SlideShare a Scribd company logo
1 of 23
Fundamentals of Transport Phenomena
ChE 715
Lecture 15
Mass Transfer problems, cont’d. (ch 2)
S i 2011Spring 2011
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
We are interested in concentration profile flux etcWe are interested in concentration profile, flux, etc.
0A BdN dN
dy dy
= = No rxn. term?
Because no homogeneous rxn.
• Conservation Eqn.
g
constant throughout gap LAN =
• Flux Eqn =x ( )A A A B AN N+ +N JFlux Eqn. x ( )A A A B AN N+ +N J
Is this first term negligible since we say stagnant film?
Not in this case! In fact, NB= -m NANot in this case! In fact, NB m NA
Last lecture
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
=x ( )N N+ +N J=x ( )A A A B AN N+ +N J
NB= -m NA, from rxn. stoichiometry
dx
=x (1 ) A
A A A AB
dx
N m CD
dy
− −N
AB ACD dx
N =
[1 x (1 )]
AB A
A
A m dy
−
− −
N
AB AD dC
N Assuming constant C=
[1 (C / )(1 )]
AB A
A
A
dC
C m dy
−
− −
N
Last lecture
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
D dC
=
[1 (C / )(1 )]
AB A
A
A
D dC
C m dy
−
− −
N
Case I; Assume surface rxn to be very fast
Note, rxn order does not enter the picture
Case I; Assume surface rxn. to be very fast
BC: x=L, CA = 0
x=0, CA= CAo
.
[1 (C / )(1 )]
AB A
A
D dC
const A
C m dy
− = =
− −
Solve this differential equation, get two constants, use 2 BCs
Last lecture
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
D dC
=
[1 (C / )(1 )]
AB A
A
A
D dC
C m dy
−
− −
N
Case II; General—finite rxn rate at surface
Flux at surface related to
reaction rate
Case II; General—finite rxn rate at surface
BC: x=L,
x=0, CA= CAo
( ) ( )][ n
A ASAN L R Lk C= − =
.
[1 (C / )(1 )]
AB A
A
A
D dC
N const
C m dy
− = = =
− −
( )][ n
A Lk C How?
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
.
[1 (C / )(1 )]
AB A
A
A
D dC
N const
C m dy
− = = =
− −
( )][ n
A Lk C
( ) ( )][ n
A ASAN L R Lk C= − =
C
[C ( )] 1 (1 )nA A
A
AB
dC k
L m
dy D C
⎛ ⎞ ⎡ ⎤
= − −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
x=0, CA= CAo
1
; = ; Da= ; =
n
AoA A
Ao AB Ao y L
kC LC Cy
Let
C L D C
θ η φ
−
=
=
θ(0)=1[1 (1 ) ]n
Ao
d
Da x m
d
θ
φ θ
η
= − − −
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
1n
kCC C
dθ
Da = Damkohler #, ratio of rxn
velocity to diffusion velocity
1
; = ; Da= ; =
n
AoA A
Ao AB Ao y L
kC LC Cy
Let
C L D C
θ η φ
−
=
=
θ(0)=1[1 (1 ) ]n
Ao
d
Da x m
d
θ
φ θ
η
= − − −
Solve thru separation of variables, get
implicit expressionimplicit expression
1 (1 )1
ln[ ], m 1
(1 ) 1 (1 )
n Ao
Ao Ao
x m
Da
x m x m
φ
φ
− −
= ≠
− − −
l
1 , m=1n
Da φ φ= − Da 0, rxn very slow, concentration const.
Da ∞, diffusion very slow, concentration
is zero at catalytic surface
Example—Diffusion in Gas w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B gases in stagnant film
H did t s i l st p ? surfacey=L
constant throughout gap LAN =[1 (1 ) ]n
Ao
d
Da x m
d
θ
φ θ
η
= − − −
How did we get answer in last page?
1
; = ; Da= ; =
n
AoA A
Ao AB Ao y L
kC LC Cy
Let
C L D C
θ η φ
−
=
=1
1 0[1 (1 ) ]
n
Ao
d
Da d
x m
φ θ
φ η
θ
= −
− −∫ ∫
1 (1 )1
ln[ ] , m 1
(1 ) 1 (1 )
nAo
Ao Ao
x m
Da
x m x m
φ
φ
− −
= ≠
− − −
For m=1
1
1 0
n
d Da d
φ
θ φ η= −∫ ∫
1n
Da φ φ= −
Modified Prob. —Diffusion in Dilute Liq w/. Heterogeneous Rxn.
A mB at surface
y=0
Catalytic
CAo
y=L
A,B liquid in stagnant film
Rxn. at surface given by
surfacey=L
n
ASAR kC= −
constant throughout gap LAN =
0AdN
=
=x ( )A A A B AN N+ +N J
0
dy
=
Dilute xA is small; liquid convection
negligiblen g g
= A
A A AB
dC
D
dy
= −N J
2
2
0Ad C
dy
=
AoB C=
From BCs
AC Ay B= +
[ ]n
AB AoD A k AL C− = +
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
Would like
concentration profile
Inert surfacey=L
1
1
k
k
A B
−
⎯⎯→←⎯⎯
1 1A B VBVAR Rk C k C−+ = −= − v refers to reaction
within vol as againstwithin vol., as against
surface
1 10; ; and K= /VB A BVAR R KC C k k−= ==At equilibrium:
2
Ad C
Problem Formulation: at y=L0A BdC dC
dy dy
= =BCs: CA=CAO; CB=CBO at y=0
2
2
2
0
0
A
A VA
B
B VA
d C
D R
dy
d C
D R
d
+ =
− =
2 2
2 2
0A B
A B
d C d C
D D
dy dy
+ =
2B VA
dy
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
at y=L0A BdC dC
dy dy
= =BCs: CA=CAO; CB=CBO at y=0
2 2
2 2
0A B
A B
d C d C
D D
dy dy
+ =
dy dy
2
2
( ) 0A A B B
d
D C D C
dy
+ =
Integrating again:
A B
A B
dC dC
D D a
dy dy
+ = BCs: From y=L condition, a=0
Integrating again:
A A B BD C D C b+ =
A AO OD C D C b+ = BCs: From y=0 conditionA AO B BOD C D C b+ BCs From y 0 condition
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
at y=L0A BdC dC
dy dy
= =BCs: CA=CAO; CB=CBO at y=0A A B BD C D C b+ =
dy dy
A AO B BOD C D C b+ =
NOW, combine these two:
We know from before
( ) ( ) 0A A AO B B BOD C C D C C− + − =
( )A
A AO BOB
D
C C CC
D
= − + 2
0Ad C
D R+BD 2
0A
A VAD R
dy
+ =
2
12
( ) 0A
A AB
d C
D k KC C
dy
+ − =
dy
2
1 1 12
( ) ( ) 0A A A
A AO BO A
B B
d C D D
D k K C C k K k C
dy D D
+ + − + =
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
dC dC
CA=CAO; CB=CBO at y=0
2
1 1 12
( ) ( ) 0A A A
A AO BO A
B B
d C D D
D k K C C k K k C
dy D D
+ + − + =
at y=L0A BdC dC
dy dy
= =
Non-dimensionalize the eqn. and solve
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
dC dC
CA=CAO; CB=CBO at y=0
2
1 1 12
( ) ( ) 0A A A
A AO BO A
B B
d C D D
D k K C C k K k C
dy D D
+ + − + =
at y=L0A BdC dC
dy dy
= =
Non-dimensionalize the eqn. and solve
A By C KC
; ;A B
A B
AO AO
y
L
C KC
C C
η θ θ= = =Let
2
( ) ( ) 0A A AA AO d D D
k K C C k
D C
K k C
θ
θ+ + − + =2 1 1 12
( ) ( ) 0AO BO AO A
B B
k K C C k K k C
d D DL
θ
η
+ + − + =
2 2
1 1
2
1
2
22
1
( ) ( ) 0BOA
A
k KCd KL k KLk L k Lθ
θ+ + − + =2
( ) ( ) 0A
AB A ABOd CD D DD
θ
η
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
; ;A B
A B
AO AO
y
L
C KC
C C
η θ θ= = =
2 2
1 1
2
1
2
22
1
( ) ( ) 0BOA
A
k KCd
d C
KL k KL
D
k L k L
D DD
θ
θ+ + − + =
A h i l i ifi
Let
2
( ) ( ) A
AB A ABOd CD D DDη
2 2
11
; =; BOk L KCk LK
β α γ==
Any physical significance
of α and β?
Damkohler # for forward
& backward rxn;;
B A AOCD D
β γ
2
2
( ) ( ) 0A
A
d
d
θ
γα αβ β θ
η
+ + − + = at y=L 1) 0(0A AddC
y dd
θ
η
⇒ ==
& backward rxn.
dη y dd η
at y=0 (0) 1A AO AC C θ⇒ ==
AP AHA θθ θ+=
particular homogeneous ( )
( )
AP
β αγ
θ
β α
+
=
+
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
2
2
( ) ( ) 0A
A
d
d
θ
γα αβ β θ
η
+ + − + = (1) 0Ad
d
θ
η
=(0) 1Aθ =
; ;A B
A B
AO AO
y
L
C KC
C C
η θ θ= = =
2 2
11
; =; BOk L KCk LK
β α γ==
AP AHA θθ θ+=
( )
( )
AP
β αγ
θ
β
+
= ;;
B A AOCD D
β α γ
( )
AP
β α+
2
2
( )A
A
d
d
θ
θβ
η
α= +For :AHθ
Now apply BCs on entire solution
1 2exp( ) exp( )AH C Cθ α β η α β η= − + + +
Now, apply BCs on entire solution
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
(1) 0Ad
d
θ
η
=(0) 1Aθ =AP AHA θθ θ+=
( )β αγ
θ
+
2 2
11
; =;
B A
BO
AO
k L KCk L
CD D
K
β α γ==
( )
APθ
β α
=
+
1 2exp( ) exp( )AH C Cθ α β η α β η= − + + +
(1 )
[cosh( ) tanh( )sinh( )]A
α γ
θ α β η α β α β η
α
αγ
β β
β
α
−
= + + − + +
+
+
+
(1 )
[cosh( ) tanh( )sinh( )]B
β γ
θ α β η α β α β η
α
αγ
β β
β
α
−
= − + − + +
+
+
+
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
(1) 0Ad
d
θ
η
=(1 )
[cosh( ) tanh( )sinh( )]A
αγ β α γ
θ α β η α β α β η
α β α β
+ −
= + + − + +
+ +
2 2
11
; =; BOk L KCk LK
β α γ==
(0) 1Aθ =
(1 )
[cosh( ) tanh( )sinh( )]B
αγ β β γ
θ α β η α β α β η
α β α β
+ −
= − + − + +
+ +
;;
B A AOCD D
β α γ
For very fast rxn, i.e.,
; ; / fixedα β β α→ ∞ → ∞
tanh 1x →
/ (1 )
exp( )A
γ β α γ
θ α β η
⎡ ⎤+ −
= + − +⎢ ⎥tanh 1
cosh sinh exp( )
x
x x x
→
− → −
exp( )
1 / 1 /
Aθ α β η
β α β α
+ +⎢ ⎥+ +⎣ ⎦
/ ( / )(1 )
exp( )
1 / 1 /
B
γ β α β α γ
θ α β η
β α β α
⎡ ⎤+ −
= + − +⎢ ⎥+ +⎣ ⎦1 / 1 /β α β α+ +⎣ ⎦
Reversible Homogeneous rxn – liquid film
A B
y=0
Inert surface
CAo, CBo
y=L
A,B in dilute,
stagnant liquid
1
1
k
k
A B
−
⎯⎯→←⎯⎯
Inert surfacey=L
2 2
11
; =;
B A
BO
AO
k L KCk L
CD D
K
β α γ==
(1) 0Ad
d
θ
η
=
For very fast rxn, i.e.,
; ; / fixedα β β α→ ∞ → ∞
(0) 1Aθ =tanh 1
cosh sinh exp( )
x
x x x
→
− → −
/ (1 )
( )
γ β α γ
θ β
⎡ ⎤+ − / ( / )(1 )
( )
γ β α β α γ
θ β
⎡ ⎤+ −/ ( )
exp( )
1 / 1 /
A
γ β α γ
θ α β η
β α β α
⎡ ⎤
= + − +⎢ ⎥+ +⎣ ⎦
( )( )
exp( )
1 / 1 /
B
γ β β γ
θ α β η
β α β α
⎡ ⎤
= + − +⎢ ⎥+ +⎣ ⎦
For most of the film the exponentialFor most of the film, the exponential
terms are negligible:
Rxn layer thickness: 1/(α+β)1/2
θΑ ~ θΒ
Rxn layer thickness: 1/(α+β)
Diffusion into an open cone
Solute released into open cone of angle θο
Solute released at a const. rate (moles/time)
Solute source at origin θ
θο
m
r
g
Cone boundaries are impervious
Need to find concentration Ci:
S l t
St. steady conservation eqn. in spherical coordinates
2
2
vi2 2 2 2 2
1 1 1
[ sin ] 0
sin sin
i i i
i
C C C
D r R
r r r r r
θ
θ θ θ θ φ
∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞
+ + + =⎜ ⎟ ⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
Solute source
/m moles time=
Possible BCs:
What terms can we eliminate?
21
[ ] 0iC
D
∂∂ ⎛ ⎞
⎜ ⎟
0 at =0iC
θ
θ
∂
=
∂
C∂
2
2
[ ] 0i
iD r
r r
⎛ ⎞
=⎜ ⎟
∂ ∂⎝ ⎠
2
0iC∂∂ ⎛ ⎞
⎜ ⎟
How?
symmetry
fl h0 at =i
O
C
θ θ
θ
∂
=
∂
2
0i
r
r r
⎛ ⎞
=⎜ ⎟
∂ ∂⎝ ⎠
no flux thru
wall
Diffusion into an open cone
θ
θο
2
0iC
r
r r
∂∂ ⎛ ⎞
=⎜ ⎟
∂ ∂⎝ ⎠
2 iC
r a
r
∂
=
∂
r
S l t
2
iC a
r r
∂
=
∂
i
a
C b
r
= − +
Any BC?
Solute source
/m moles time=( ) 0iC r = ∞ =
i
a
C = − How do we get a?i
r
g
Let us look at the
point source at r=0 0
lim( )i
r
m N S
→
= S=area of spherical shell of radius r
2
sindS r d dθ θ φ=
2
2
sin
o
S r d d
π
θ
θ θ φ= ∫ ∫
2
0
2 sin
O
S r d
θ
π θ θ= ∫0
0
φ∫ ∫ 0∫
2
2 [1 cos ]OS rπ θ= −
Diffusion into an open cone
θ
θο
i
a
C
r
= − How do we get a?
2 r
S l t
0
lim( )i
r
m N S
→
=
i
i i
dC
N D
dr
= −
2
2 [1 cos ]OS rπ θ= −
Solute source
/m moles time=
dr
0
2
2 [1 coslim( )]i
i O
r
dC
D r
dr
m π θ
→
− −=
From last page:0
2
2 [1 cos ]lim( )
r
i
i O
dC
D
dr
m rπ θ
→
= − − 2 iC
r a
r
∂
=
∂
2 [1 cos ]i Om aDπ θ−= −
m
a = −
2 [1 cos ]i O
a
Dπ θ−
Directional Solidification– dilute binary alloy
Well-mixed
melt
SolidStagnant
film U
Solid front moving
Deen Example Problem 2.8-5
Y=0Y δ
Ci=C∞
Ci=CsU
Solid front moving
Mass transfer thru stagnant layer
ISSUES: Y 0Y=-δISSUES:
•Meaning of stagnant layer
•Conservation equation in this case
•BC condition at melt-solid interface 2iDC
D C R∇
Conservation Eqn:
B cond t on at me t so d nterface 2i
i i Vi
DC
D C R
Dt
= ∇ +
2
i i
i
y y
C C
U D
∂ ∂
∂ ∂
=
BC
C∂
( ) ( )M M
C= +N v J
y y∂ ∂
(0) (0) (0)i
i i s
i
C
UC D UC
y
∂
= − =
∂
N
Note extra term appearing on
left because of convection
Note how convection appears here!
A A AC= +N v J
Example not covered in class;
look problem over in book

More Related Content

What's hot (7)

MATEMÁTICA
MATEMÁTICAMATEMÁTICA
MATEMÁTICA
 
MATEMÁTICA
MATEMÁTICAMATEMÁTICA
MATEMÁTICA
 
Limacon - Calculus
Limacon - CalculusLimacon - Calculus
Limacon - Calculus
 
Chemical kinetics 1
Chemical kinetics 1Chemical kinetics 1
Chemical kinetics 1
 
A) proving angle properties of circles 1
A) proving angle properties of circles 1A) proving angle properties of circles 1
A) proving angle properties of circles 1
 
Formule corpuri
Formule corpuriFormule corpuri
Formule corpuri
 
Mate.Info.Ro.70 Formule Corpuri Geometrice
Mate.Info.Ro.70 Formule Corpuri GeometriceMate.Info.Ro.70 Formule Corpuri Geometrice
Mate.Info.Ro.70 Formule Corpuri Geometrice
 

Viewers also liked

Viewers also liked (14)

Game theory Bayesian Games at HelpWithAssignment.com
Game theory Bayesian Games at HelpWithAssignment.comGame theory Bayesian Games at HelpWithAssignment.com
Game theory Bayesian Games at HelpWithAssignment.com
 
Factorial Experiments
Factorial ExperimentsFactorial Experiments
Factorial Experiments
 
Cash Dividend Assignment Help
Cash Dividend Assignment Help Cash Dividend Assignment Help
Cash Dividend Assignment Help
 
Scoping
ScopingScoping
Scoping
 
System Programming Assignment Help- Signals
System Programming Assignment Help- SignalsSystem Programming Assignment Help- Signals
System Programming Assignment Help- Signals
 
Scope
ScopeScope
Scope
 
Get 24/7 Reliable Engineering Assignment Help, 100% error free, money back g...
Get 24/7 Reliable Engineering  Assignment Help, 100% error free, money back g...Get 24/7 Reliable Engineering  Assignment Help, 100% error free, money back g...
Get 24/7 Reliable Engineering Assignment Help, 100% error free, money back g...
 
Network Programming Assignment Help
Network Programming Assignment HelpNetwork Programming Assignment Help
Network Programming Assignment Help
 
Manufacturing Process Selection and Design
Manufacturing Process Selection and DesignManufacturing Process Selection and Design
Manufacturing Process Selection and Design
 
System Programming - Interprocess communication
System Programming - Interprocess communicationSystem Programming - Interprocess communication
System Programming - Interprocess communication
 
Ruby Programming Assignment Help
Ruby Programming Assignment HelpRuby Programming Assignment Help
Ruby Programming Assignment Help
 
Tips for writing a good biography
Tips for writing a good biographyTips for writing a good biography
Tips for writing a good biography
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Customer relationship management
Customer relationship managementCustomer relationship management
Customer relationship management
 

Similar to Fundamentals of Transport Phenomena ChE 715

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
The Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsThe Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsMagnusMG
 
Elliot & Lira slides 10 fugacities eos.pdf
Elliot & Lira slides 10 fugacities eos.pdfElliot & Lira slides 10 fugacities eos.pdf
Elliot & Lira slides 10 fugacities eos.pdfRenMoraCasal
 
slides-matbal-2up.pdf
slides-matbal-2up.pdfslides-matbal-2up.pdf
slides-matbal-2up.pdfKETEM1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
Buffer Systems and Titration
Buffer Systems and TitrationBuffer Systems and Titration
Buffer Systems and Titrationaqion
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.Lawrence kok
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandNittaya Noinan
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandNittaya Noinan
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theorywtyru1989
 
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th StdAnsari Usama
 

Similar to Fundamentals of Transport Phenomena ChE 715 (20)

Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
The Material Balance for Chemical Reactors
The Material Balance for Chemical ReactorsThe Material Balance for Chemical Reactors
The Material Balance for Chemical Reactors
 
Shell theory
Shell theoryShell theory
Shell theory
 
Elliot & Lira slides 10 fugacities eos.pdf
Elliot & Lira slides 10 fugacities eos.pdfElliot & Lira slides 10 fugacities eos.pdf
Elliot & Lira slides 10 fugacities eos.pdf
 
slides-matbal-2up.pdf
slides-matbal-2up.pdfslides-matbal-2up.pdf
slides-matbal-2up.pdf
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Buffer Systems and Titration
Buffer Systems and TitrationBuffer Systems and Titration
Buffer Systems and Titration
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
 
EMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdfEMI_Chapter3_p2.pdf
EMI_Chapter3_p2.pdf
 
Dynamics and Acoustics Assignment Help
Dynamics and Acoustics Assignment HelpDynamics and Acoustics Assignment Help
Dynamics and Acoustics Assignment Help
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demand
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demand
 
Towards a one shot entanglement theory
Towards a one shot entanglement theoryTowards a one shot entanglement theory
Towards a one shot entanglement theory
 
Lecture 04 bernouilli's principle
Lecture 04   bernouilli's principleLecture 04   bernouilli's principle
Lecture 04 bernouilli's principle
 
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std
3rd Lecture on Ionic Equilibria | Chemistry Part I | 12th Std
 
Fpga 01-digital-logic-design
Fpga 01-digital-logic-designFpga 01-digital-logic-design
Fpga 01-digital-logic-design
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 

Fundamentals of Transport Phenomena ChE 715

  • 1. Fundamentals of Transport Phenomena ChE 715 Lecture 15 Mass Transfer problems, cont’d. (ch 2) S i 2011Spring 2011
  • 2. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − We are interested in concentration profile flux etcWe are interested in concentration profile, flux, etc. 0A BdN dN dy dy = = No rxn. term? Because no homogeneous rxn. • Conservation Eqn. g constant throughout gap LAN = • Flux Eqn =x ( )A A A B AN N+ +N JFlux Eqn. x ( )A A A B AN N+ +N J Is this first term negligible since we say stagnant film? Not in this case! In fact, NB= -m NANot in this case! In fact, NB m NA Last lecture
  • 3. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = =x ( )N N+ +N J=x ( )A A A B AN N+ +N J NB= -m NA, from rxn. stoichiometry dx =x (1 ) A A A A AB dx N m CD dy − −N AB ACD dx N = [1 x (1 )] AB A A A m dy − − − N AB AD dC N Assuming constant C= [1 (C / )(1 )] AB A A A dC C m dy − − − N Last lecture
  • 4. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = D dC = [1 (C / )(1 )] AB A A A D dC C m dy − − − N Case I; Assume surface rxn to be very fast Note, rxn order does not enter the picture Case I; Assume surface rxn. to be very fast BC: x=L, CA = 0 x=0, CA= CAo . [1 (C / )(1 )] AB A A D dC const A C m dy − = = − − Solve this differential equation, get two constants, use 2 BCs Last lecture
  • 5. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = D dC = [1 (C / )(1 )] AB A A A D dC C m dy − − − N Case II; General—finite rxn rate at surface Flux at surface related to reaction rate Case II; General—finite rxn rate at surface BC: x=L, x=0, CA= CAo ( ) ( )][ n A ASAN L R Lk C= − = . [1 (C / )(1 )] AB A A A D dC N const C m dy − = = = − − ( )][ n A Lk C How?
  • 6. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = . [1 (C / )(1 )] AB A A A D dC N const C m dy − = = = − − ( )][ n A Lk C ( ) ( )][ n A ASAN L R Lk C= − = C [C ( )] 1 (1 )nA A A AB dC k L m dy D C ⎛ ⎞ ⎡ ⎤ = − −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ x=0, CA= CAo 1 ; = ; Da= ; = n AoA A Ao AB Ao y L kC LC Cy Let C L D C θ η φ − = = θ(0)=1[1 (1 ) ]n Ao d Da x m d θ φ θ η = − − −
  • 7. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = 1n kCC C dθ Da = Damkohler #, ratio of rxn velocity to diffusion velocity 1 ; = ; Da= ; = n AoA A Ao AB Ao y L kC LC Cy Let C L D C θ η φ − = = θ(0)=1[1 (1 ) ]n Ao d Da x m d θ φ θ η = − − − Solve thru separation of variables, get implicit expressionimplicit expression 1 (1 )1 ln[ ], m 1 (1 ) 1 (1 ) n Ao Ao Ao x m Da x m x m φ φ − − = ≠ − − − l 1 , m=1n Da φ φ= − Da 0, rxn very slow, concentration const. Da ∞, diffusion very slow, concentration is zero at catalytic surface
  • 8. Example—Diffusion in Gas w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B gases in stagnant film H did t s i l st p ? surfacey=L constant throughout gap LAN =[1 (1 ) ]n Ao d Da x m d θ φ θ η = − − − How did we get answer in last page? 1 ; = ; Da= ; = n AoA A Ao AB Ao y L kC LC Cy Let C L D C θ η φ − = =1 1 0[1 (1 ) ] n Ao d Da d x m φ θ φ η θ = − − −∫ ∫ 1 (1 )1 ln[ ] , m 1 (1 ) 1 (1 ) nAo Ao Ao x m Da x m x m φ φ − − = ≠ − − − For m=1 1 1 0 n d Da d φ θ φ η= −∫ ∫ 1n Da φ φ= −
  • 9. Modified Prob. —Diffusion in Dilute Liq w/. Heterogeneous Rxn. A mB at surface y=0 Catalytic CAo y=L A,B liquid in stagnant film Rxn. at surface given by surfacey=L n ASAR kC= − constant throughout gap LAN = 0AdN = =x ( )A A A B AN N+ +N J 0 dy = Dilute xA is small; liquid convection negligiblen g g = A A A AB dC D dy = −N J 2 2 0Ad C dy = AoB C= From BCs AC Ay B= + [ ]n AB AoD A k AL C− = +
  • 10. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid Would like concentration profile Inert surfacey=L 1 1 k k A B − ⎯⎯→←⎯⎯ 1 1A B VBVAR Rk C k C−+ = −= − v refers to reaction within vol as againstwithin vol., as against surface 1 10; ; and K= /VB A BVAR R KC C k k−= ==At equilibrium: 2 Ad C Problem Formulation: at y=L0A BdC dC dy dy = =BCs: CA=CAO; CB=CBO at y=0 2 2 2 0 0 A A VA B B VA d C D R dy d C D R d + = − = 2 2 2 2 0A B A B d C d C D D dy dy + = 2B VA dy
  • 11. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L at y=L0A BdC dC dy dy = =BCs: CA=CAO; CB=CBO at y=0 2 2 2 2 0A B A B d C d C D D dy dy + = dy dy 2 2 ( ) 0A A B B d D C D C dy + = Integrating again: A B A B dC dC D D a dy dy + = BCs: From y=L condition, a=0 Integrating again: A A B BD C D C b+ = A AO OD C D C b+ = BCs: From y=0 conditionA AO B BOD C D C b+ BCs From y 0 condition
  • 12. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L at y=L0A BdC dC dy dy = =BCs: CA=CAO; CB=CBO at y=0A A B BD C D C b+ = dy dy A AO B BOD C D C b+ = NOW, combine these two: We know from before ( ) ( ) 0A A AO B B BOD C C D C C− + − = ( )A A AO BOB D C C CC D = − + 2 0Ad C D R+BD 2 0A A VAD R dy + = 2 12 ( ) 0A A AB d C D k KC C dy + − = dy 2 1 1 12 ( ) ( ) 0A A A A AO BO A B B d C D D D k K C C k K k C dy D D + + − + =
  • 13. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L dC dC CA=CAO; CB=CBO at y=0 2 1 1 12 ( ) ( ) 0A A A A AO BO A B B d C D D D k K C C k K k C dy D D + + − + = at y=L0A BdC dC dy dy = = Non-dimensionalize the eqn. and solve
  • 14. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L dC dC CA=CAO; CB=CBO at y=0 2 1 1 12 ( ) ( ) 0A A A A AO BO A B B d C D D D k K C C k K k C dy D D + + − + = at y=L0A BdC dC dy dy = = Non-dimensionalize the eqn. and solve A By C KC ; ;A B A B AO AO y L C KC C C η θ θ= = =Let 2 ( ) ( ) 0A A AA AO d D D k K C C k D C K k C θ θ+ + − + =2 1 1 12 ( ) ( ) 0AO BO AO A B B k K C C k K k C d D DL θ η + + − + = 2 2 1 1 2 1 2 22 1 ( ) ( ) 0BOA A k KCd KL k KLk L k Lθ θ+ + − + =2 ( ) ( ) 0A AB A ABOd CD D DD θ η
  • 15. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L ; ;A B A B AO AO y L C KC C C η θ θ= = = 2 2 1 1 2 1 2 22 1 ( ) ( ) 0BOA A k KCd d C KL k KL D k L k L D DD θ θ+ + − + = A h i l i ifi Let 2 ( ) ( ) A AB A ABOd CD D DDη 2 2 11 ; =; BOk L KCk LK β α γ== Any physical significance of α and β? Damkohler # for forward & backward rxn;; B A AOCD D β γ 2 2 ( ) ( ) 0A A d d θ γα αβ β θ η + + − + = at y=L 1) 0(0A AddC y dd θ η ⇒ == & backward rxn. dη y dd η at y=0 (0) 1A AO AC C θ⇒ == AP AHA θθ θ+= particular homogeneous ( ) ( ) AP β αγ θ β α + = +
  • 16. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L 2 2 ( ) ( ) 0A A d d θ γα αβ β θ η + + − + = (1) 0Ad d θ η =(0) 1Aθ = ; ;A B A B AO AO y L C KC C C η θ θ= = = 2 2 11 ; =; BOk L KCk LK β α γ== AP AHA θθ θ+= ( ) ( ) AP β αγ θ β + = ;; B A AOCD D β α γ ( ) AP β α+ 2 2 ( )A A d d θ θβ η α= +For :AHθ Now apply BCs on entire solution 1 2exp( ) exp( )AH C Cθ α β η α β η= − + + + Now, apply BCs on entire solution
  • 17. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L (1) 0Ad d θ η =(0) 1Aθ =AP AHA θθ θ+= ( )β αγ θ + 2 2 11 ; =; B A BO AO k L KCk L CD D K β α γ== ( ) APθ β α = + 1 2exp( ) exp( )AH C Cθ α β η α β η= − + + + (1 ) [cosh( ) tanh( )sinh( )]A α γ θ α β η α β α β η α αγ β β β α − = + + − + + + + + (1 ) [cosh( ) tanh( )sinh( )]B β γ θ α β η α β α β η α αγ β β β α − = − + − + + + + +
  • 18. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L (1) 0Ad d θ η =(1 ) [cosh( ) tanh( )sinh( )]A αγ β α γ θ α β η α β α β η α β α β + − = + + − + + + + 2 2 11 ; =; BOk L KCk LK β α γ== (0) 1Aθ = (1 ) [cosh( ) tanh( )sinh( )]B αγ β β γ θ α β η α β α β η α β α β + − = − + − + + + + ;; B A AOCD D β α γ For very fast rxn, i.e., ; ; / fixedα β β α→ ∞ → ∞ tanh 1x → / (1 ) exp( )A γ β α γ θ α β η ⎡ ⎤+ − = + − +⎢ ⎥tanh 1 cosh sinh exp( ) x x x x → − → − exp( ) 1 / 1 / Aθ α β η β α β α + +⎢ ⎥+ +⎣ ⎦ / ( / )(1 ) exp( ) 1 / 1 / B γ β α β α γ θ α β η β α β α ⎡ ⎤+ − = + − +⎢ ⎥+ +⎣ ⎦1 / 1 /β α β α+ +⎣ ⎦
  • 19. Reversible Homogeneous rxn – liquid film A B y=0 Inert surface CAo, CBo y=L A,B in dilute, stagnant liquid 1 1 k k A B − ⎯⎯→←⎯⎯ Inert surfacey=L 2 2 11 ; =; B A BO AO k L KCk L CD D K β α γ== (1) 0Ad d θ η = For very fast rxn, i.e., ; ; / fixedα β β α→ ∞ → ∞ (0) 1Aθ =tanh 1 cosh sinh exp( ) x x x x → − → − / (1 ) ( ) γ β α γ θ β ⎡ ⎤+ − / ( / )(1 ) ( ) γ β α β α γ θ β ⎡ ⎤+ −/ ( ) exp( ) 1 / 1 / A γ β α γ θ α β η β α β α ⎡ ⎤ = + − +⎢ ⎥+ +⎣ ⎦ ( )( ) exp( ) 1 / 1 / B γ β β γ θ α β η β α β α ⎡ ⎤ = + − +⎢ ⎥+ +⎣ ⎦ For most of the film the exponentialFor most of the film, the exponential terms are negligible: Rxn layer thickness: 1/(α+β)1/2 θΑ ~ θΒ Rxn layer thickness: 1/(α+β)
  • 20. Diffusion into an open cone Solute released into open cone of angle θο Solute released at a const. rate (moles/time) Solute source at origin θ θο m r g Cone boundaries are impervious Need to find concentration Ci: S l t St. steady conservation eqn. in spherical coordinates 2 2 vi2 2 2 2 2 1 1 1 [ sin ] 0 sin sin i i i i C C C D r R r r r r r θ θ θ θ θ φ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ + + + =⎜ ⎟ ⎜ ⎟ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ Solute source /m moles time= Possible BCs: What terms can we eliminate? 21 [ ] 0iC D ∂∂ ⎛ ⎞ ⎜ ⎟ 0 at =0iC θ θ ∂ = ∂ C∂ 2 2 [ ] 0i iD r r r ⎛ ⎞ =⎜ ⎟ ∂ ∂⎝ ⎠ 2 0iC∂∂ ⎛ ⎞ ⎜ ⎟ How? symmetry fl h0 at =i O C θ θ θ ∂ = ∂ 2 0i r r r ⎛ ⎞ =⎜ ⎟ ∂ ∂⎝ ⎠ no flux thru wall
  • 21. Diffusion into an open cone θ θο 2 0iC r r r ∂∂ ⎛ ⎞ =⎜ ⎟ ∂ ∂⎝ ⎠ 2 iC r a r ∂ = ∂ r S l t 2 iC a r r ∂ = ∂ i a C b r = − + Any BC? Solute source /m moles time=( ) 0iC r = ∞ = i a C = − How do we get a?i r g Let us look at the point source at r=0 0 lim( )i r m N S → = S=area of spherical shell of radius r 2 sindS r d dθ θ φ= 2 2 sin o S r d d π θ θ θ φ= ∫ ∫ 2 0 2 sin O S r d θ π θ θ= ∫0 0 φ∫ ∫ 0∫ 2 2 [1 cos ]OS rπ θ= −
  • 22. Diffusion into an open cone θ θο i a C r = − How do we get a? 2 r S l t 0 lim( )i r m N S → = i i i dC N D dr = − 2 2 [1 cos ]OS rπ θ= − Solute source /m moles time= dr 0 2 2 [1 coslim( )]i i O r dC D r dr m π θ → − −= From last page:0 2 2 [1 cos ]lim( ) r i i O dC D dr m rπ θ → = − − 2 iC r a r ∂ = ∂ 2 [1 cos ]i Om aDπ θ−= − m a = − 2 [1 cos ]i O a Dπ θ−
  • 23. Directional Solidification– dilute binary alloy Well-mixed melt SolidStagnant film U Solid front moving Deen Example Problem 2.8-5 Y=0Y δ Ci=C∞ Ci=CsU Solid front moving Mass transfer thru stagnant layer ISSUES: Y 0Y=-δISSUES: •Meaning of stagnant layer •Conservation equation in this case •BC condition at melt-solid interface 2iDC D C R∇ Conservation Eqn: B cond t on at me t so d nterface 2i i i Vi DC D C R Dt = ∇ + 2 i i i y y C C U D ∂ ∂ ∂ ∂ = BC C∂ ( ) ( )M M C= +N v J y y∂ ∂ (0) (0) (0)i i i s i C UC D UC y ∂ = − = ∂ N Note extra term appearing on left because of convection Note how convection appears here! A A AC= +N v J Example not covered in class; look problem over in book