SlideShare a Scribd company logo
1 of 17
Download to read offline
http://www.iaeme.com/IJCIET/index.asp 22 editor@iaeme.com
International Journal of Civil Engineering and Technology (IJCIET)
Volume 6, Issue 12, Dec 2015, pp. 22-38, Article ID: IJCIET_06_12_003
Available online at
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=6&IType=12
ISSN Print: 0976-6308 and ISSN Online: 0976-6316
© IAEME Publication
SENSITIVITY ANALYSIS ABOUT
INFLUENCE OF OUT-OF-PLANE
DEFLECTIVE DEFORMATION UPON
COMPRESSIVE STRENGTH OF STEEL
PLATES
Akira Kasai
Associate Profesor, Kumamoto University, 2-39-1 Kurokami,
Chuo-Ku, Kumamoto, 860-8555, Japan
Tatsuo Kakiuchi
JR West Japan Consultants Company (PhD Candidate),
5-4-20 Nishinakajima, Yodogawa-Ku, Osaka, 532-0011, Japan
Shohei Okabe
GSST, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku,
Kumamoto, 860-8555, Japan
ABSTRACT
In this study, it is aimed at verifying the relationship between amount of
the initial deflective deformation of simply supported steel plates and ultimate
compressive strength of them through elasto-plastic finite deformation
analysis. When initial deflection has been controlled smaller unitl now or out-
of plane deformation has become large after an earthquake, the current
compressive strength curve of steel plates in Japan cannot be applied.
Therefore, more accurate prediction method have been required in near
future, on behalf of rational design of steel structures. In other words, it is
needed to make clear the relationship between the initial imperfection and the
strength of simply supported steel plate. For this purpose, the parametric
study on compressive strength of steel plates taking the initial deflection and a
width-thickness ratio parameter into account was carried out. At first, a limit
width-thickness ratio parameter corresponding to maximum width-thickness
ratio parameter where compressive strength of a steel plate reaches yield
stress of steel material, was proposed through the parametric study. And,
predicted equation for calculating a limit width-thickness ratio parameter was
developed. Secondary, the relationship between the ultimate compressive
strength of a steel plate and amount of initial deflection was clarified. In
addition, estimated equations based on results of various numerical analysis
were developed. Finally, the prospect of this future study was discussed.
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 23 editor@iaeme.com
Key words: Simply Supported Steel Plate, Compressive Strength, Initial
Deflective Deformation, Width-thickness ratio parameter, Allowable Stress
Cite this Article: Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe.
Sensitivity Analysis about Influence of Out-of-Plane Deflective Deformation
upon Compressive Strength of Steel Plates. International Journal of Civil
Engineering and Technology, 6(12), 2015, pp. 22-38.
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=6&IType=12
1. INTRODUCTION
In this study, it is aimed at verifying the relationship between amount of the initial
deflective deformation of simply supported steel plates and ultimate strength of them
through elasto-plastic finite deformation analysis. It is a well-known fact that the
initial deflection as initial imperfections has an influence on the ultimate compressive
strength of simply supported steel plates. However, there are a few studies on the
large initial deflection of steel plates relatively. On behalf of this fact, numerical
analysis considering from small to large initial deflection are carried out in this study.
Distinctive feature in this study is that it should be mentioned specially to consider not
only the case of small initial deflection, but also large initial deflection. One of
phenomena considered as a relatively small initial deflection is improvement of the
production precision of steel plates. On the other hand, it is considered as one of the
phenomena which consider large initial deflection relatively, to estimate the residual
strength of steel plates after earthquake. Therefore, development of the strength
evaluation technique according to amount of initial deflective deformation
corresponds to make available to evaluate residual strength of steel plates uniformly,
not only after starting a service of a infrastructure, but also after a certain special
phenomenon occurring during a service of it.
There are many researches on ultimate compressive strength of steel plates. For
example, Fukumoto et al. [1] compiled a data-base approach to the ultimate
compressive strength of unstiffened steel plates in Europe, Japan and the United
States. And, they described the strength formulas including the effect of initial
imperfections such as residual stress and initial out-of-plane deflective deformation.
In addition, Usami et al. [2, 3] summarized the experimental and analytical results on
the strength of steel plates that both global and local buckling behaviors of welded
box-sectioned compression members were considered. Furthermore, Nara et al. [4]
developed ultimate strength evaluation formula of steel plates subjected to in-plane
bending and compression through numerical analysis based on finite element method.
There is a study on effective flange width of steel members by Usami et al. [5], and a
study on strength prediction of thin-walled plate assemblies by Usami et al [6].
Komuro et al. [7] discussed about ultimate strength of steel plates from the standpoint
of reliability design taking the material properties provided by Monte Carlo
simulation in to account. Paik et al. [8] treated a study on ultimate compressive
strength of dented steel plates. And then, Raviprakash [9] carried out numerical study
on compressive strength of dented steel plate. Dent is one of general imperfections of
thin-walled structures. Japanese Society of Steel Construction [10] summarized the
ultimate strain of steel members used in the ultimate seismic design method based on
the various study results performed so far, as well as these researches on the ultimate
strength. On the other hands, only Komatsu et al. [11] and Ikeda et al. [12] mentioned
study on the differences in out-of-plane deflections. Besides, there is no discussion
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 24 editor@iaeme.com
what amount of out-of-plane deflection has an influence on ultimate strength of steel
plates. Specifically, the following 4 points are focused on, in the study.
1. Parametric study on the strength of steel plates about the amount of the initial
deflection.
2. Consideration about relation between the strength of steel plates, the amount of the
initial deflection and several structural parameters.
3. The proposal of the limit width-thickness ratio parameter.
4. The proposal of the formula estimating the strength of simply supported steel plate
using amount of the initial deflection and structural parameters.
2. FEM ANALYSIS OF A SIMPLY SUPPORTED STEEL PLATE
2.1. Analysis outline of numerical analysis method
Figure 1 shows the FEM analytical model of a simply supported steel plate. Where, a
is depth of a plate, b shows width of a plate, and t indicates thickness of a plate. In
addition, it was decided to treat only 1 for the aspect ratio which was depth to width
ratio, in this paper. A simply supported steel plate considering in this paper was
models with 4-node quadrilateral finite-membrane-strain elements with reduced
integration (S4R). The number of elements was 100 meshes equally divided in the
loading direction and non-loading directions in consideration of the buckling
eigenvalue analysis. Numerical analysis using the ABAQUS [14] which is a general-
purpose analysis code was carried out.
Figure 1 Shape of Analytical model Figure 2 Distribution diagram of
residual stress
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 25 editor@iaeme.com
Table 1 Parameters in the analytical model
Structural Properties
R 0.26-2.02
= a / b 1.0
t [mm] 32.0
Initial Imperfections
wi,max / b 1/50-1/5000
rt / y 1.0
rc / y 0.25
Material Properties
E [GPa] 200
y [MPa] 315
 0.3
2.2. Conditions of the analytical model
Table 1 showed the structural and material properties of analytical model. Width-
thickness ratio parameter R is represented by the Equation (1).
Ekt
b
R
y




 2
2
)1(12
(1)
Where, E is Young's modulus, y is yield stress, is the Poisson's ratio, k (= 4) is
the buckling coefficient. wi,max is amount of initial deflective deformation, rt is
maximum residual stress in tension side, rc is maximum residual stress in
compression side.
The conditions of the analytical model were given in the following sections.
2.2.1. Boundary conditions
In order to estimate the compressive strength of steel plates, an numerical analysis
was carried out under the most basic boundary condition in this study. Table 2
showed the boundary conditions of this analytical model. In this analysis, all edges of
a plate were supported simply.
Table 2 Boundary condition
Edge u v w θx θy θz
x = 0 1 1 1 1 0 1
x = a 0 0 1 1 0 1
y = 0 0 0 1 0 1 1
y = b 0 0 1 0 1 1
Free = 0 , Fix = 1
u, v, w : Displacements in x, y, z axis direction
θx, θy, θz : Rotation angle around the x, y, z axis
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 26 editor@iaeme.com
2.2.2. Residual stress
In this numerical analysis, residual stress assumed at triangular distribution shown in
Figure 2. The main factor of such distribution depended on welding [2]. The
maximum value of the residual stress in tension side, which is distributed over
welding part, was assumed rt. On the other hand, the maximum residual stress of the
compression part was assumed 0.25y in the domain to remove around a weld.
2.2.3. Initial deflective deformation
It was assumed that the shape of initial deflective deformation shown in Figure 3 was
proportional to a half sine waveform which corresponded to buckling eigenmode [2].
The initial deflection was represented by the Equation (2). Further the origin of the
coordinate system was made point A in Figure 1. The directions of depth indicated x
axis, and the direction of width indicates y axis.
)sin()sin(),(
b
y
a
x
wyxw max  
(2)
2.3. Materials & constitutive law
The kind of steel materials to use in this study was SM490, named welding structural
steel material. This steel material is generally used in Japan. And then, yield plateau
and strain hardening region after yield plateau are existed as characteristic of this
material as shown in Figure 4. In the strain hardening region, hardening coefficient
follows below stress-strain relationship shown in Equation (3), according to Usami et
al. [2]
    st
st
y
ysty
e
E
E


 


11
1
(3)
Where,  is the material-depended parameter, Est is strain hardening coefficient,
st shows the strain arriving at strain hardening region. In the case of SM490, each
parameters are =0.06, E / Est =30, st / y =7 [2].
2.4. Loading pattern
In order to carry out the numerical analysis in degradation area of load-displacement
relation was also done in stable way, the displacement-based analysis was done. It
was the analysis to give a uniform displacement of edge AD in loading direction as
shown in Figure 1. The loading was monotonous increase only. After the total
reaction force generated in edge AD has peaked, it controlled by displacement to the
point where it was sufficiently reduced. Its maximum displacement was set to 30
times to be greater yield displacement.
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 27 editor@iaeme.com
3. INFLUENCE OF INITIAL DEFLECTION ON STRENGTH
3.1. Definition of strength and ductility
Figure 3 Shape of the initial deflection Figure 4 Stress-strain relationship
Figure 5 Average stress-average strain relationship
The strength and ductility of steel plate were defined for investigating the
analytical results specifically. At first, the relationship between load P and
displacement  of steel plate was drown as shown in Figure 5. Here, the load to act on
edge BC in Figure 1 was defined as P. And then, the displacement of edge BC in x-
direction was defined as . Secondly, the average stress  and the average strain 
were used in Equations (4), to eliminate the influence of the plate width and the plate
thickness of the dimensional quantity.
 = P / A,  =  / a (4a, 4b)
In addition, it should be noted that these average values do not express the local
stress or strain. And, the vertical axis in Figure 5 represented dimensionless average
stress which was the value that divided average stress by a yield stress, the horizontal
axis represented dimensionless average strain which was the value that divided
average strain by a yield strain. Here, maximum strength point was defined as max.
And then, the point corresponding to the peak strength was set to the ductility max.
3.2. Strength toward sensitivity analysis of initial deflections
In order to investigate influence of initial deflection on load-carrying capacity,
parametric study was carried out. As main parameters, width-thickness ratio
parameter and amount of the maximum initial deflection were dealt with. As results,
0 2 4 6
0
0.5
1
/y
/y
Maximum strength point
R =0.65, wi,max /b =1/150
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 28 editor@iaeme.com
the relationship between compressive strength and width-thickness ratio parameter
was obtained as shown in Figure 6. Here, the vertical axis represented dimensionless
load-carrying capacity, and the horizontal axis represented width-thickness ratio
parameter R in Figure 6.
At first, the relationship between the load-carrying capacity in a certain R and
amount of initial deflection was described. It was found that the load-carrying
capacity tended to rise up, as an amount of maximum initial deflection wi,max
decreased in a region of R <1.17, as shown in Figure 6. On the other hand, the
strength tended to slightly drop, as an initial deflection decreased in the range of R
≥1.17. Therefore, it was summarized that the strength capacity of steel plates decrease
with an action of external force such as earthquakes in R <1.17.
Figure 6 Relationship between Strength and width-thickness ratio parameter
Figure 7 Increase ratio of the strength for each displacement
0 0.5 1 1.5
0
0.5
1
1.5
R
u/y
Euler
JSHB[13]
Results of Numerical Analysis
wi,max/b=1/50
wi,max/b=1/150
wi,max/b=1/300
wi,max/b=1/1000
wi,max/b=1/5000
0 0.5 1 1.5
-40
-20
0
20
40
Results of Numerical Analysis
wi,max=1/50
wi,max=1/300
wi,max=1/1000
wi,max=1/5000
R
Increaseratio[%]
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 29 editor@iaeme.com
Secondary, the differences between the strength in the case of wi,max / b =1/150
and the others were discussed. As shown in Figure 7, the load-carrying capacity in the
case of wi,max / b =1/50, 1/300, 1/1000, 1/5000 were compared with that in the case of
1/150. The limit value of the maximum initial deflection is made 1/150 of plate width
as deviation from flatness of a plate by JSHB (JRA [13]). Therefore it was decided to
compare with numerical results in this limit value by this paper. The vertical axis
represented the increase rate for load-carrying capacity in the case of wi,max / b =1/150.
If the maximum initial deflection was large case wi,max / b =1/50, load-carrying
capacity was reduced in the range of R <1.17, load-carrying capacity could be
improved in the range of R ≥1.17 as shown in this Figure. If the maximum initial
deflection was small case wi,max / b =1/5000, load-carrying capacity was increased in
the range of R <1.17, load-carrying capacity could be worsened in the range of R
≥1.17 as shown in this Figure. Specifically, the strength of wi,max / b =1/5000
increased at most 37.4% at the R = 0.39, the strength of wi,max / b =1/50 decreased at
most 15.3% at the R = 0.33.
As results, it was found that load-carrying capacity tended to be increased as the
amount of maximum initial deflection would be small in the case of R <1.17.
Moreover, it is more effective to aim at amount of the initial deflection when load-
carrying capacity of steel plate is estimated, so that the strength of steel plate changes
larger according to amount of the initial deflection in R <0.5, which is equivalent to
the range of relatively thick plate in particular. Further, the strength in R ≥1.17 may be
considered hardly to change even if the initial deflection changes, because of below
two reasons, that the region of R ≥1.17 is more thin-walled area, and that quantity of
change is very small, although a reversal phenomenon has formed to a relation
between the load-carrying capacity and amount of initial deflection in R ≥1.17.
3.3. Strength curve in Japanese Specifications for Highway Bridges
As a result of above sensitivity analysis, if the maximum initial deflection amount
wi,max / b was small, such as 1/5000,  u /y crossed to 1 even if the width-thickness
ratio parameter R was greater than 0.7. These results indicate that the severe control of
amount of initial deflective deformation prompts the possibility using width-thickness
ratio parameter larger than current construction, or using more thin-walled structure
than now, when a construction design considering the behavior of buckling in steel
plates is carried out.
By the way, it was found that the load-carrying capacity evaluation of the present
analysis was less than the expression of JSHB (JRA [13]) the maximum initial
deflection wi,max / b was the range of R =0.5-0.7 even in the case of 1/150, when
Figure 6 was seen. Here, the design curve of JSHB (JRA [13]) shown in Figure 6 is
defined as 50% of the Euler buckling strength, in a relatively large area of the width-
thickness ratio (R >0.7), in consideration of the fact that the decrease in out-of-plane
deflection and stiffness is likely to occur at a low stress level [13]. Specifically, this
design curve is defined as follows.
)7.0(
5.0
)7.0(0.1
2


R
R
R
y
u
y
u




(5)
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 30 editor@iaeme.com
However, a safety factor has been considered by the present buckling design in
Japan. Therefore, there are no cases that a numerical result falls below design curve.
And then, Figure 8 is prepared to indicate above fact. For example, the curve which
considered safety factor in standard design curve (serviceability curve) is drawn in
Figure 8, because of considering 1.14 (=1.7/1.5) as safety factor when an earthquake-
resistant design is carried out in Japan. It was found in Figure 8 that there was no case
that serviceability curve exceed numerical results, in the case that amount of initial
deflection was less than a width of steel plate divided by 150. On the other hand, there
were a few cases that numerical results were less than the serviceability curve in the
case that amount of initial deflection was larger than a width of steel plate divided by
150. For example, the numerical values in 0.5<R<0.772 fell below serviceability
curve, if amount of initial deflection was b/50. It was found that the steel plate which
exists in 0.5<R<0.772 needs attention about servicing after the earthquake, when out-
of-plane deflective deformation of a steel plate exceeded b/50 if out-of-plane
deflection of steel plate in a steel structure will be measured after severe earthquake.
Figure 8 Strength-R relationship at JSHB
3.4. Definition of Limit width-thickness ratio parameter
To perform allowable stress design of steel structures, a design at the region that the
allowable stress does not reduce as much as possible leads to utilize the performance
of the material used in this design. Therefore, it is very important to understand the
biggest width-thickness ratio parameter which is available for designing with yield
stress in the standard load-carrying capacity’s curve used with a design in steel
structures. A maximum width-thickness ratio parameter which corresponds to the
above-mentioned is 0.7 according to the Equation (5). This width-thickness ratio
parameter would be called a limit width-thickness ratio parameter, named Rlim, in this
study.
Now, elasto-plastic finite deformation analysis about the compressive strength of
steel plates in this study is able to consider initial deflective deformation and residual
stress as initial imperfections. It was possible to predict the compressive strength of
steel plates in the state near the actual phenomenon, although it was analytic.
Therefore, the width-thickness ration parameters when the ultimate compressive
strength was parallel with the yield stress of constructed material, were calculated
0 0.5 1 1.5
0
0.5
1
1.5
R
u/y
Euler
JSHB[13]
Results of Numerical Analysis
wi,max/b=1/50
wi,max/b=1/150
wi,max/b=1/300
wi,max/b=1/1000
wi,max/b=1/5000
JSHB[13] considering of safety factor
at seismic evaluation
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 31 editor@iaeme.com
through parametric analysis using this elasto-plastic finite deformation analysis
method. Generally speaking, the value of Rlim will be something different according to
amount of initial deflection. Table 3 summarized the relationship between amount of
initial deflection and limit width-thickness ratio parameter. Moreover, this result was
illustrated in Figure 9.
Table 3 Limit width-thickness ratio parameter
wi,max /b Rlim wi,max /b Rlim
1/50 0.29 1/1000 0.59
1/100 0.36 1/2000 0.65
1/150 0.36 1/3000 0.67
1/200 0.39 1/5000 0.72
1/300 0.46 JSHB 0.70
1/500 0.52
Figure 9 Relationship between Limit width-thickness ratio parameter and maximum
initial deflection
Where, vertical axis indicated a limit width-thickness ratio parameter, and a
transverse axis indicated the value defined as a width of a steel plate in divided by
maximum initial deflection. And then, the estimated line calculated by a least squares
method was also drawn in Figure 9. This estimated line was Equation (6).
  0.10.1ln0975.0 








maxi,
lim
w
b
R
(50≤ b /wi,max ≤5000) (6)
It was found out that this equation is very highly precise through the fact that the
standard deviation was 0.0158, and watching Figure 9. As a result, this limit width-
thickness ratio parameter Rlim can be expected as an index for evaluating the strength
in response to the maximum initial deflection wi,max. Therefore, a load-carrying
capacity formula in accordance with the maximum initial deflection wi,max using the
limit width-thickness ratio parameter Rlim is proposed in Chapter 4.
101
102
103
104
0
0.2
0.4
0.6
0.8
1
Rlim
b/wi,max
Rlim
Predict
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 32 editor@iaeme.com
4. PREDICTION METHOD OF COMPRESSIVE STRENGTH
CONSIDERING MAXIMUM INITIAL DEFLECTION
In the previous chapter, it was found that amount of initial deflective deformation was
significant parameter for getting compressive strength of steel plates through
numerical study. In addition, limit width-thickness ration parameter, Rlim, shown in
Equation (6), was proposed in this study. In this section, by using Equation (6), the
correlation equation between amount of the maximum initial deflection and the
compressive strength is proposed in the present study.
4.1. Pediction method for compressive strength of steel plates based on
Perry-Robertson formula
It is well-known that the formula typed Perry-Robertson were used generally as the
prediction method for estimating compressive strength of steel compression members
like a column or a pier. Therefore, it is tried to make newer prediction method for
compressive strength of steel plates including effect of initial deflection in this study,
although the some past study [1, 4] have been proposed various calculation equation.
According to some studies by Usami et al. [5, 6], the equations predicting the load-
carrying capacity are complicated, although it is able to calculate the compressive
strength of steel plates. In addition, coverage of the initial deflection is 1/3233≤ wi,max
/ b ≤1/150. In order to improve these points and consider the case that out-of-plane
deflective deformation of steel plate is greater after severe earthquake, newer
predicting formula including more wide range of amount of initial deflection such as
1/5000≤ wi,max / b ≤1/50, was developed in this study, through a least squares method.
The following equations for calculating the compressive strength of steel plates were
developed.
0462.04
2
1 2




 R
Ry



(0.26≤ R ≤2.02, =0.0231) (7)
  RRRa  lim1 (0.26≤ R ≤2.02) (8)
  0.10.1ln0975.0 








maxi,
lim
w
b
R
(50≤ b /wi,max ≤5000)
(9) Identical to Eq. (6)
229.00000324.0 








maxi,w
b
a
(50≤ b /wi,max ≤5000) (10)
4.2. Comparison of some strength equations
The numerical results in this study and predicted equations in several previous studies
were shown in Figure 10, when amount of maximum initial deflection has been b/150.
Here, the vertical axis was non-dimensional the load-carrying capacity, the horizontal
axis was the width-thickness ratio parameter R. In addition, numerical results in this
study, the value calculated by the estimated equation in this study and the value
calculated by the equation developed by Usami et al. [5, 6] were shown in Table 4, to
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 33 editor@iaeme.com
compare several values concretely in case that amount of maximum initial deflection
is b/150.
In the range of R =0.36-0.65, the difference between the approximation equation
and numerical results were 0.04 to 0.07. And then, the difference between that
numerical results and the values calculated in the formula developed by Usami et al.
[5, 6] -0.02 to 0.04. In the range of R =0.65-2.02, the difference between the analysis
values and equations became almost the same. Figure 11 indicated the relationship
between the compressive strength of simply supported steel plates and width-
thickness ratio parameter, including effect of various amount of maximum initial
deflective deformation. Incidentally, the graphs separated in each amount of
maximum initial deflection were prepared in APPENDIX 2.
Figure 10 Strength curve (wi,max/b =1/150)
Table 4 Comparison of strength curve (wi,max/b =1/150)
R
0.36 0.49 0.65 0.78 0.98 1.17 1.37 1.57 1.83 2.02
(1)  u /y : Analysis 1.00 0.98 0.90 0.80 0.68 0.60 0.54 0.49 0.44 0.41
(2)  u /y : Eq.(7-10) 0.96 0.91 0.83 0.76 0.65 0.56 0.49 0.43 0.37 0.33
(3)  u /y : Usami [5, 6] 1.02 0.94 0.83 0.75 0.64 0.56 0.49 0.44 0.38 0.35
(1) - (2) 0.04 0.07 0.07 0.04 0.03 0.04 0.05 0.06 0.07 0.08
(1) - (3) -0.02 0.04 0.07 0.05 0.04 0.04 0.05 0.05 0.06 0.06
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Euler
JSHB[13]
Fukumoto[1]
Nara[4](rc/y=-0.4)
Results ofNumericalAnalysis
Eq.(7-10)
Usami[5,6]
wi,max/b=1/150
/y=0.25
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 34 editor@iaeme.com
Figure 11 Strength curve of predicted equation
Future purposes of this study, it is possible to clarify the relationship between the
maximum out-of-plane deflection and strength of the members, it is to establish the
immediate seismic performance evaluation method measuring on site is a relatively
easy out-of-plane deflection. The Equations (7-10) proposed in this study is available
to decide how to use the steel structures after sever earthquake immediately.
5. CONCLUSION
In this study, it is aimed at verifying the relationship between amount of the initial
deflective deformation of simply supported steel plates and ultimate strength of them
through elasto-plastic finite deformation analysis. At first, the relationship between
the ultimate strength of steel plate and amount of initial deflection was clarified
through parametric studies on compressive monotonic analysis of simply supported
steel plates. Secondary, the limit width-thickness ratio parameter, Rlim, was defined. In
addition, estimated equations based on results of various numerical analysis were
developed. The results obtained in this study are as follows.
 The definition of the limit width-thickness ratio parameter, Rlim, was established. And
then, the correlation Equation (6) of limit width-thickness ratio parameter has been
proposed.
 The load-carrying capacity was significantly different due to the difference in the
maximum initial deflection wi,max.
 It was found that the steel plate which exists in 0.5<R<0.772 needs attention about
servicing after the earthquake, when out-of-plane deflective deformation of a steel
plate exceeded b/50 if out-of-plane deflection of steel plate in a steel structure will be
measured after severe earthquake.
 It was found that the ultimate strength of steel plates decreased sensitively, as the
initial deflection became large, in R<1.17. For example, the ultimate strength in the
case of wi,max / b =1/5000 was larger than the strength in case of wi,max / b =1/150 more
than 37%.
 It was found that the limit width thickness ratio parameter may exceed 0.7, such as
wi,max / b = 1/5000, if the initial deflection is very small. Therefore, a limit width-
thickness ratio parameter can be raised up, if a limit level of initial deflections of steel
plates has been managed strictly. And the good advantage for designing steel
structures might have been hidden.
 The equation for estimating the compressive strength of simply supported steel plate
was proposed in this study. It was found that the proposed Equations (7-10) are
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Predict
wi,max/b=1/50
wi,max/b=1/150
wi,max/b=1/300
wi,max/b=1/1000
wi,max/b=1/5000
Result
wi,max/b=1/50
wi,max/b=1/150
wi,max/b=1/300
wi,max/b=1/1000
wi,max/b=1/5000
JSHB[13]
Euler
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 35 editor@iaeme.com
available to estimate the compressive strength in case of every initial out-of-plane
deflection simply and accurately.
REFERENCES
[1] Y. Fukumoto and Y. Itoh, Basic Compressive Strength of Steel Plates From Test
Data, Proc. of JSCE, Structural Eng./ Earthquake Eng., No. 344, pp. 129-139,
1984.
[2] T. Usami et al., Guidelines for Stability Design of Steel Structures, 2nd Edition,
JSCE, Maruzen, 2005 (in Japanese).
[3] T. Usami, M. Suzuki, Iraj H. P. Mamaghani and H. Ge, A Proposal for Check of
Ultimate Earthquake Resistance of Partially Concrete Filled Steel Bridge Piers,
Journal of JSCE, No.525/I-33, 1995, pp.69-82 (in Japanese).
[4] K. Nara, M. Tsuda and Y. Fukumoto, Evaluation of Ultimate Strength of Steel
Plates with Initial Imperfections under In-plane Bending and Compression,
Journal of JSCE, No.392/I-9, 1988, pp.259-264 (in Japanese).
[5] T. Usami and H. Tenkumo, Ultimate Strength and Effective Width of Plates in
Compression and Bending, Journal of JSCE, No.441/I-18, 1992, pp.78-85 (in
Japanese).
[6] T. Usami and H. Ge, Strength Prediction of Thin-walled Plate Assemblies,
Journal of Structural Engineering, JSCE, Vol.42A, 1996, pp.171-178 (in
Japanese).
[7] M. Komuro, Y. Okui, K, Nozaka, T. Miyashita, K. Nogami and M. Nagai,
Numerical Study on Ultimate Strength of Compressive Flange Considering
Statistical Data for Distributions of Initial Displacement and Residual Stress,
Journal of Structural Engineering, JSCE, Vol. 60A, 2014, pp.80-93 (in Japanese).
[8] J. K. Paik et al., Ultimate strength of dented steel plates under axial compressive
loads, International Journal of Mechanical Sciences, 45, pp.433-448, 2003.
[9] A. V. Raviprakash et al., Ultimate strength of a square plate with a
longitudinal/transverse dent under axial compression, Journal of Mechanical
Science and Technology, 25(9), pp.2377-2384, 2011.
[10] T. Usami et al., Guidelines for Seismic and Damage Control Design of Steel
Bridges, Gihodo Shuppan Co. Ltd., 2006.
[11] S. Komatsu, M. Ushio and T. Kitada, An Experimental Study on Residual
Stresses and Initial Deformations of Stiffened Plates, Proceedings of the JSCE,
Vol. 265, 1977, pp.25-32 (in Japanese).
[12] K. Ikeda, T. Kitada, Y. Yamakawa, M. Matsumura, A. Shibasaki and Y. Karino,
Sensitivity Law and Probabilistic Variation of Elasto-Plastic Ultimate Strength of
Imperfect Plates, JSCE Journal A, Vol. 64, No. 4, JSCE, 2008, pp.926-934 (in
Japanese).
[13] Japan Road Association, Japanese Specifications for Highway Bridges, Part 1
Common, Part 2 Steel Bridges, 2012 (in Japanese).
[14] Dassault Systemes: ABAQUS Standard User’s Manual ver. 6.13-1, 2013.
[15] Mr. Shukla B.A. and Prof. Phafat N.G, Analysis of Co2 Welding Parameters on
The Depth of Penetration of AISI 1022 Steel Plates Using Response Surface
Methodology. International Journal of Mechanical Engineering and Technology,
4(6), 2013, pp. 31-36
[16] Mr. Shukla B.A. and Prof. Phafat N.G., Experimental Study of Co2 Arc Welding
Parameters on Weld Strength For AISI 1022 Steel Plates Using Response Surface
Methodology. International Journal of Mechanical Engineering and Technology,
4(6), 2013, pp. 37 - 42
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 36 editor@iaeme.com
APPENDIX 1
The results in detail of the strength and ductility are given in Table A1. When initial
deflection was less than 1/300 in R=0.26, it was transcribed that the ultimate strength
is larger than the load at the point of 30 times of yield strain, and the ductility is
bigger than 30 times of yield strain, because load degradation did not occur after 30
times of yield strain which became limit value on the analysis condition in this study.
Table A1 Compressive strength and ductility calculated by numerical analysis
R
wi,max/b 0.26 0.39 0.49 0.65 0.78 0.98 1.17 1.37 1.57 1.83 2.02
1/50
 u /y 1.16 0.93 0.89 0.80 0.74 0.66 0.60 0.55 0.51 0.46 0.43
 u /y 20.88 1.81 1.98 1.68 1.68 1.68 1.68 1.68 1.68 1.98 1.98
1/150
 u /y 1.36 1.00 0.98 0.89 0.80 0.68 0.60 0.54 0.49 0.44 0.41
 u /y 24.99 9.96 1.98 1.68 1.38 1.38 1.68 1.68 1.68 1.68 1.68
1/300
 u /y >1.47 1.05 1.00 0.94 0.85 0.69 0.59 0.53 0.48 0.43 0.40
 u /y >30.0 10.59 2.19 1.55 1.43 1.38 1.68 1.68 1.68 1.68 1.98
1/1000
 u /y >1.54 1.18 1.03 1.00 0.91 0.71 0.59 0.53 0.48 0.42 0.39
 u /y >30.0 13.98 8.58 1.89 1.46 1.03 1.38 1.68 1.68 1.68 1.98
1/5000
 u /y >1.55 1.37 1.15 1.01 0.99 0.73 0.59 0.52 0.47 0.42 0.39
 u /y >30.0 21.48 12.18 2.58 1.73 0.90 1.41 1.73 1.83 1.98 1.98
APPENDIX 2
Contents of Figures A1 indicate several cases of the relationship between the
compressive strength of simply supported steel plates and width-thickness ratio
parameter, including effect of each amount of maximum initial deflective
deformation. Vertical axis indicates dimensionless ultimate compressive strength of
steel plates, and horizontal axis indicates width-thickness ratio parameter, in every
Figure. It's difficult to check the contents because all cases are included in Figure 11.
So it is divided into a graph according to each initial deflection.
(a) wi,max/b = 1/50 (b) wi,max/b = 1/100
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon
Compressive Strength of Steel Plates
http://www.iaeme.com/IJCIET/index.asp 37 editor@iaeme.com
(c) wi,max/b = 1/150 (d) wi,max/b = 1/200
(e) wi,max/b = 1/300
Figures A1 Relationship between ultimate strength and R
(f) wi,max/b = 1/500 (g) wi,max/b = 1/1000
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Euler
JSHB
Fukumoto
Nara(rc/y=-0.4)
Results of Numerical Analysis
wi,max/b=1/50
wi,max/b=1/100
wi,max/b=1/150
wi,max/b=1/200
wi,max/b=1/300
wi,max/b=1/500
wi,max/b=1/1000
wi,max/b=1/2000
wi,max/b=1/3000
wi,max/b=1/5000
Predict
Eq.(7-10)
Usami[5,6], /y=0.25
Euler
JSHB[13]
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe
http://www.iaeme.com/IJCIET/index.asp 38 editor@iaeme.com
(h) wi,max/b = 1/2000 (i) wi,max/b = 1/3000
(j) wi,max/b = 1/5000
Figures A1 Relationship between ultimate strength and R (Continued)
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
0 0.5 1 1.5 2
0
0.5
1
1.5
R
u/y
Euler
JSHB
Fukumoto
Nara(rc/y=-0.4)
Results of Numerical Analysis
wi,max/b=1/50
wi,max/b=1/100
wi,max/b=1/150
wi,max/b=1/200
wi,max/b=1/300
wi,max/b=1/500
wi,max/b=1/1000
wi,max/b=1/2000
wi,max/b=1/3000
wi,max/b=1/5000
Predict
Eq.(7-10)
Usami[5,6], /y=0.25
Euler
JSHB[13]

More Related Content

What's hot

IRJET- Review on Cold form Steel Compression Members
IRJET- Review on Cold form Steel Compression MembersIRJET- Review on Cold form Steel Compression Members
IRJET- Review on Cold form Steel Compression MembersIRJET Journal
 
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...drboon
 
Numerical modeling of concrete composite steel tubes
Numerical modeling of concrete composite steel tubesNumerical modeling of concrete composite steel tubes
Numerical modeling of concrete composite steel tubeseSAT Publishing House
 
Seismic behavior of steel rigid frame with imperfect brace members
Seismic behavior of steel rigid frame with imperfect brace membersSeismic behavior of steel rigid frame with imperfect brace members
Seismic behavior of steel rigid frame with imperfect brace membersIAEME Publication
 
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...msejjournal
 
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...ijtsrd
 
Flexural behavior of composite reinforced concrete t beams cast in steel cha...
Flexural behavior of composite reinforced  concrete t beams cast in steel cha...Flexural behavior of composite reinforced  concrete t beams cast in steel cha...
Flexural behavior of composite reinforced concrete t beams cast in steel cha...IAEME Publication
 
Concrete filled steel tubes subjected to axial compression
Concrete filled steel tubes subjected to axial compressionConcrete filled steel tubes subjected to axial compression
Concrete filled steel tubes subjected to axial compressioneSAT Journals
 
Analytical studies on concrete filled steel tubes
Analytical studies on concrete filled steel tubesAnalytical studies on concrete filled steel tubes
Analytical studies on concrete filled steel tubesIAEME Publication
 
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...IJERA Editor
 
Analysis and Estimation of Stiffness of Outer Race of Aircraft Bearings
Analysis and Estimation of Stiffness of Outer Race of Aircraft BearingsAnalysis and Estimation of Stiffness of Outer Race of Aircraft Bearings
Analysis and Estimation of Stiffness of Outer Race of Aircraft Bearingspaperpublications3
 
Revision of Industry Residence with Two Different Materials Considering Const...
Revision of Industry Residence with Two Different Materials Considering Const...Revision of Industry Residence with Two Different Materials Considering Const...
Revision of Industry Residence with Two Different Materials Considering Const...ijtsrd
 
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...IRJET Journal
 

What's hot (16)

IRJET- Review on Cold form Steel Compression Members
IRJET- Review on Cold form Steel Compression MembersIRJET- Review on Cold form Steel Compression Members
IRJET- Review on Cold form Steel Compression Members
 
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
 
Numerical modeling of concrete composite steel tubes
Numerical modeling of concrete composite steel tubesNumerical modeling of concrete composite steel tubes
Numerical modeling of concrete composite steel tubes
 
Seismic behavior of steel rigid frame with imperfect brace members
Seismic behavior of steel rigid frame with imperfect brace membersSeismic behavior of steel rigid frame with imperfect brace members
Seismic behavior of steel rigid frame with imperfect brace members
 
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...
MODELING, ANALYZING AND SAFETY ASPECTS OF TORSION AND NOISE EFFECTS ON ROUND ...
 
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...
Comparative Experiment of Surface Roughness when Grinding 3X13, SKD11 and SUJ...
 
Flexural behavior of composite reinforced concrete t beams cast in steel cha...
Flexural behavior of composite reinforced  concrete t beams cast in steel cha...Flexural behavior of composite reinforced  concrete t beams cast in steel cha...
Flexural behavior of composite reinforced concrete t beams cast in steel cha...
 
Concrete filled steel tubes subjected to axial compression
Concrete filled steel tubes subjected to axial compressionConcrete filled steel tubes subjected to axial compression
Concrete filled steel tubes subjected to axial compression
 
Ijciet 10 01_009
Ijciet 10 01_009Ijciet 10 01_009
Ijciet 10 01_009
 
Analytical studies on concrete filled steel tubes
Analytical studies on concrete filled steel tubesAnalytical studies on concrete filled steel tubes
Analytical studies on concrete filled steel tubes
 
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...
Parametric Study of Square Concrete Filled Steel Tube Columns Subjected To Co...
 
As36269275
As36269275As36269275
As36269275
 
16
1616
16
 
Analysis and Estimation of Stiffness of Outer Race of Aircraft Bearings
Analysis and Estimation of Stiffness of Outer Race of Aircraft BearingsAnalysis and Estimation of Stiffness of Outer Race of Aircraft Bearings
Analysis and Estimation of Stiffness of Outer Race of Aircraft Bearings
 
Revision of Industry Residence with Two Different Materials Considering Const...
Revision of Industry Residence with Two Different Materials Considering Const...Revision of Industry Residence with Two Different Materials Considering Const...
Revision of Industry Residence with Two Different Materials Considering Const...
 
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...
IRJET- Buckling Analysis of Corrugated Hollow Columns using Trapezoidal and S...
 

Similar to SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES

SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS
SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERSSEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS
SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERSIAEME Publication
 
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABSSUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABSIAEME Publication
 
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...drboon
 
Ascest2006 chen geusami
Ascest2006 chen geusamiAscest2006 chen geusami
Ascest2006 chen geusamiAngga Fajar
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearIJERA Editor
 
IRJET- Analysis of Hot Rolled Steel Angles Under Tension
IRJET- Analysis of Hot Rolled Steel Angles Under TensionIRJET- Analysis of Hot Rolled Steel Angles Under Tension
IRJET- Analysis of Hot Rolled Steel Angles Under TensionIRJET Journal
 
Dynamic Analysis of Double-Skin Composite Steel Plates
Dynamic Analysis of Double-Skin Composite Steel PlatesDynamic Analysis of Double-Skin Composite Steel Plates
Dynamic Analysis of Double-Skin Composite Steel PlatesIOSR Journals
 
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...IRJET Journal
 
Numerical analysis on residual stress on plate girder
Numerical analysis on residual stress on plate girderNumerical analysis on residual stress on plate girder
Numerical analysis on residual stress on plate girderTEJASKRIYA PRADHAN
 
IRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column JointsIRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column JointsIRJET Journal
 
Thin-Walled Structures 45 p283-300
Thin-Walled Structures 45 p283-300Thin-Walled Structures 45 p283-300
Thin-Walled Structures 45 p283-300Haipeng Han
 
Effect of Perforation in Channel Section for Resistibility against Shear Buck...
Effect of Perforation in Channel Section for Resistibility against Shear Buck...Effect of Perforation in Channel Section for Resistibility against Shear Buck...
Effect of Perforation in Channel Section for Resistibility against Shear Buck...ijtsrd
 
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular Columns
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular ColumnsIRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular Columns
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular ColumnsIRJET Journal
 
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESS
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESSLITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESS
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESSijiert bestjournal
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
Dr.R.Narayanasamy - Power Point on Formability of Stainless Steels
Dr.R.Narayanasamy - Power Point on Formability of Stainless SteelsDr.R.Narayanasamy - Power Point on Formability of Stainless Steels
Dr.R.Narayanasamy - Power Point on Formability of Stainless SteelsDr.Ramaswamy Narayanasamy
 
Review on the Effect of Shear Connectors on Composite Deck Slabs
Review on the Effect of Shear Connectors on Composite Deck SlabsReview on the Effect of Shear Connectors on Composite Deck Slabs
Review on the Effect of Shear Connectors on Composite Deck SlabsIJAEMSJORNAL
 
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...IRJET Journal
 

Similar to SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES (20)

SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS
SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERSSEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS
SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS
 
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABSSUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC 2-WAY SLABS
 
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
Cyclic Elastoplastic Large Displacement Analysis and Stability Evaluation of ...
 
Ascest2006 chen geusami
Ascest2006 chen geusamiAscest2006 chen geusami
Ascest2006 chen geusami
 
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to ShearFinite Element Simulation of Steel Plate Concrete Beams subjected to Shear
Finite Element Simulation of Steel Plate Concrete Beams subjected to Shear
 
IRJET- Analysis of Hot Rolled Steel Angles Under Tension
IRJET- Analysis of Hot Rolled Steel Angles Under TensionIRJET- Analysis of Hot Rolled Steel Angles Under Tension
IRJET- Analysis of Hot Rolled Steel Angles Under Tension
 
Dynamic Analysis of Double-Skin Composite Steel Plates
Dynamic Analysis of Double-Skin Composite Steel PlatesDynamic Analysis of Double-Skin Composite Steel Plates
Dynamic Analysis of Double-Skin Composite Steel Plates
 
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...
IRJET- Study on the Effect of the Concentric Brace and Lightweight Shear Stee...
 
Numerical analysis on residual stress on plate girder
Numerical analysis on residual stress on plate girderNumerical analysis on residual stress on plate girder
Numerical analysis on residual stress on plate girder
 
Timber and steel flexure
Timber and steel flexure Timber and steel flexure
Timber and steel flexure
 
F012213639
F012213639F012213639
F012213639
 
IRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column JointsIRJET-Cyclic Response of Perforated Beam in Steel Column Joints
IRJET-Cyclic Response of Perforated Beam in Steel Column Joints
 
Thin-Walled Structures 45 p283-300
Thin-Walled Structures 45 p283-300Thin-Walled Structures 45 p283-300
Thin-Walled Structures 45 p283-300
 
Effect of Perforation in Channel Section for Resistibility against Shear Buck...
Effect of Perforation in Channel Section for Resistibility against Shear Buck...Effect of Perforation in Channel Section for Resistibility against Shear Buck...
Effect of Perforation in Channel Section for Resistibility against Shear Buck...
 
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular Columns
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular ColumnsIRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular Columns
IRJET- An Analytical Study of Fluted Concrete Filled Steel Tubular Columns
 
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESS
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESSLITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESS
LITERATURE REVIEW ON FRACTURE TOUGHNESS AND IMPACT TOUGHNESS
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Dr.R.Narayanasamy - Power Point on Formability of Stainless Steels
Dr.R.Narayanasamy - Power Point on Formability of Stainless SteelsDr.R.Narayanasamy - Power Point on Formability of Stainless Steels
Dr.R.Narayanasamy - Power Point on Formability of Stainless Steels
 
Review on the Effect of Shear Connectors on Composite Deck Slabs
Review on the Effect of Shear Connectors on Composite Deck SlabsReview on the Effect of Shear Connectors on Composite Deck Slabs
Review on the Effect of Shear Connectors on Composite Deck Slabs
 
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...
Analytical Study on Behaviour of RC Deep Beam with Steel Shear Plate and with...
 

More from IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 

SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES

  • 1. http://www.iaeme.com/IJCIET/index.asp 22 editor@iaeme.com International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 12, Dec 2015, pp. 22-38, Article ID: IJCIET_06_12_003 Available online at http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=6&IType=12 ISSN Print: 0976-6308 and ISSN Online: 0976-6316 © IAEME Publication SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES Akira Kasai Associate Profesor, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan Tatsuo Kakiuchi JR West Japan Consultants Company (PhD Candidate), 5-4-20 Nishinakajima, Yodogawa-Ku, Osaka, 532-0011, Japan Shohei Okabe GSST, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan ABSTRACT In this study, it is aimed at verifying the relationship between amount of the initial deflective deformation of simply supported steel plates and ultimate compressive strength of them through elasto-plastic finite deformation analysis. When initial deflection has been controlled smaller unitl now or out- of plane deformation has become large after an earthquake, the current compressive strength curve of steel plates in Japan cannot be applied. Therefore, more accurate prediction method have been required in near future, on behalf of rational design of steel structures. In other words, it is needed to make clear the relationship between the initial imperfection and the strength of simply supported steel plate. For this purpose, the parametric study on compressive strength of steel plates taking the initial deflection and a width-thickness ratio parameter into account was carried out. At first, a limit width-thickness ratio parameter corresponding to maximum width-thickness ratio parameter where compressive strength of a steel plate reaches yield stress of steel material, was proposed through the parametric study. And, predicted equation for calculating a limit width-thickness ratio parameter was developed. Secondary, the relationship between the ultimate compressive strength of a steel plate and amount of initial deflection was clarified. In addition, estimated equations based on results of various numerical analysis were developed. Finally, the prospect of this future study was discussed.
  • 2. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 23 editor@iaeme.com Key words: Simply Supported Steel Plate, Compressive Strength, Initial Deflective Deformation, Width-thickness ratio parameter, Allowable Stress Cite this Article: Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe. Sensitivity Analysis about Influence of Out-of-Plane Deflective Deformation upon Compressive Strength of Steel Plates. International Journal of Civil Engineering and Technology, 6(12), 2015, pp. 22-38. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=6&IType=12 1. INTRODUCTION In this study, it is aimed at verifying the relationship between amount of the initial deflective deformation of simply supported steel plates and ultimate strength of them through elasto-plastic finite deformation analysis. It is a well-known fact that the initial deflection as initial imperfections has an influence on the ultimate compressive strength of simply supported steel plates. However, there are a few studies on the large initial deflection of steel plates relatively. On behalf of this fact, numerical analysis considering from small to large initial deflection are carried out in this study. Distinctive feature in this study is that it should be mentioned specially to consider not only the case of small initial deflection, but also large initial deflection. One of phenomena considered as a relatively small initial deflection is improvement of the production precision of steel plates. On the other hand, it is considered as one of the phenomena which consider large initial deflection relatively, to estimate the residual strength of steel plates after earthquake. Therefore, development of the strength evaluation technique according to amount of initial deflective deformation corresponds to make available to evaluate residual strength of steel plates uniformly, not only after starting a service of a infrastructure, but also after a certain special phenomenon occurring during a service of it. There are many researches on ultimate compressive strength of steel plates. For example, Fukumoto et al. [1] compiled a data-base approach to the ultimate compressive strength of unstiffened steel plates in Europe, Japan and the United States. And, they described the strength formulas including the effect of initial imperfections such as residual stress and initial out-of-plane deflective deformation. In addition, Usami et al. [2, 3] summarized the experimental and analytical results on the strength of steel plates that both global and local buckling behaviors of welded box-sectioned compression members were considered. Furthermore, Nara et al. [4] developed ultimate strength evaluation formula of steel plates subjected to in-plane bending and compression through numerical analysis based on finite element method. There is a study on effective flange width of steel members by Usami et al. [5], and a study on strength prediction of thin-walled plate assemblies by Usami et al [6]. Komuro et al. [7] discussed about ultimate strength of steel plates from the standpoint of reliability design taking the material properties provided by Monte Carlo simulation in to account. Paik et al. [8] treated a study on ultimate compressive strength of dented steel plates. And then, Raviprakash [9] carried out numerical study on compressive strength of dented steel plate. Dent is one of general imperfections of thin-walled structures. Japanese Society of Steel Construction [10] summarized the ultimate strain of steel members used in the ultimate seismic design method based on the various study results performed so far, as well as these researches on the ultimate strength. On the other hands, only Komatsu et al. [11] and Ikeda et al. [12] mentioned study on the differences in out-of-plane deflections. Besides, there is no discussion
  • 3. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 24 editor@iaeme.com what amount of out-of-plane deflection has an influence on ultimate strength of steel plates. Specifically, the following 4 points are focused on, in the study. 1. Parametric study on the strength of steel plates about the amount of the initial deflection. 2. Consideration about relation between the strength of steel plates, the amount of the initial deflection and several structural parameters. 3. The proposal of the limit width-thickness ratio parameter. 4. The proposal of the formula estimating the strength of simply supported steel plate using amount of the initial deflection and structural parameters. 2. FEM ANALYSIS OF A SIMPLY SUPPORTED STEEL PLATE 2.1. Analysis outline of numerical analysis method Figure 1 shows the FEM analytical model of a simply supported steel plate. Where, a is depth of a plate, b shows width of a plate, and t indicates thickness of a plate. In addition, it was decided to treat only 1 for the aspect ratio which was depth to width ratio, in this paper. A simply supported steel plate considering in this paper was models with 4-node quadrilateral finite-membrane-strain elements with reduced integration (S4R). The number of elements was 100 meshes equally divided in the loading direction and non-loading directions in consideration of the buckling eigenvalue analysis. Numerical analysis using the ABAQUS [14] which is a general- purpose analysis code was carried out. Figure 1 Shape of Analytical model Figure 2 Distribution diagram of residual stress
  • 4. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 25 editor@iaeme.com Table 1 Parameters in the analytical model Structural Properties R 0.26-2.02 = a / b 1.0 t [mm] 32.0 Initial Imperfections wi,max / b 1/50-1/5000 rt / y 1.0 rc / y 0.25 Material Properties E [GPa] 200 y [MPa] 315  0.3 2.2. Conditions of the analytical model Table 1 showed the structural and material properties of analytical model. Width- thickness ratio parameter R is represented by the Equation (1). Ekt b R y      2 2 )1(12 (1) Where, E is Young's modulus, y is yield stress, is the Poisson's ratio, k (= 4) is the buckling coefficient. wi,max is amount of initial deflective deformation, rt is maximum residual stress in tension side, rc is maximum residual stress in compression side. The conditions of the analytical model were given in the following sections. 2.2.1. Boundary conditions In order to estimate the compressive strength of steel plates, an numerical analysis was carried out under the most basic boundary condition in this study. Table 2 showed the boundary conditions of this analytical model. In this analysis, all edges of a plate were supported simply. Table 2 Boundary condition Edge u v w θx θy θz x = 0 1 1 1 1 0 1 x = a 0 0 1 1 0 1 y = 0 0 0 1 0 1 1 y = b 0 0 1 0 1 1 Free = 0 , Fix = 1 u, v, w : Displacements in x, y, z axis direction θx, θy, θz : Rotation angle around the x, y, z axis
  • 5. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 26 editor@iaeme.com 2.2.2. Residual stress In this numerical analysis, residual stress assumed at triangular distribution shown in Figure 2. The main factor of such distribution depended on welding [2]. The maximum value of the residual stress in tension side, which is distributed over welding part, was assumed rt. On the other hand, the maximum residual stress of the compression part was assumed 0.25y in the domain to remove around a weld. 2.2.3. Initial deflective deformation It was assumed that the shape of initial deflective deformation shown in Figure 3 was proportional to a half sine waveform which corresponded to buckling eigenmode [2]. The initial deflection was represented by the Equation (2). Further the origin of the coordinate system was made point A in Figure 1. The directions of depth indicated x axis, and the direction of width indicates y axis. )sin()sin(),( b y a x wyxw max   (2) 2.3. Materials & constitutive law The kind of steel materials to use in this study was SM490, named welding structural steel material. This steel material is generally used in Japan. And then, yield plateau and strain hardening region after yield plateau are existed as characteristic of this material as shown in Figure 4. In the strain hardening region, hardening coefficient follows below stress-strain relationship shown in Equation (3), according to Usami et al. [2]     st st y ysty e E E       11 1 (3) Where,  is the material-depended parameter, Est is strain hardening coefficient, st shows the strain arriving at strain hardening region. In the case of SM490, each parameters are =0.06, E / Est =30, st / y =7 [2]. 2.4. Loading pattern In order to carry out the numerical analysis in degradation area of load-displacement relation was also done in stable way, the displacement-based analysis was done. It was the analysis to give a uniform displacement of edge AD in loading direction as shown in Figure 1. The loading was monotonous increase only. After the total reaction force generated in edge AD has peaked, it controlled by displacement to the point where it was sufficiently reduced. Its maximum displacement was set to 30 times to be greater yield displacement.
  • 6. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 27 editor@iaeme.com 3. INFLUENCE OF INITIAL DEFLECTION ON STRENGTH 3.1. Definition of strength and ductility Figure 3 Shape of the initial deflection Figure 4 Stress-strain relationship Figure 5 Average stress-average strain relationship The strength and ductility of steel plate were defined for investigating the analytical results specifically. At first, the relationship between load P and displacement  of steel plate was drown as shown in Figure 5. Here, the load to act on edge BC in Figure 1 was defined as P. And then, the displacement of edge BC in x- direction was defined as . Secondly, the average stress  and the average strain  were used in Equations (4), to eliminate the influence of the plate width and the plate thickness of the dimensional quantity.  = P / A,  =  / a (4a, 4b) In addition, it should be noted that these average values do not express the local stress or strain. And, the vertical axis in Figure 5 represented dimensionless average stress which was the value that divided average stress by a yield stress, the horizontal axis represented dimensionless average strain which was the value that divided average strain by a yield strain. Here, maximum strength point was defined as max. And then, the point corresponding to the peak strength was set to the ductility max. 3.2. Strength toward sensitivity analysis of initial deflections In order to investigate influence of initial deflection on load-carrying capacity, parametric study was carried out. As main parameters, width-thickness ratio parameter and amount of the maximum initial deflection were dealt with. As results, 0 2 4 6 0 0.5 1 /y /y Maximum strength point R =0.65, wi,max /b =1/150
  • 7. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 28 editor@iaeme.com the relationship between compressive strength and width-thickness ratio parameter was obtained as shown in Figure 6. Here, the vertical axis represented dimensionless load-carrying capacity, and the horizontal axis represented width-thickness ratio parameter R in Figure 6. At first, the relationship between the load-carrying capacity in a certain R and amount of initial deflection was described. It was found that the load-carrying capacity tended to rise up, as an amount of maximum initial deflection wi,max decreased in a region of R <1.17, as shown in Figure 6. On the other hand, the strength tended to slightly drop, as an initial deflection decreased in the range of R ≥1.17. Therefore, it was summarized that the strength capacity of steel plates decrease with an action of external force such as earthquakes in R <1.17. Figure 6 Relationship between Strength and width-thickness ratio parameter Figure 7 Increase ratio of the strength for each displacement 0 0.5 1 1.5 0 0.5 1 1.5 R u/y Euler JSHB[13] Results of Numerical Analysis wi,max/b=1/50 wi,max/b=1/150 wi,max/b=1/300 wi,max/b=1/1000 wi,max/b=1/5000 0 0.5 1 1.5 -40 -20 0 20 40 Results of Numerical Analysis wi,max=1/50 wi,max=1/300 wi,max=1/1000 wi,max=1/5000 R Increaseratio[%]
  • 8. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 29 editor@iaeme.com Secondary, the differences between the strength in the case of wi,max / b =1/150 and the others were discussed. As shown in Figure 7, the load-carrying capacity in the case of wi,max / b =1/50, 1/300, 1/1000, 1/5000 were compared with that in the case of 1/150. The limit value of the maximum initial deflection is made 1/150 of plate width as deviation from flatness of a plate by JSHB (JRA [13]). Therefore it was decided to compare with numerical results in this limit value by this paper. The vertical axis represented the increase rate for load-carrying capacity in the case of wi,max / b =1/150. If the maximum initial deflection was large case wi,max / b =1/50, load-carrying capacity was reduced in the range of R <1.17, load-carrying capacity could be improved in the range of R ≥1.17 as shown in this Figure. If the maximum initial deflection was small case wi,max / b =1/5000, load-carrying capacity was increased in the range of R <1.17, load-carrying capacity could be worsened in the range of R ≥1.17 as shown in this Figure. Specifically, the strength of wi,max / b =1/5000 increased at most 37.4% at the R = 0.39, the strength of wi,max / b =1/50 decreased at most 15.3% at the R = 0.33. As results, it was found that load-carrying capacity tended to be increased as the amount of maximum initial deflection would be small in the case of R <1.17. Moreover, it is more effective to aim at amount of the initial deflection when load- carrying capacity of steel plate is estimated, so that the strength of steel plate changes larger according to amount of the initial deflection in R <0.5, which is equivalent to the range of relatively thick plate in particular. Further, the strength in R ≥1.17 may be considered hardly to change even if the initial deflection changes, because of below two reasons, that the region of R ≥1.17 is more thin-walled area, and that quantity of change is very small, although a reversal phenomenon has formed to a relation between the load-carrying capacity and amount of initial deflection in R ≥1.17. 3.3. Strength curve in Japanese Specifications for Highway Bridges As a result of above sensitivity analysis, if the maximum initial deflection amount wi,max / b was small, such as 1/5000,  u /y crossed to 1 even if the width-thickness ratio parameter R was greater than 0.7. These results indicate that the severe control of amount of initial deflective deformation prompts the possibility using width-thickness ratio parameter larger than current construction, or using more thin-walled structure than now, when a construction design considering the behavior of buckling in steel plates is carried out. By the way, it was found that the load-carrying capacity evaluation of the present analysis was less than the expression of JSHB (JRA [13]) the maximum initial deflection wi,max / b was the range of R =0.5-0.7 even in the case of 1/150, when Figure 6 was seen. Here, the design curve of JSHB (JRA [13]) shown in Figure 6 is defined as 50% of the Euler buckling strength, in a relatively large area of the width- thickness ratio (R >0.7), in consideration of the fact that the decrease in out-of-plane deflection and stiffness is likely to occur at a low stress level [13]. Specifically, this design curve is defined as follows. )7.0( 5.0 )7.0(0.1 2   R R R y u y u     (5)
  • 9. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 30 editor@iaeme.com However, a safety factor has been considered by the present buckling design in Japan. Therefore, there are no cases that a numerical result falls below design curve. And then, Figure 8 is prepared to indicate above fact. For example, the curve which considered safety factor in standard design curve (serviceability curve) is drawn in Figure 8, because of considering 1.14 (=1.7/1.5) as safety factor when an earthquake- resistant design is carried out in Japan. It was found in Figure 8 that there was no case that serviceability curve exceed numerical results, in the case that amount of initial deflection was less than a width of steel plate divided by 150. On the other hand, there were a few cases that numerical results were less than the serviceability curve in the case that amount of initial deflection was larger than a width of steel plate divided by 150. For example, the numerical values in 0.5<R<0.772 fell below serviceability curve, if amount of initial deflection was b/50. It was found that the steel plate which exists in 0.5<R<0.772 needs attention about servicing after the earthquake, when out- of-plane deflective deformation of a steel plate exceeded b/50 if out-of-plane deflection of steel plate in a steel structure will be measured after severe earthquake. Figure 8 Strength-R relationship at JSHB 3.4. Definition of Limit width-thickness ratio parameter To perform allowable stress design of steel structures, a design at the region that the allowable stress does not reduce as much as possible leads to utilize the performance of the material used in this design. Therefore, it is very important to understand the biggest width-thickness ratio parameter which is available for designing with yield stress in the standard load-carrying capacity’s curve used with a design in steel structures. A maximum width-thickness ratio parameter which corresponds to the above-mentioned is 0.7 according to the Equation (5). This width-thickness ratio parameter would be called a limit width-thickness ratio parameter, named Rlim, in this study. Now, elasto-plastic finite deformation analysis about the compressive strength of steel plates in this study is able to consider initial deflective deformation and residual stress as initial imperfections. It was possible to predict the compressive strength of steel plates in the state near the actual phenomenon, although it was analytic. Therefore, the width-thickness ration parameters when the ultimate compressive strength was parallel with the yield stress of constructed material, were calculated 0 0.5 1 1.5 0 0.5 1 1.5 R u/y Euler JSHB[13] Results of Numerical Analysis wi,max/b=1/50 wi,max/b=1/150 wi,max/b=1/300 wi,max/b=1/1000 wi,max/b=1/5000 JSHB[13] considering of safety factor at seismic evaluation
  • 10. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 31 editor@iaeme.com through parametric analysis using this elasto-plastic finite deformation analysis method. Generally speaking, the value of Rlim will be something different according to amount of initial deflection. Table 3 summarized the relationship between amount of initial deflection and limit width-thickness ratio parameter. Moreover, this result was illustrated in Figure 9. Table 3 Limit width-thickness ratio parameter wi,max /b Rlim wi,max /b Rlim 1/50 0.29 1/1000 0.59 1/100 0.36 1/2000 0.65 1/150 0.36 1/3000 0.67 1/200 0.39 1/5000 0.72 1/300 0.46 JSHB 0.70 1/500 0.52 Figure 9 Relationship between Limit width-thickness ratio parameter and maximum initial deflection Where, vertical axis indicated a limit width-thickness ratio parameter, and a transverse axis indicated the value defined as a width of a steel plate in divided by maximum initial deflection. And then, the estimated line calculated by a least squares method was also drawn in Figure 9. This estimated line was Equation (6).   0.10.1ln0975.0          maxi, lim w b R (50≤ b /wi,max ≤5000) (6) It was found out that this equation is very highly precise through the fact that the standard deviation was 0.0158, and watching Figure 9. As a result, this limit width- thickness ratio parameter Rlim can be expected as an index for evaluating the strength in response to the maximum initial deflection wi,max. Therefore, a load-carrying capacity formula in accordance with the maximum initial deflection wi,max using the limit width-thickness ratio parameter Rlim is proposed in Chapter 4. 101 102 103 104 0 0.2 0.4 0.6 0.8 1 Rlim b/wi,max Rlim Predict
  • 11. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 32 editor@iaeme.com 4. PREDICTION METHOD OF COMPRESSIVE STRENGTH CONSIDERING MAXIMUM INITIAL DEFLECTION In the previous chapter, it was found that amount of initial deflective deformation was significant parameter for getting compressive strength of steel plates through numerical study. In addition, limit width-thickness ration parameter, Rlim, shown in Equation (6), was proposed in this study. In this section, by using Equation (6), the correlation equation between amount of the maximum initial deflection and the compressive strength is proposed in the present study. 4.1. Pediction method for compressive strength of steel plates based on Perry-Robertson formula It is well-known that the formula typed Perry-Robertson were used generally as the prediction method for estimating compressive strength of steel compression members like a column or a pier. Therefore, it is tried to make newer prediction method for compressive strength of steel plates including effect of initial deflection in this study, although the some past study [1, 4] have been proposed various calculation equation. According to some studies by Usami et al. [5, 6], the equations predicting the load- carrying capacity are complicated, although it is able to calculate the compressive strength of steel plates. In addition, coverage of the initial deflection is 1/3233≤ wi,max / b ≤1/150. In order to improve these points and consider the case that out-of-plane deflective deformation of steel plate is greater after severe earthquake, newer predicting formula including more wide range of amount of initial deflection such as 1/5000≤ wi,max / b ≤1/50, was developed in this study, through a least squares method. The following equations for calculating the compressive strength of steel plates were developed. 0462.04 2 1 2      R Ry    (0.26≤ R ≤2.02, =0.0231) (7)   RRRa  lim1 (0.26≤ R ≤2.02) (8)   0.10.1ln0975.0          maxi, lim w b R (50≤ b /wi,max ≤5000) (9) Identical to Eq. (6) 229.00000324.0          maxi,w b a (50≤ b /wi,max ≤5000) (10) 4.2. Comparison of some strength equations The numerical results in this study and predicted equations in several previous studies were shown in Figure 10, when amount of maximum initial deflection has been b/150. Here, the vertical axis was non-dimensional the load-carrying capacity, the horizontal axis was the width-thickness ratio parameter R. In addition, numerical results in this study, the value calculated by the estimated equation in this study and the value calculated by the equation developed by Usami et al. [5, 6] were shown in Table 4, to
  • 12. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 33 editor@iaeme.com compare several values concretely in case that amount of maximum initial deflection is b/150. In the range of R =0.36-0.65, the difference between the approximation equation and numerical results were 0.04 to 0.07. And then, the difference between that numerical results and the values calculated in the formula developed by Usami et al. [5, 6] -0.02 to 0.04. In the range of R =0.65-2.02, the difference between the analysis values and equations became almost the same. Figure 11 indicated the relationship between the compressive strength of simply supported steel plates and width- thickness ratio parameter, including effect of various amount of maximum initial deflective deformation. Incidentally, the graphs separated in each amount of maximum initial deflection were prepared in APPENDIX 2. Figure 10 Strength curve (wi,max/b =1/150) Table 4 Comparison of strength curve (wi,max/b =1/150) R 0.36 0.49 0.65 0.78 0.98 1.17 1.37 1.57 1.83 2.02 (1)  u /y : Analysis 1.00 0.98 0.90 0.80 0.68 0.60 0.54 0.49 0.44 0.41 (2)  u /y : Eq.(7-10) 0.96 0.91 0.83 0.76 0.65 0.56 0.49 0.43 0.37 0.33 (3)  u /y : Usami [5, 6] 1.02 0.94 0.83 0.75 0.64 0.56 0.49 0.44 0.38 0.35 (1) - (2) 0.04 0.07 0.07 0.04 0.03 0.04 0.05 0.06 0.07 0.08 (1) - (3) -0.02 0.04 0.07 0.05 0.04 0.04 0.05 0.05 0.06 0.06 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y Euler JSHB[13] Fukumoto[1] Nara[4](rc/y=-0.4) Results ofNumericalAnalysis Eq.(7-10) Usami[5,6] wi,max/b=1/150 /y=0.25
  • 13. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 34 editor@iaeme.com Figure 11 Strength curve of predicted equation Future purposes of this study, it is possible to clarify the relationship between the maximum out-of-plane deflection and strength of the members, it is to establish the immediate seismic performance evaluation method measuring on site is a relatively easy out-of-plane deflection. The Equations (7-10) proposed in this study is available to decide how to use the steel structures after sever earthquake immediately. 5. CONCLUSION In this study, it is aimed at verifying the relationship between amount of the initial deflective deformation of simply supported steel plates and ultimate strength of them through elasto-plastic finite deformation analysis. At first, the relationship between the ultimate strength of steel plate and amount of initial deflection was clarified through parametric studies on compressive monotonic analysis of simply supported steel plates. Secondary, the limit width-thickness ratio parameter, Rlim, was defined. In addition, estimated equations based on results of various numerical analysis were developed. The results obtained in this study are as follows.  The definition of the limit width-thickness ratio parameter, Rlim, was established. And then, the correlation Equation (6) of limit width-thickness ratio parameter has been proposed.  The load-carrying capacity was significantly different due to the difference in the maximum initial deflection wi,max.  It was found that the steel plate which exists in 0.5<R<0.772 needs attention about servicing after the earthquake, when out-of-plane deflective deformation of a steel plate exceeded b/50 if out-of-plane deflection of steel plate in a steel structure will be measured after severe earthquake.  It was found that the ultimate strength of steel plates decreased sensitively, as the initial deflection became large, in R<1.17. For example, the ultimate strength in the case of wi,max / b =1/5000 was larger than the strength in case of wi,max / b =1/150 more than 37%.  It was found that the limit width thickness ratio parameter may exceed 0.7, such as wi,max / b = 1/5000, if the initial deflection is very small. Therefore, a limit width- thickness ratio parameter can be raised up, if a limit level of initial deflections of steel plates has been managed strictly. And the good advantage for designing steel structures might have been hidden.  The equation for estimating the compressive strength of simply supported steel plate was proposed in this study. It was found that the proposed Equations (7-10) are 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y Predict wi,max/b=1/50 wi,max/b=1/150 wi,max/b=1/300 wi,max/b=1/1000 wi,max/b=1/5000 Result wi,max/b=1/50 wi,max/b=1/150 wi,max/b=1/300 wi,max/b=1/1000 wi,max/b=1/5000 JSHB[13] Euler
  • 14. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 35 editor@iaeme.com available to estimate the compressive strength in case of every initial out-of-plane deflection simply and accurately. REFERENCES [1] Y. Fukumoto and Y. Itoh, Basic Compressive Strength of Steel Plates From Test Data, Proc. of JSCE, Structural Eng./ Earthquake Eng., No. 344, pp. 129-139, 1984. [2] T. Usami et al., Guidelines for Stability Design of Steel Structures, 2nd Edition, JSCE, Maruzen, 2005 (in Japanese). [3] T. Usami, M. Suzuki, Iraj H. P. Mamaghani and H. Ge, A Proposal for Check of Ultimate Earthquake Resistance of Partially Concrete Filled Steel Bridge Piers, Journal of JSCE, No.525/I-33, 1995, pp.69-82 (in Japanese). [4] K. Nara, M. Tsuda and Y. Fukumoto, Evaluation of Ultimate Strength of Steel Plates with Initial Imperfections under In-plane Bending and Compression, Journal of JSCE, No.392/I-9, 1988, pp.259-264 (in Japanese). [5] T. Usami and H. Tenkumo, Ultimate Strength and Effective Width of Plates in Compression and Bending, Journal of JSCE, No.441/I-18, 1992, pp.78-85 (in Japanese). [6] T. Usami and H. Ge, Strength Prediction of Thin-walled Plate Assemblies, Journal of Structural Engineering, JSCE, Vol.42A, 1996, pp.171-178 (in Japanese). [7] M. Komuro, Y. Okui, K, Nozaka, T. Miyashita, K. Nogami and M. Nagai, Numerical Study on Ultimate Strength of Compressive Flange Considering Statistical Data for Distributions of Initial Displacement and Residual Stress, Journal of Structural Engineering, JSCE, Vol. 60A, 2014, pp.80-93 (in Japanese). [8] J. K. Paik et al., Ultimate strength of dented steel plates under axial compressive loads, International Journal of Mechanical Sciences, 45, pp.433-448, 2003. [9] A. V. Raviprakash et al., Ultimate strength of a square plate with a longitudinal/transverse dent under axial compression, Journal of Mechanical Science and Technology, 25(9), pp.2377-2384, 2011. [10] T. Usami et al., Guidelines for Seismic and Damage Control Design of Steel Bridges, Gihodo Shuppan Co. Ltd., 2006. [11] S. Komatsu, M. Ushio and T. Kitada, An Experimental Study on Residual Stresses and Initial Deformations of Stiffened Plates, Proceedings of the JSCE, Vol. 265, 1977, pp.25-32 (in Japanese). [12] K. Ikeda, T. Kitada, Y. Yamakawa, M. Matsumura, A. Shibasaki and Y. Karino, Sensitivity Law and Probabilistic Variation of Elasto-Plastic Ultimate Strength of Imperfect Plates, JSCE Journal A, Vol. 64, No. 4, JSCE, 2008, pp.926-934 (in Japanese). [13] Japan Road Association, Japanese Specifications for Highway Bridges, Part 1 Common, Part 2 Steel Bridges, 2012 (in Japanese). [14] Dassault Systemes: ABAQUS Standard User’s Manual ver. 6.13-1, 2013. [15] Mr. Shukla B.A. and Prof. Phafat N.G, Analysis of Co2 Welding Parameters on The Depth of Penetration of AISI 1022 Steel Plates Using Response Surface Methodology. International Journal of Mechanical Engineering and Technology, 4(6), 2013, pp. 31-36 [16] Mr. Shukla B.A. and Prof. Phafat N.G., Experimental Study of Co2 Arc Welding Parameters on Weld Strength For AISI 1022 Steel Plates Using Response Surface Methodology. International Journal of Mechanical Engineering and Technology, 4(6), 2013, pp. 37 - 42
  • 15. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 36 editor@iaeme.com APPENDIX 1 The results in detail of the strength and ductility are given in Table A1. When initial deflection was less than 1/300 in R=0.26, it was transcribed that the ultimate strength is larger than the load at the point of 30 times of yield strain, and the ductility is bigger than 30 times of yield strain, because load degradation did not occur after 30 times of yield strain which became limit value on the analysis condition in this study. Table A1 Compressive strength and ductility calculated by numerical analysis R wi,max/b 0.26 0.39 0.49 0.65 0.78 0.98 1.17 1.37 1.57 1.83 2.02 1/50  u /y 1.16 0.93 0.89 0.80 0.74 0.66 0.60 0.55 0.51 0.46 0.43  u /y 20.88 1.81 1.98 1.68 1.68 1.68 1.68 1.68 1.68 1.98 1.98 1/150  u /y 1.36 1.00 0.98 0.89 0.80 0.68 0.60 0.54 0.49 0.44 0.41  u /y 24.99 9.96 1.98 1.68 1.38 1.38 1.68 1.68 1.68 1.68 1.68 1/300  u /y >1.47 1.05 1.00 0.94 0.85 0.69 0.59 0.53 0.48 0.43 0.40  u /y >30.0 10.59 2.19 1.55 1.43 1.38 1.68 1.68 1.68 1.68 1.98 1/1000  u /y >1.54 1.18 1.03 1.00 0.91 0.71 0.59 0.53 0.48 0.42 0.39  u /y >30.0 13.98 8.58 1.89 1.46 1.03 1.38 1.68 1.68 1.68 1.98 1/5000  u /y >1.55 1.37 1.15 1.01 0.99 0.73 0.59 0.52 0.47 0.42 0.39  u /y >30.0 21.48 12.18 2.58 1.73 0.90 1.41 1.73 1.83 1.98 1.98 APPENDIX 2 Contents of Figures A1 indicate several cases of the relationship between the compressive strength of simply supported steel plates and width-thickness ratio parameter, including effect of each amount of maximum initial deflective deformation. Vertical axis indicates dimensionless ultimate compressive strength of steel plates, and horizontal axis indicates width-thickness ratio parameter, in every Figure. It's difficult to check the contents because all cases are included in Figure 11. So it is divided into a graph according to each initial deflection. (a) wi,max/b = 1/50 (b) wi,max/b = 1/100 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y
  • 16. Sensitivity Analysis About Influence of Out-of-Plane Deflective Deformation Upon Compressive Strength of Steel Plates http://www.iaeme.com/IJCIET/index.asp 37 editor@iaeme.com (c) wi,max/b = 1/150 (d) wi,max/b = 1/200 (e) wi,max/b = 1/300 Figures A1 Relationship between ultimate strength and R (f) wi,max/b = 1/500 (g) wi,max/b = 1/1000 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y Euler JSHB Fukumoto Nara(rc/y=-0.4) Results of Numerical Analysis wi,max/b=1/50 wi,max/b=1/100 wi,max/b=1/150 wi,max/b=1/200 wi,max/b=1/300 wi,max/b=1/500 wi,max/b=1/1000 wi,max/b=1/2000 wi,max/b=1/3000 wi,max/b=1/5000 Predict Eq.(7-10) Usami[5,6], /y=0.25 Euler JSHB[13] 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y
  • 17. Akira Kasai, Tatsuo Kakiuchi and Shohei Okabe http://www.iaeme.com/IJCIET/index.asp 38 editor@iaeme.com (h) wi,max/b = 1/2000 (i) wi,max/b = 1/3000 (j) wi,max/b = 1/5000 Figures A1 Relationship between ultimate strength and R (Continued) 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y 0 0.5 1 1.5 2 0 0.5 1 1.5 R u/y Euler JSHB Fukumoto Nara(rc/y=-0.4) Results of Numerical Analysis wi,max/b=1/50 wi,max/b=1/100 wi,max/b=1/150 wi,max/b=1/200 wi,max/b=1/300 wi,max/b=1/500 wi,max/b=1/1000 wi,max/b=1/2000 wi,max/b=1/3000 wi,max/b=1/5000 Predict Eq.(7-10) Usami[5,6], /y=0.25 Euler JSHB[13]