protocol as of today for packet transmission is vulnerable to a number of attacks at the network layer of the open system interconnect (OSI) and transmission control protocol/internet protocol (TCP/IP) protocol stack[1]. The optional provision of Internet Protocol Security (IPSec)protocol on IPv4 deployment in technologies such as virtual private network (VPN) has been in the rescue for the vulnerable operation of plain IPv4, the technology provides immunity and protection against network layer attacks by ensuring secured end-to-end transmission channel. In the other hand, IPv6 is yet another Internet protocol that is set to replace the use of IPv4completely in the near future in the computer networking industry [2]. It has been around the corner for many years now, in fact it services is already being exploited in some parts of the world. IPv6 can simply be seen as an upgrade version of IPv4 [2]; it introduces so many features to address the defect of the existing IPv4. Among the new features introduced is the compulsory implementation of IPSec protocol. This implies that by default IPv6 is protected against any possible network layer attack. Both Internet protocol version (IPv4) with Internet protocol security (IPSec) enabled and (IPv6) introduced additional overheads to the actual IP datagram, which may be significant to performance parameters such as end-2-end delay, throughput, round trip time etc. Hence, the need for a study/analysis to investigate the overheads introduced by the protocols for their proper deployment and suitable selection of configuration options among them, considering scarce resources such as bandwidth and processing speed etc. The general objectives of the study was to provide a practical working, network administration guidance for making a right selection of configurations under a pre-defined and strict networking condition, IPSec protocols suite had to offer to suit a particular network environment while bearing in mind the cost/penalty of overheads involvement on performance. While the basic objectives of this study include were to investigate the impact of IPSec overheads on Ipv6 network compared to Ipv4 network, to evaluate the processing and space overheads Abstract IPSec, an Internet layer three (3)-security protocol suite is often characterising with introducing an additional space and processing overhead when implemented on a network for secured communication using either internet protocol version 4 or 6; IPv4 or IPv6. The use of Internet protocol security (IPSec) on IPv4 is an alternative that offers solutions and addresses the security vulnerabilities in network layer of the open system interconnect (OSI) and transmission control protocol/internet protocol (TCP/IP) protocol stack. In IPv6, IPSec is one among many other features added to the earlier Internet protocol to enhance efficiency and security. This paper, set as its objective to reports on the impact of processing and space overhead introduced by IPSec on both IPv4 and IPv6 in relation to packet end-to-end delay based on different IPSec transformations with different authentication and encryption algorithms deployed in different scenarios simulated using NS2. The experiment result reveals that the cost of IPSec added overhead is relatively small when smaller packet sizes are involved for both protocols in comparison with large packet sizes that were IPSec protected with the same configuration as the smaller packet, unless in the cases whereby the packet was very large which has to be fragmented. This paper can therefore, serve as a guide for network administrators to trade up between processing cost and larger address space specifically for transmission involving larger IP packets. Keywords: end-to-end delay, Internet Protocols,IP Security, Overhead, Packets, Processing, Space,
  • 2. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 14 imposed by different cryptographic algorithms on IPv4 and IPv6 networks currently supported by IPSec. This is because, [4] put forward that over time, the future of Internet communication is certain to be occupied by IPv6. This is in spite of the fact that IPv4 is still in use for Internet communication, a scenario that could probably be so for many more years ahead, the reasons for that is obtained from the post made by Nicolas Boillot 1st Jun 2006 on IEEE Spectrum website ―But migration to the Internet IPv6 is proving to be painfully slow. Originally, that was because it took a long time for computer scientists and engineers to hammer out the details. During that initial delay, a stopgap, called Network Address Translation (NAT), did such a good job of relieving the need for more IP addresses that it has become a permanent part of the IPv4 landscape. And it lets the administrators of the world’s biggest networks continue to put off the dreary task of changing over to IPv6.‖ So will the Internet and your home or work computer ever move to IPv6? Certainly that’s the future. Most of the Internet routers that your data travels through can now accommodate IPv6. For some years, leading manufacturers such as Alcatel, Avici, Cisco, Juniper, Lucent, and Nortel have been adding the necessary software to their wares. All the leading operating systems—such as Windows, Mac OS X, and Linux—support IPv6, and the U.S. Department of Defence has mandated IPv6 for its own networks by 2008.Yet a June 2005 survey by Juniper Networks, Sunnyvale, Calif., found that ‖few organizations are in the process of migrating from the current standard of IPv4 to the improved IPv6.‖ For one thing, IPv6 is not backward compatible with IPv4. This means companies will have to support two protocols simultaneously. IPv4 and IPv6 may have to coexist for some time. IPv4 can finally be jettisoned only when all carriers, ISPs, routers, switches, firewalls, and servers accommodate packets that use IPv6. Asia will probably lead the way. Demand for IPv6 is highest there, says Tony Downes, principal technologist at Data Connection Ltd., a London- based maker of networking and communications products. Another option is running the both protocols as dual stack, but running that depends on your network. But in most cases for an infrastructure network providing IP transit, it's fairly easy. For a lot of content providers it won't be too complicated, but there are some things that they're going to need to keep in mind, depending on the way their particular site is implemented. Where it's going to be hardest is going to be the enterprise networks, because they've become so ingrained with the technology known as network address translation and, you know, certain ways of doing things that just don't scale to an IPv6 world[5]. An ISP ―Hurricane Electric is fully deployed in dual stack and completely ready to serve everybody's‖ II. Materials and Method (The Experiment Design Approach). Network Simulator 2 (NS2) a discrete event computer network simulator was used to design and simulate the experiment. The experiment was performed on a network consisting of clients, a gateway and a server as illustrated on the physical topology in figure 1. Clients’ access severs through a gateway via a duplex link channel set up at 2mbs and 10ms. The queue limit size is setup at 10;transmission control protocol (TCP) agents are attached to the clients’ nodes with the following parameters: fid_ 1, window size-_ 50, maxburst _ 50,maxcwnd_ 50, while tcpbase_hdr_size was set at 64, and aggressive maxburst was kept at 50. For the tcp packet size, it was set according to the IPSec configuration setting being used. Different sizes of the protected packet were calculated. File transfer protocol (FTP) traffic was attached to the transmission control protocol (TCP)agent while a TCP sink is attached to receivers and connects to the traffic agents as shown in figure 1. Figure (1)The Experiment Network Design Diagram
  • 3. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 15 III. The Simulation Experiments Scenarios. The simulation experiments were conducted using NS2 by employing different scenarios. The scenarios involved the two different IPSec modes (tunnel mode and transport mode of operations). Authentication and encryption algorithm are deployed in a different scenario as outline below. The investigation is carried out on end-to-end delay performance parameter; by examining FTP traffic in different IPSecenabled network scenarios of IPv4 and IPv6. The scenarios include: Test Case 1: IPv4 only, under the following scenarios. a. Plain IPv4 Packet with no IPSec: in this scenario the packet is encapsulated plainly and transmitted with out any IP security with IPv4 protocol b. IPv4 with Authentication Header (AH): Here the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring authentication only. c. IPv4 with Encapsulation Security Payload (ESP): while in this scenario the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only. d. IPv4 with both AH & ESP: while in this scenario the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring both authentication and confidentiality of the datagram. Test case 2: IPv6 only, under the following scenarios. a. Plain Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with out any modified IP security with IPv6 protocol b. IPv6 with AH (e.g.MD5, SHA-1): Here the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing and ensuring authentication only. c. IPv6 with ESP: while in this scenario the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only. d. IPv6 with Both AH and ESP: while in this scenario the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing and ensuring both authentication and confidentiality of the datagram. Test case 3: IPv4 vs. IPv6 under the following scenarios (For Authentication Check). a. Plain IPv4 with no IPSec: in this scenario the packet is encapsulated plainly and transmitted with out any IP security with IPv4 protocol b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with out any modified IP security with IPv6 protocol c. IPv4 with AH: Here the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring authentication only. d. IPv6 with AH: Here the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing and ensuring authentication only. Test case 4: IPv4 vs. IPv6 under the following scenarios (for confidentiality Check). a. Plain IPv4: in this scenario the packet is encapsulated plainly and transmitted with out any IP security with IPv4 protocol b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with out any modified IP security with IPv6 protocol c. IPv4 with ESP: while in this scenario the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only. d. IPv6 with ESP: while in this scenario the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing and ensuring confidentiality of the datagram only. Test case 5: IPv4 vs. IPv6 under the following scenarios (For Combine Authentication And Confidentiality Check) a. Plain IPv4 Packet with no IPSec:in this scenario the packet is encapsulated plainly and transmitted with out any IP security with IPv4 protocol
  • 4. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 16 b. Unmodified IPv6: Plain IPv6, in this scenario the packet is encapsulated plainly and transmitted with out any modified IP security with IPv6 protocol c. IPv4 with AH plus ESP (3DES + MD5, AES + MD5): in this scenario the send packet is transmitted using IPv4 transmission protocol and encapsulated in IPSec header enforcing both authentication and ensuring confidentiality of the datagram. d. IPv6 with AH plus ESP (3DES + MD5, AES + MD5) while in this scenario the send packet is transmitted using IPv6 transmission protocol and encapsulated in IPSec header enforcing both authentication and ensuring confidentiality of the datagram. IV. Results and Discussion. To accomplish the objectives setup by the paper as outlined. Different experiment scenarios involving distinct combination of IPSec mode of operation, authentication and encryption algorithms as shown were configured, Regardless of the fact that IPSec ensures effective and efficient information protection of network connectivity between two endpoints, yet there exists is a worrisome cost of overheads associated with it in terms of latency, router processing and memory, in addition to processing support for other networking functions [6]. However, the scenarios were deployed to investigate their discrepancies and similarities with respect to Internet protocol versions 4 and 6. Similarly, the performance metric investigated is: end-to-end delay. AWK scripting language, an interpreted programming language was used to extract, process and manipulate the NS2 trace file output, it was used to measure and calculates the end-to-end delay experienced during the transmission of the FTP traffic of different file sizes under the different IPSecconfiguration deployed. The file sizes used are 1byte, 10bytes 100bytes, 1024bytes 10240bytes, 102400bytes, 1048576bytes, 1024460bytes, and 104857600bytes plus the IPSec header of the IPSec transform employed. The data is then exported, and analysedto illustrate the behaviour of the IP protocols with respect to different IPSec transform. Earlier studies have shown that the overheads introduced by IPSec on networks vary with respect to the adopted IPSec security scenario; the algorithms used for its deployments, the transmitting medium and the file size. For instance, algorithms like HMAC-SHA1 introduced an additional 9% increase in packet transfer time than HMAC-MD5. Hence network load involved due to AH authentication and ESP encryption on small files had a greater ratio of increase when relate to authentication and encryption by ESP alone. This indicates that the choice of ESP for authentication purpose ahead of traditional AH when both encryption and authentication are needed for small files is better; especially when the number of encryption and authentication occurrences is significant and the bandwidth is limited. Moreover, wireless transmission medium significantly suffer more from IPSec overheads with respect to transfer time. This is because more time is needed to affect the transfer compared to the wired medium [7] [1]in similar study indicated that IPSec overheads affects overall performance with respect to packet transfer time and increase in the network load, they also stated that these overheads are relative to different protocol, file size, algorithm, network traffic and services employed on the network. The research gap here is that the study has not go further to carry out specific investigation on how different file sizes/user datagram secured using different authentication (AH) and encapsulation Security pay load (ESP) algorithm transmitted using different either of the following protocols; (IPv4 or IPv6) can affect end to end delay; although [8] investigated the effects of some these parameters but with respect to bandwidth and processing time, ignoring the end-to-end delay which our study considered. Other performance matrix such as throughput were earlier confirmed to suffer depreciation due encryption and decryption process of datagram for authentication and confidentiality check of packets, because both the ciphering and IPSec encapsulation enlarges the eventual packet that will be transmitted thus building up space overheads. [9] The result presented in Figure (2) shows the end-to-end delay experience while using IPv6, it could be noticed that based on the result displayed on the graph there was insignificant/small difference in the average end-to-end delay between, when AH only is used or when ESP only is used or when both AH plus ESP put together or when no IPSec was used at all. This happened when the packet size was between 1byte to 102400byte. Noticeable/significant difference in the end-to-end delay among the different IPSec configuration employed with respect to the Internet protocol in play began to emerge and show clearly when the file size was large. The packet transmission experience higher delay, when AH & ESP put together; followed by a situation when ESP header was used.
  • 5. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 17 The same trend in the average delay is noticed when IPv4 was used as Figure (3) indicated. The results from figure (3) and figure (2) suggested that both IPv4 and IPv6 behave alike with regard to addition of IPSec header on the packet. They both experience low end–to-end delay when the file size was small, small between 1byte and 102400byte and the delay was significant/small when the packet size increased to 102400byte upward. In both cases the end-to-end delay was higher when AH plus ESP was used to provide the IP security. Similarly, AH when used alone bring on lower delay compared to when ESP is used alone. However, the result displayed in Figure (4) compares the difference in the average end-to-end delay between IPv4 and IPv6 when AH header was added to the packet. The result indicated that IPv6 with AH caused higher end-to-end delay than IPv4. Figure (5) and Figure (6) show the difference in the situation when ESP and when AH plus ESP were used respectively. In both cases IPv6 end-to-end delay was higher than the end-to-end delay incurred with IPv4. This of course, could be attributed to the space and processing overhead cost as a result of authentication and encryption of packet during transmission was higher in IPv6 than in IPv4 in all cases, even though, IPSec header added the same number of bytes on both IPv4 and IPv6. The reason in this case was that the packet is very large that it has to be fragmented, as such IPv6 experienced higher overhead than IPv4. This happened due to the fact that the manner at which IPv6 handles fragmented packet when IPSec is involved was completely different with the way IPv4 tackles it. IPv6 applied IPSec header to all fragmented portion of the packet while IPv4 applied it to the very initial fragment only.
  • 6. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 18 Figure (4) Test Case 3 Result (IPv4 vs. IPv6 with AH only) 0.0 100.0 200.0 300.0 400.0 1byte 10byte 100byte 1024byte 10240byte 102400byte 1048576 byte 10485760 byte 104857600 byte Averageend-to-enddelay inseconds Internet Protocol version 4 vs 6 with IPSect AH IPv4 Plain Packet with no IPSec IPv4 With AH IPv6 Plain Packet with no IPSec IPv6 With AH
  • 7. A Comparative Analysis of Additional Overhead Imposed… www.ijceronline.com Open Access Journal Page 19 V. Conclusion This paper as initially stated and set as its objective to reports on the impact of processing and space overhead introduced by internet protocol security (IPSec) on both internet protocol version 4 and 6, (IPv4 and IPv6) in relation to packet end-to-end delay based on different IPSec transformations under different authentication and encryption algorithms deployed in different scenarios simulated using NS2, had demonstrated how the said IPSec headers under different protocol configurations setup introduced the additional processing and space overhead with respect to different file size on the two different Internet protocols I.e. version 4 and 6; (IPv4 and IPv6). The idea is to investigate the impact of IPSec overheads on Ipv6 network compared to Ipv4 network, to evaluate the processing and space overheads imposed by different cryptographic algorithms on IPv4 and IPv6 networks currently supported by IPSec. The study indicated that the cost of IPSec added overhead was smaller when smaller packet sizes were involved for both protocols compare to larger packet sizes that are IPSec protected with the same configuration as the smaller packet. The only exception wasin the cases whereby the packet is very large that it has to be fragmented. In such case IPv6 experienced higher overhead than IPv4. This happened due to the fact that the manner at which IPv6 handles fragmented packet when IPSec is involved was completely different with the way IPv4 tackles it. IPv6 applied IPSec header to all fragmented portion of the packet while IPv4 applied it to the very initial fragment only.Therefore,the general objectives of the study was to provide a practical working, network administration guidance for making a right selection of configurations under a pre-defined and strict networking condition, IPSec protocols suite had to offer to suit a particular network environment while bearing in mind the cost/penalty of overheads involvement on performance. References [1] A.A. Muhammad, M. Zaka-Ul, T. Usman, S.M. Ahsan, A.N. Muhammad, R. Imran, and A. Muhammad. Overhead Analysis of Security Implementation Using IPSec. (PP 1-7)(2009) [2] K.S.Mohd, H. Rosilah, and P. Ahmed P. A Comparative Review of IPv4 and IPv6 for Research Test Bed. 2009 International Conference on Electrical Engineering and Informatics 5-7 Selangor, Malaysia, Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp. 1-7, August 2009. [3] L. Lambros.andK. Peter. Integrating Voice over IP services in IPv4 and IPv6 networks. Proceedings of the International Multi- Conference on Computing in the Global Information Technology (ICCGI'07) Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp.1-6, 2007 [4] R. Radhakrishnan.,M. Jamil., S. Mehfuz., and Moinuddin; Security issues in IPv6, Third International Conference on Networking and Services (ICNS), 2007, pp.110, 19-25, 2007, [5] E. Gregory. Iterative Block Ciphers’ Effects on Quality of Experience for VoIPUnicast Transmissions under Different Coding Schemes. A thesis submitted to the University of Bedfordshire in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2010. [6] S. Iftikhar.andP. Atul. Cost Overhead Analysis Associated with IPSec in the Next Generation Satellite Network.IEEEAC paper #1647, Version 2, Updated December 16, 2007 Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp. 1- 6, 2007. [7] C.H. George.,J. Nathaniel., I.V. Davis, F. Scott. andF. Midkif. IPSec Overhead in Wireline and Wireless Networks for Web and Email Applications, IEEE Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp. 1-5, 2003. [8] S.P.Meenakshi and S.V. Raghavan. Impact of IPSec Overhead on Web Application Servers, Institute of Electrical Electronics Engineers (IEEE Xplore Digital Library), pp 1-6, 2006. [9] X. Christos.,L. Nikolaos., M. Lazaros, and S. Ioannis. A generic characteristic of the overheads imposed by IPSec and associated cryptographic algorithms, ScienceDirect computer networks 50(2006):3225-3241, 2006.