SlideShare a Scribd company logo
1 of 7
Download to read offline
PEDIATRIC CARDIOLOGY
Pathologic Anatomy of
Ebstein’s Anomaly of the Heart Revisited
KENNETH I?. ANDERSON, MBChB,
FRCPA
J. T. LIE, MD, FACC
Rochester, Minnesota
The typical textbook descripfion of Ebstein’s anomaly of the heart usually
singles out and emphasizes the downward displacement of septal and
posterior leaflets of the tricuspid valve. An anatomic reappraisal of this
uncommon anomaly suggests that other structural abnormalltles of Import
should be equally stressed. Among the 15 well preserved autopsy spec-
imens in this series, enlargement of the rlght atrloventrkular (A-V) junction
and malalignment of the giant and sometimes muscularized anterior leaflet
of the tricuspid valve were consistently found. In addltion, massive an-
eurysmal dilation of the right ventricle was present in almost two thirds
(9 of 15) of the hearts. Our observations rake the posslblllty that abnormal
embryonic development of the right A-V junction may be the primary event
that leads to malformation of the tricuspid valve apparatus.
Ebstein’s anomaly of the tricuspid valve is an uncommon developmental
abnormality that accounts for less than 1 percent of all congenital cardiac
ma1formations.l This curious anomaly has a varied pathologic anatomy
and, according to a large scale international cooperative study,2 a varied
natural history. The variable clinical course is not well explained by the
spectrum of structural abnormalities. Several surgical procedures have
been developed to correct Ebstein’s anomaly, but in general the results
have been relatively disappointing.3-6
The purpose of this reappraisal of Ebstein’s anomaly is to draw at-
tention to certain anatomic features of the anomaly that have received
less emphasis in the past and that may have relevance in the clinical
assessment and surgical correction of this anomaly. A more complete
understanding of the anatomic derangements may also shed new light
on the possible embryogenesis of Ebstein’s anomaly.
Materials and Methods
From the Department of Pathology and Anatomy,
Mayo Clinic and Mayo Foundation. Rochester,
Minnesota. Dr. Anderson is a New Zealand Na-
tional Heart Foundation Fellow in Cardiovascular
Pathology. Manuscript received June 27, 1977;
revised manuscript received October 10, 1977,
accepted October 12, 1977.
Address for reprints: J. T. Lie, MD, Mayo Clinic,
200 First Street Southwest, Rochester, Minnesota
55901.
There were 20 autopsy specimens of classic Ebstein’s anomaly without
transposition of the great arteries in the existing collection of hearts with con-
genital cardiac disease of the Mayo Clinic Department of Pathology and Anat-
omy. Five hearts were excluded because previous pathologic examination made
them unsuitable for detailed anatomic study. The remaining 15 hearts formed
the basis of this report.
Measurements of selected features were made in an attempt to define the
anatomic pattern of structural abnormalities in hearts with Ebstein’s anomaly.
These measurements included the circumference of the right and left atrio-
ventricular (A-V) iunctions, the maximal displacement of the tricuspid valve
leaflets, distkce’fiom the apex to the semilunar valve in the right and left ven-
tricles and distance from the apex to the posterior A-V junction in the right
ventricle.
Histologic evaluations were made of the selected hearts with special reference
to (1) the musculature of the aneurysmally dilated right ventricular “wall,” (2)
the presence or absence of muscle fibers in the anterior leaflet of the tricuspid
valve, and (3) the displaced septal and posterior leaflets to determine whether
April 1978 The American Journal of CARDIOLOGY Volume 41 739
EBSTEIN’S ANOMALY-ANDERSON AND LIE
Anterior
Anterior
NORMAL EBSTEIN’S
the leaflet tissue was in continuity with the thickened endo-
cardium of the wall of the inflow (atrial) chamber.
The coronary arterial anatomy was examined in each heart
and particular note was made of the coronary arteries in the
right A-V groove where they might be in danger of being in-
jured by plication procedures for the surgical correction of the
incompetent malformed tricuspid valve.
Results
The A-V junction: In all 15 hearts studied, the ring
where the right atrium joined the right ventricle (right
A-V junction) did not correspond to the ring of at-
tachment of the A-V valve leaflets (tricuspid valve ring).
A consistent finding in Ebstein’s anomaly was en-
largement of the right compared with the left A-V
junction. This enlargement was readily apparent after
comparing the distances around the A-V junction on
either side from the pulmonary valve to the posterior
interventricular septum (Fig. 1). In six normal hearts
FIGURE 1. The ventricles viewed from the back. Left,
in the heart, the distance around the left border of the
heart from the pulmonary valve to the posterior inter-
ventricular septum, at the level of the atrioventricular
groove (A) is approximately the same as the distance
similarly measured around the right border (A’). Right, in
the heart with Ebstein’s anomaly, similar measurements
reveal that the distance around the right border is con-
siderably longer than the distance around the left border.
The added distance (X’) corresponds approximately to
the aneurysmally dilated portion of the right ventricular
wall. LV = left ventricle; PA = pulmonary artery; RV =
right ventricle.
from patients of various ages these measurements were
approximately equal, with the left A-V junction usually
measuring slightly more than the right A-V junction. In
the hearts with Ebstein’s anomaly, the measurement
of the right A-V junction was 1.2 to 2.2 times greater
than the left measurement (Table I). Comparison with
other measurements, such as the apex to aortic valve
distance of the left ventricle, demonstrated that the
inequality of the A-V junction circumferences was-due
to an absolute increase in size of the right A-V junction
rather than a decreased size of the left junction. Among
hearts with a posterior aneurysm, the increased cir-
cumference of the right A-V junction approximately
corresponded to the circumference of the aneurysm (X’
in Fig. 1).
The tricuspid valve: When viewed from the right
atrium, the typical deformity of the tricuspid valve in
all hearts with Ebstein’s anomaly was clearly apparent.
TABLE I
Ebstein’s Anomaly: Atrioventricular Junction Measurements and Associated Anomalies
Case
no. Age Sex
A-V Junction (mm)
Right Left
.
A-V Junction Associated
Ratio (R/L) Anomalies
Right Ventricle Massively Dilated
5
1 day
days
18 mo
2
6 yr
yr
13yr
l5yr
14yr
18yr
12yr
7 days
9
2 days
yr
51
3 yr
yr
M
L
F
F”
M
M
M
M
F
:
M
F
45
::
110 ::
110
100 ::
150’ 80’
180
110 70
90
160 80
Right Ventricle Moderately Dilated
110 60
Right Ventricle Not Dilated
55 :!z
110
60
100
::
100
180
1.5
1.3
1.7
1.7
1.8
1.9’
2.0
1.6
2.9
1.8
1.4
2.2
1.7
1.2
1.8
ASD
PFO
ASD, PS
ASD
ASD
PFO
i&D, LSVC
PFO
PFO
PFO
PFO
ASD, PAtr
PFO.
PFO VSD
l Estimated.
A-V = atrioventricular; LSVC = persistent left superior vena cava; PAtr = pulmonary atresia; PFO = patent foramen ovale; PS = pulmonary
stenosis; R/L = right to left; VSD = ventricular septal defect.
740 April 1978 The American Journal oi CARDIOLOGY Volume 41
EBSTEIN’S ANOMALY-ANDERSON AND LIE
The anterior leaflet was attached to the A-V junction
in the correct position with the medial margin of the
attachment contiguous with the anterior border of the
septal leaflet at the membranous septum. As the ob-
server’s eye moved posteriorly, the attachment of the
septal leaflet was seen to be progressively displaced
downward. Rather than being attached normally just
below the A-V junction, it was attached to the ventric-
ular septum, leaving a triangular portion of the ven-
tricular septum exposed to the atrium (Fig. 2). At the
posterior border of the ventricular septum, the septal
leaflet met the posterior leaflet, whose attachment at
this point was also displaced well below the A-V junc-
tion. As the observer’s eye then moved laterally, along
the posterior wall of the ventricle, the attachment of the
posterior leaflet angled upward so that, at the lateral
aspect of the valve, it met the attachment of the anterior
leaflet to the A-V junction. The point of maximal dis-
placement of the tricuspid valve leaflets was where the
septal leaflet met the posterior l.eaflet on the postero-
medial aspect of the right ventricular wall.
The anterior leaflet: Although the anular attach-
ments were similar, the size, shape and construction of
the anterior leaflet in Ebstein’s anomaly bore little re-
semblance to its counterpart in the normal heart (Fig.
3). It was considerably larger and structurally quite
different. From the right margin of its insertion into the
A-V junction, the lateral edge of anterior leaflet passed
downward and medially, approximately parallel and
close to the acute border of the heart. In contrast to the
normal tricuspid valve, in which this edge is entirely
free, in Ebstein’s anomaly it was attached variably to
the ventricular wall. In 10 hearts, attachment was made
by several abnormal papillary muscles and chordae
tendineae, whereas in 5, there was continuous unin-
terrupted muscular attachment of this edge of the
leaflet to the ventricular wall. The markedly abnormal
anterolateral papillary muscle was situated at the lower
extent of the lateral edge. This muscle varied from a
broad-based linear sheet to a more discrete muscle belly,
but it was often difficult to separate visually the papil-
lary muscle proper from the attachment of the lateral
FIGURE 3. The parietal wall of the
right ventricle with the anterior
leaflet of the tricuspid valve (a-TV)
attached, viewed as if looking
toward the right side from within the
cavity of the right ventricle. A, in a
normal heart; B, in a heart with Eb-
stein’s anomaly. The anterior leaflet
in the tatter heart is greatly enlarged
and abnormal in configuration. The
anterolateral papillary muscle (aL-
PM) is poorly formed and the leaflet
is tethered to the posterior right
ventricular wall by abnormal chordal
attachments. PV = pulmonary
valve; RA = right atrium.
FIGURE 2. A view of the right atrium @A), right ventricle (RV) and tri-
cuspid valve looking toward the ventricular septum. The insertion of
the septal leaflet (S-TV) meets the insertion of the anterior leaflet (a-TV)
on the membranous septum (asterisk). Progressing posteriorly, the
insertion of the septal leaflet is displaced into the ventricle, thus ex-
posing a triangular area of ventricular septal wall to the right atrium
(broken lines enclose ventricular septum exposed to the atrium).
edge of the leaflet to the ventricular wall. When this
attachment was uninterrupted, it was often directly
continuous with the papillary muscle.
From the anterolateral papillary muscle, the rather
taut anterior free edge of the leaflet extended in a direct
line to its chordal attachment to the crista supraven-
tricularis (infundibular septum). This free edge was
often slightly thickened. This chordal attachment was
remarkably constant in that it always reached the apex
of the inverted V formed by the junction of the septal
and parietal limbs of the crista. In the heart with Eb-
stein’s anomaly, as in the normal heart, a fibrous ridge
sometimes described as a fusion line may be seen at the
apex of the crista. In the normal heart, the muscle of
Lancisi is attached to the septal limb of the crista some
distance from the cristal apex. In hearts with Ebstein’s
April 1979 The American Journal of CARDIOLOGY Volume 41 741
EBSTEIN’S ANOMALY-ANDERSON AND LIE
FIGURE 4, left. The right ventricle (RV) in Ebstein’s anomaly. The anterior leaflet of the tricuspid valve (a-TV) is attached by chordae to the apex of
the inverted V formed by the crista supraventricularis (CS) (arrow). A fibrous raphe sometimes may be visible here in both normal and congenitally
malformed hearts. In the normal heart, the anterior leaflet of the tricuspid valve is attached to the septal bar of the crista some distance from the
cristal apex. This attachment may be chordal or there may be a small papillary muscle (muscle of Lancisi). In Ebstein’s anomaly, the attachment
is always chordal in nature. TSM = trabeculae septomarginalis.
FIGURE 5, right. Close-up view of the anterior leaflet of the tricuspid valve (a-TV) in Ebstein’s anomaly showing the abnormal structure of the leaflet
with fibrous strands incorporated in the leaflet stretching between its attachments to the right A-V junction and the right ventricular (RV) wall. These
strands are in part muscular and in part fibrous. Ant = anterior; Post = posterior; RA = right atrium.
anomaly, the chordal attachment of the anterior leaflet leaflet, the posterior leaflet was thickened, and abnor-
was always directly into the mid line of the crista (Fig. mal chordal attachments tethered it to the ventricular
4). wall.
The structure of the anterior leaflet was also dis-
tinctly abnormal. Instead of being entirely a fibrous
membrane, as in the normal heart, this leaflet was
composed of easily visualized strands, stretching from
the anterolateral papillary muscle to the insertion of the
leaflet into the A-V junction (Fig. 5). These strands
fanned out radially from the anterolateral muscle
toward the attachment of the leaflet at the A-V junction.
In one heart these strands were entirely composed of
muscle, but in other hearts they were partly muscular
and partly fibrous. Thus, muscular continuity appeared
to exist from the anterolateral papillary muscle and the
parietal right ventricular wall to the tricuspid valve ring
at the right A-V junction.
The right ventricle: The right ventricle was divided
into two parts by the abnormal tricuspid valve. These
are usually referred to as the proximal and distal
chambers.
The proximal chamber was continuous with the right
atrium through the now unguarded A-V junction and
was thus a functional part of the right atrium. It has
sometimes been referred to as the atrialized portion of
The septal and posterior (inferior) leaflets: The
attachment of these leaflets in hearts with Ebstein’s
anomaly was displaced below the A-V junction, thus
exposing a triangular area of ventricular wall to the right
atrium. The degree of displacement varied and deter-
mined the relative size of the partitioned parts of the
right ventricle. Greater displacement toward the apex
resulted in a smaller functional right ventricle (distal
chamber) and a larger “atrialized ventricle” (proximal
chamber). The attachment of the septal leaflet was
often displaced down to the trabecula septomarginalis
(moderator band). The mobile part of the leaflet, always
abnormal, varied markedly in size. There were often
recesses in the right ventricle created by excessive
tenting of the mobile part of the septal leaflet. In all
hearts studied, both the septal and the posterior leaflets
had abnormal chordal attachments. Like the septal
FIGURE 6. The external appearance of the posterior surface of a heart
with Ebsteln’s anomaly and a normal-sized (undilated) right ventricle
(RV). A triangular-shaped thin-walled area of aneurysmal dilatation of
the right ventricle is present (arrows). LV = left ventricle: RA = right
atrium.
742 April 1978 The American Journal of CARDIOLGGY Volume 41
EBSTEIN’S ANOMALY-ANDERSON AND LIE
the right ventricle. The endocardium of this chamber
was usually thick, fibrous and smooth, although some
poorly formed trabeculae were sometimes present. The
posterior wall corresponded approximately to the
aneurysmally dilated portion of the right ventricle ob-
served most noticeably in those hearts that did not have
generalized right ventricular dilatation (Fig. 6). The wall
of the “aneurysm” was often very thin with sparse
muscle fibers. In two hearts, it was devoid of any muscle
and composed entirely of fibrous tissue.
The distal chamber was, or constituted the functional
unit of, the right ventricle. It communicated with the
proximal chamber by way of the variably sized and
usually incompetent orifice of the tricuspid valve. The
distal chamber was composed of three parts-the in-
fundibulum, the apical part of the ventricle and the
anterolateral recess, which was an appendage-like recess
of the distal chamber situated behind the anterior
leaflet of the tricuspid valve (Fig. 7). The trabecula
septomarginalis often formed a distinctive landmark
in the distal chamber (Fig. 7).
Dilatation of the ventricle: In 9 of the 15 hearts
with Ebstein’s anomaly of the right-sided tricuspid
valve, the right ventricle was markedly dilated and
thin-walled (Fig. 8). Dilatation involved the entire free
wall of the right ventricle, but the posteromedial wall
was thinner than the remainder. This area corresponded
to the area that may be an aneurysmal pouch in the
undilated examples. Of the remaining six hearts, one
showed a moderate degree of dilatation, and five were
either normal or thick-walled with a chamber of normal
size. Generalized dilatation of the ventricle was sub-
jectively assessed and did not appear to be related to the
degree of enlargement of the right A-V ring circumfer-
ence (Table I). No specific feature of the malformation
FIGURE 7. Anterior view of the opened right ventricle in Ebstein’s
anomaly. The anterior leaflet of the tricuspid valve (a-TV) separates
the proximal chamber (PC) from the anterolateral recess of the distal
chamber. The free edge of the anterior leaflet is attached below to the
abnormally formed anterolateral papillary muscle and above to the apex
formed by the junction of the two limbs of the crista supraventricularis
(CS). The displaced septal leaflet (s-TV) is attached toa rather prominent
trabecula septomarginalis (TSM). PV = pulmonary valve.
of the tricuspid valve stood out as being associated with
dilatation.
The coronary arteries: The positions of the coro-
nary ostia and the course of the proximal segments of
the major main coronary arteries were similar to those
in the normal heart. Special attention was directed to
the topography of the coronary arterial anatomy at the
posterior (inferior) surface of the heart because of sur-
gical procedures involving plication of a portion of the
right ventricular wall along the A-V groove. In five
hearts the posterior descending artery was a branch of
the left circumflex coronary artery, and in another five
it was a branch of the right coronary artery. In the latter
group, it seems inevitable that surgical plication of the
posterior wall of the right ventricle would compromise
the arterial circulation to the posterior ventricular wall.
In the remaining five hearts, both the left circumflex
and the right coronary arteries contributed to the de-
scending branches.
Associated cardiac anomalies: All but 1 of the 15
hearts had a shunt at the atria1 level, either an atria1
septal defect or a patent foramen ovale. The only other
cardiac anomalies were one example each of pulmonary
atresia, pulmonary stenosis, ventricular septal defect
and persistent left superior vena cava (Table I).
Discussion
Anatomic Features
In Ebstein’s anomaly of the tricuspid valve consid-
erable variation exists in the pathologic anatomy of the
malformation and in the clinical course of the patients
FIGURE 8. Massive dilatationof the right ventricle in Ebstein’s anomaly.
The right ventricle has been opened anteriorly. Ao = aorta; a-TV =
anterior leaflet of the tricuspid valve; LV = left ventricle; PA = pul-
monary artery: TSM = trabeculae septomarginalis.
April 1979 The American Journal of CARDIOLOGY Volume 41 743
EBSTEIN’S ANOMALY-ANDERSON AND LIE
so afflicted. Previously published anatomic studies have
dealt with most features of the anatomy of the malfor-
mation in detail. These features include the displace-
ment of the valve leaflets, the aneurysmally dilated
posterior right ventricular wall7 and its abnormal
structure,s dysplastic changes in the valve leaflets9 the
occasionally observed “plastered” down nature of the
septal leaflet,iOJ1 the architectural abnormality of the
right ventricle11 and the A-V specialized conducting
tissue.11-13 We observed these features in our study, but
we emphasize certain points that have received less
attention in the past.
Enlarged circumference of the right A-V junc-
tion: This was present in all our cases. It should not be
confused with the tricuspid valve ring that in Ebstein’s
anomaly is displaced into the right ventricle. Yater and
Shapiro12 mentioned the enlargement of the right A-V
orifice, and it was exemplified in their paper by a cited
case report of Blackhall-Morison,14 who noted that the
“auriculoventricular orifice admitted the whole hand.”
The degree of enlargement of the right A-V junction
circumference corresponded approximately to the width
of the thinned segment of ventricular myocardium sit-
uated posteromedially (Fig. 1). This thinned segment
of ventricular wall was frequently aneurysmally dilated,
and in two hearts it was a well circumscribed fibrous sac
completely devoid of myocardium.
Generalized dilatation of the entire right ven-
tricle: This abnormality was also previously noted7 and
was a common feature in 64 percent (9 of 15) of the
hearts in our study. It was evident in some of the neo-
natal examples but was more striking in the hearts from
older patients. It was not observed in the oldest patient
in our series (aged 51 years). Dilatation of this ventricle
is probably in part an acquired phenomenon, but there
is no sound hemodynamic explanation for massive di-
latation. Dilatation of this degree has not been observed
in other congenital valve disorders or in acquired disease
of valve incompetence. Gross dilatation of a ventricle
is usually associated with terminal cardiac failure or
abnormalities of the ventricular myocardium such as
congestive cardiomyopathy. We believe it is likely that
some dilatation of the right ventricle is an integral
component of Ebstein’s anomaly, associated with (and
possibly due to) deficiency of the myocardium of the
right ventricle. It is our impression that massive dila-
tation of the right ventricle, when present, may be a
limiting factor in achieving good results with surgical
repair of Ebstein’s anomaly.
Enlarged and abnormal anterior leaflet of tri-
cuspid valve: The anterior leaflet in Ebstein’s anomaly
of the right-sided tricuspid valve is often markedly
enlarged and abnormally structured. This leaflet has
been described as a “trapeze-like” structure or a “sail”
hanging down into the ventricle. The free edge is
stretched between a malformed anterolateral papillary
muscle and an abnormal chordal attachment to the very
apex of the crista supraventricularis. This attachment
is presumably the equivalent of the muscle of Lancisi
that, in the normal heart, is an anchorage for the ante-
rior leaflet of the tricuspid valve and is located at the
septal band of the crista supraventricularis.
Embryologic Considerations
The valve leaflets: The A-V valves are formed rel-
atively late in cardiac embryogenesis, some time after
the A-V connections have been established. The im-
portance of the contribution of ventricular wall myo-
cardium to the actual structure of the primitive valve
leaflets was well known to early workers, and this
subject was reviewed by Odgers in 193’7.15
This has led
to the commonly held belief that the leaflets develop by
a process of undermining or delamination of ventricular
myocardium.16 It has been suggested17 that hemody-
namic factors are important in the development of the
semilunar valves,17 and it is not unreasonable to assume
that hemodynamic factors play a role in the under-
mining process by which the A-V valves develop. A
necessary requirement for correct hemodynamic pat-
terns of flow would be the structural integrity of the A-V
canal, which is normally the narrowest orifice through
which blood passes on its course from the atria to the
ventricles. If an A-V canal was for some reason enlarged
and was no longer the narrowest orifice of ventricular
inflow, then hemodynamic forces in this area could be
expected to be abnormal. If they were abnormal, proper
undermining forces might no longer exist and the valve
leaflets could be expected to form abnormally in both
position and structure.
In our study we consistently found an abnormally
large circumference of the right A-V sulcus in classic
Ebstein’s anomaly. This was found in hearts from pa-
tients of all ages and does not appear to be an acquired
phenomenon. If this enlarged A-V junction was present
at the stage when the valve leaflets were being formed,
it may have been responsible for the anomalous struc-
ture and position of the leaflets. The diameter of max-
imal restriction to blood entering the right ventricle
would no longer be at the A-V junction but would be-
come an area of the right ventricular inflow deeper into
the ventricular chamber.
Enlarged A-V junction: The reason for enlargement
of the right A-V junction is elusive. One can theorize
that the junction may lack proper support during de-
velopment, perhaps because of a deficiency of sulcus
tissue or myoepicardial mantle. However, Ebstein’s
anomaly is almost exclusively a disorder of the tricuspid
valve, and if such a concept of lack of support is valid,
why should Ebstein’s anomaly not occur equally as often
in the mitral valve? 0dgers15 observed several differ-
ences in the developing A-V valves, including angulation
of the lateral aspect at the right A-V orifice, observed
at the 30,mm stage, which was associated with tempo-
rary continuity between A-V sulcus tissue on the epi-
cardial surface and the forming valve leaflet at the en-
docardial surface. This latter point is of interest because
at the equivalent lateral part of the developing mitral
valve, atria1 and ventricular musculature separate the
developing valve leaflet from the epicardially situated
sulcus tissue. If sulcus tissue were deficient on the left
side, the developing mitral valve could still be supported
by left ventricular myocardium; however, if there were
a deficiency of sulcus tissue on the right side, the lateral
aspect of developing tricuspid valve would lack such
744 April 1979 The American Journal of CARDIOLOGY Volume 41
EBSTEIN’S ANOMALY-ANDERSON AND LIE
support. Lack of support could result in enlargment of
the orifice followed by abnormal formation of the valve
leaflets.
Conclusion
Apart from the well known downward displacement
of the septal and posterior leaflets of the tricuspid valve,
several other anatomic features are found consistently
enough to warrant their inclusion as integral compo-
nents of the congenital malformation complex of Eb-
1.
2.
3.
4.
5.
6.
stein’s anomaly of the heart. These additional features
include (1) malalignment, enlargement and abnormal
construction of the anterior leaflet of the tricuspid valve;
(2) circumferential expansion of the right A-V junction;
(3) various degrees of aneurysmal dilatation of the entire
right ventricle; and (4) a right to left shunt in the form
of a patent foramen ovale or atria1 septal defect. These
anatomic characteristics should be taken into consid-
eration in designing or carrying out the surgical cor-
rection of Ebstein’s anomaly of the heart.
References
Fontana RS, Edwards JE: Congenital Cardiac Disease: A Review
of 357 Cases Studied Pathologically. Philadelphia, WB Saunders,
1962, p 29
Watson H: Natural history of Ebstein’s anomaly of the tricuspid
valve in childhood and adolescence: an international cooperative
study of 505 cases. Br Heart J 36:417-427, 1974
Lillehei CW, Gannon PG: Ebstein’s malformation of the tricuspid
valve: method of surgical correction utilizinga ball valve prosthesis
and delayed closure of the atrial septal defect. Circulation 31:Suppl
1:1-9-l-18. 1965
Bahnson HT, Bauersfeld SR, Smith JW: Pathological anatomy and
surgical correction of Ebstein’s anomaly. Circulation 31:Suppl I:
l-3-l-7, 1965
Lilfehei CW, Kalke BR, Carlson RG: Evolutionof corrective surgery
for Ebstein’s anomaly. Circulation 35:Suppl l:l-11 l-l-l 18, 1967
McFaul RC, Davis 2, Giuliani ER, et al: Ebstein’s malformation:
surgical experience at the Mayo Clinic. J Thorac Cardiovasc Surg
72:901-915, 1976
Engle MA, Payne TPB, Bruins C, et al: Ebstein’s anomaly of the
tricuspid valve. Report of three cases and analysis of clinical
syndrome. Circulation 1:1246-1260, 1950
Bialostozky D, Medrano GA, Munoz L, et al: Vectorcardiographic
study and anatomic observations in 21 cases of Ebstein’s mal-
formation of the tricuspid valve. Am J Cardiol 30:354-361,
1972
Becker AE, Becker MJ, Edwards JE: Pathologic spectrum of
dysplasia of the tricuspid valve: features in common with Ebstein’s
malformation. Arch Pathol 91:167-178, 1971
10. Taussig HB: Congenital Malformations of the Heart, second edition.
Cambridge, Massachusetts, Harvard University Press, 1960, p
11.
12.
13.
14.
15.
16.
17.
467
Lev M, Liberthson RR, Joseph RH, et al: The pathologic anatomy
of Ebstein’s disease. Arch Pathol 90:334-343, 1970
Yater WM, Shapiro MJ: Congenital displacement of the tricuspid
valve (Ebstein’s disease): review and report of a case with elec-
trocardiographic abnormalities and detailed histologic study of the
conduction system. Ann Intern Med 11:1043-1062, 1937
Lev Y, Gibson S, Miller RA: Ebstein’s disease with Wolff-Parkin-
son-white syndrome: report of a case with histopathologic study
of possible conduction pathways. Am Heart J 49:724-741,
1955
Blackhall-Morison A: Malformed heart with redundant and dis-
placed tricuspid segments and abnormal local attenuation of the
right ventricular wall. J Anat 34:262-266, 1922-1923
Ddgers PNB: The development of the atrioventricularvalves in man.
J Anat 73:643-657, 19381939
Van Mlerop LHS: Embryology, section 3. In, Netter FH: The Ciba
Collection of Medical Illustrations,Vol 5, Heart (Yonkmann FF, ed).
Summit, New Jersey, Ciba Pharmaceutical, 1969, p 125
Maron BJ, Hutchins GM: The development of the semilunar valves
in the human heart. Am J Pathol 74:331-344, 1974
April 1978 The American Journal of CARDIOLOGY Volume 41 745

More Related Content

What's hot

ebstein's anomali
ebstein's anomaliebstein's anomali
ebstein's anomaliZulkar Naim
 
TGA-Dr.Elamaran
TGA-Dr.ElamaranTGA-Dr.Elamaran
TGA-Dr.ElamaranEla Maran
 
Ebstein anomaly
Ebstein anomalyEbstein anomaly
Ebstein anomalyAmit Verma
 
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)Surgical management of Ebstein’s anomaly (by Ayman Khalifa)
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)Ayman Khalifa
 
Transposition of the great arteries
Transposition of the great arteriesTransposition of the great arteries
Transposition of the great arteriesDr. Joshua WALINJOM
 
Sutton 7 transposition of the great arteries
Sutton 7 transposition of the great arteriesSutton 7 transposition of the great arteries
Sutton 7 transposition of the great arteriesReni Indrastuti
 
Transposition of Great Arteries;TGA,Firas Aljanadi,MD
Transposition of Great Arteries;TGA,Firas Aljanadi,MDTransposition of Great Arteries;TGA,Firas Aljanadi,MD
Transposition of Great Arteries;TGA,Firas Aljanadi,MDFIRAS ALJANADI
 
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...A rara associação de drenagem anômala total de veias pulmonares e cor triatri...
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...gisa_legal
 
Surgery for aneurysmal right coronary fistula and constrictive pericarditis
Surgery for aneurysmal right coronary fistula and constrictive pericarditis Surgery for aneurysmal right coronary fistula and constrictive pericarditis
Surgery for aneurysmal right coronary fistula and constrictive pericarditis Abdulsalam Taha
 
Atrioventricular septal defects
Atrioventricular septal defectsAtrioventricular septal defects
Atrioventricular septal defectsIndia CTVS
 
Cyanotic heart diseases
Cyanotic heart diseasesCyanotic heart diseases
Cyanotic heart diseasesRiyadhWaheed
 
Truncus arteriosus
Truncus arteriosusTruncus arteriosus
Truncus arteriosusgisa_legal
 

What's hot (18)

ebstein's anomali
ebstein's anomaliebstein's anomali
ebstein's anomali
 
L-TGA or CCTGA
L-TGA or CCTGA L-TGA or CCTGA
L-TGA or CCTGA
 
TGA-Dr.Elamaran
TGA-Dr.ElamaranTGA-Dr.Elamaran
TGA-Dr.Elamaran
 
L tga anatomy, management-
L tga anatomy, management-L tga anatomy, management-
L tga anatomy, management-
 
Ebstein anomaly
Ebstein anomalyEbstein anomaly
Ebstein anomaly
 
Cc tga
Cc tgaCc tga
Cc tga
 
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)Surgical management of Ebstein’s anomaly (by Ayman Khalifa)
Surgical management of Ebstein’s anomaly (by Ayman Khalifa)
 
Transposition of the great arteries
Transposition of the great arteriesTransposition of the great arteries
Transposition of the great arteries
 
Sutton 7 transposition of the great arteries
Sutton 7 transposition of the great arteriesSutton 7 transposition of the great arteries
Sutton 7 transposition of the great arteries
 
Ebstein's anomaly
Ebstein's anomalyEbstein's anomaly
Ebstein's anomaly
 
Transposition of Great Arteries;TGA,Firas Aljanadi,MD
Transposition of Great Arteries;TGA,Firas Aljanadi,MDTransposition of Great Arteries;TGA,Firas Aljanadi,MD
Transposition of Great Arteries;TGA,Firas Aljanadi,MD
 
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...A rara associação de drenagem anômala total de veias pulmonares e cor triatri...
A rara associação de drenagem anômala total de veias pulmonares e cor triatri...
 
Surgery for aneurysmal right coronary fistula and constrictive pericarditis
Surgery for aneurysmal right coronary fistula and constrictive pericarditis Surgery for aneurysmal right coronary fistula and constrictive pericarditis
Surgery for aneurysmal right coronary fistula and constrictive pericarditis
 
EBSTEIN ANOMALY
EBSTEIN ANOMALYEBSTEIN ANOMALY
EBSTEIN ANOMALY
 
Atrioventricular septal defects
Atrioventricular septal defectsAtrioventricular septal defects
Atrioventricular septal defects
 
Cyanotic heart diseases
Cyanotic heart diseasesCyanotic heart diseases
Cyanotic heart diseases
 
Tga rakesh edited ppt
Tga rakesh edited pptTga rakesh edited ppt
Tga rakesh edited ppt
 
Truncus arteriosus
Truncus arteriosusTruncus arteriosus
Truncus arteriosus
 

Similar to Pediatric Cardiology: Ebstein's Anomaly of the Heart

Ebstein - revisão 2005
Ebstein -  revisão 2005Ebstein -  revisão 2005
Ebstein - revisão 2005gisa_legal
 
Embriologyandcardiacheartdisease
EmbriologyandcardiacheartdiseaseEmbriologyandcardiacheartdisease
Embriologyandcardiacheartdiseasegisa_legal
 
A v canal defect may 2021
A v canal defect  may 2021A v canal defect  may 2021
A v canal defect may 2021rajasthan govt
 
ECHO SEGMENTAL APPROACH- DR BINJO.ppsx
ECHO SEGMENTAL APPROACH- DR BINJO.ppsxECHO SEGMENTAL APPROACH- DR BINJO.ppsx
ECHO SEGMENTAL APPROACH- DR BINJO.ppsxSundaresanSankar
 
Av canal defect
Av canal defectAv canal defect
Av canal defectdrsrb
 
Clinical Anatomy 2009 Anatomia arterial colateral.pptx
Clinical Anatomy 2009 Anatomia arterial colateral.pptxClinical Anatomy 2009 Anatomia arterial colateral.pptx
Clinical Anatomy 2009 Anatomia arterial colateral.pptxJuan Diego
 
Development of heart ,,embryology,,virbhan
Development of heart ,,embryology,,virbhanDevelopment of heart ,,embryology,,virbhan
Development of heart ,,embryology,,virbhanDr Virbhan Balai
 
Single ventricle
Single ventricleSingle ventricle
Single ventricleNazmun Ara
 
Single ventricle
Single ventricleSingle ventricle
Single ventricleNazmun Ara
 
Single ventricle
Single ventricleSingle ventricle
Single ventricleNazmun Ara
 
Mitral valve disease
Mitral valve disease Mitral valve disease
Mitral valve disease RiyadhWaheed
 
Vascular fetal anomaly -aortic arch anomalies
Vascular fetal anomaly -aortic arch anomaliesVascular fetal anomaly -aortic arch anomalies
Vascular fetal anomaly -aortic arch anomaliesMarius Bogdan Muresan
 

Similar to Pediatric Cardiology: Ebstein's Anomaly of the Heart (20)

Ebstein - revisão 2005
Ebstein -  revisão 2005Ebstein -  revisão 2005
Ebstein - revisão 2005
 
Embriologyandcardiacheartdisease
EmbriologyandcardiacheartdiseaseEmbriologyandcardiacheartdisease
Embriologyandcardiacheartdisease
 
A v canal defect may 2021
A v canal defect  may 2021A v canal defect  may 2021
A v canal defect may 2021
 
Echocardiography of CHD in Adults
Echocardiography of CHD in AdultsEchocardiography of CHD in Adults
Echocardiography of CHD in Adults
 
ECHO SEGMENTAL APPROACH- DR BINJO.ppsx
ECHO SEGMENTAL APPROACH- DR BINJO.ppsxECHO SEGMENTAL APPROACH- DR BINJO.ppsx
ECHO SEGMENTAL APPROACH- DR BINJO.ppsx
 
Cardiac Anatomy_20120909_中區
Cardiac Anatomy_20120909_中區Cardiac Anatomy_20120909_中區
Cardiac Anatomy_20120909_中區
 
Av canal defect
Av canal defectAv canal defect
Av canal defect
 
The fetal heart
The fetal heartThe fetal heart
The fetal heart
 
Clinical Anatomy 2009 Anatomia arterial colateral.pptx
Clinical Anatomy 2009 Anatomia arterial colateral.pptxClinical Anatomy 2009 Anatomia arterial colateral.pptx
Clinical Anatomy 2009 Anatomia arterial colateral.pptx
 
Development of heart ,,embryology,,virbhan
Development of heart ,,embryology,,virbhanDevelopment of heart ,,embryology,,virbhan
Development of heart ,,embryology,,virbhan
 
Ebsteins ppt.pptx
Ebsteins ppt.pptxEbsteins ppt.pptx
Ebsteins ppt.pptx
 
Levo atrio-cardinal vein
Levo atrio-cardinal veinLevo atrio-cardinal vein
Levo atrio-cardinal vein
 
avsd
avsdavsd
avsd
 
Heart development 2
Heart development 2Heart development 2
Heart development 2
 
Single ventricle
Single ventricleSingle ventricle
Single ventricle
 
Single ventricle
Single ventricleSingle ventricle
Single ventricle
 
Single ventricle
Single ventricleSingle ventricle
Single ventricle
 
Mitral valve disease
Mitral valve disease Mitral valve disease
Mitral valve disease
 
multiple absence
multiple absence multiple absence
multiple absence
 
Vascular fetal anomaly -aortic arch anomalies
Vascular fetal anomaly -aortic arch anomaliesVascular fetal anomaly -aortic arch anomalies
Vascular fetal anomaly -aortic arch anomalies
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Pediatric Cardiology: Ebstein's Anomaly of the Heart

  • 1. PEDIATRIC CARDIOLOGY Pathologic Anatomy of Ebstein’s Anomaly of the Heart Revisited KENNETH I?. ANDERSON, MBChB, FRCPA J. T. LIE, MD, FACC Rochester, Minnesota The typical textbook descripfion of Ebstein’s anomaly of the heart usually singles out and emphasizes the downward displacement of septal and posterior leaflets of the tricuspid valve. An anatomic reappraisal of this uncommon anomaly suggests that other structural abnormalltles of Import should be equally stressed. Among the 15 well preserved autopsy spec- imens in this series, enlargement of the rlght atrloventrkular (A-V) junction and malalignment of the giant and sometimes muscularized anterior leaflet of the tricuspid valve were consistently found. In addltion, massive an- eurysmal dilation of the right ventricle was present in almost two thirds (9 of 15) of the hearts. Our observations rake the posslblllty that abnormal embryonic development of the right A-V junction may be the primary event that leads to malformation of the tricuspid valve apparatus. Ebstein’s anomaly of the tricuspid valve is an uncommon developmental abnormality that accounts for less than 1 percent of all congenital cardiac ma1formations.l This curious anomaly has a varied pathologic anatomy and, according to a large scale international cooperative study,2 a varied natural history. The variable clinical course is not well explained by the spectrum of structural abnormalities. Several surgical procedures have been developed to correct Ebstein’s anomaly, but in general the results have been relatively disappointing.3-6 The purpose of this reappraisal of Ebstein’s anomaly is to draw at- tention to certain anatomic features of the anomaly that have received less emphasis in the past and that may have relevance in the clinical assessment and surgical correction of this anomaly. A more complete understanding of the anatomic derangements may also shed new light on the possible embryogenesis of Ebstein’s anomaly. Materials and Methods From the Department of Pathology and Anatomy, Mayo Clinic and Mayo Foundation. Rochester, Minnesota. Dr. Anderson is a New Zealand Na- tional Heart Foundation Fellow in Cardiovascular Pathology. Manuscript received June 27, 1977; revised manuscript received October 10, 1977, accepted October 12, 1977. Address for reprints: J. T. Lie, MD, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55901. There were 20 autopsy specimens of classic Ebstein’s anomaly without transposition of the great arteries in the existing collection of hearts with con- genital cardiac disease of the Mayo Clinic Department of Pathology and Anat- omy. Five hearts were excluded because previous pathologic examination made them unsuitable for detailed anatomic study. The remaining 15 hearts formed the basis of this report. Measurements of selected features were made in an attempt to define the anatomic pattern of structural abnormalities in hearts with Ebstein’s anomaly. These measurements included the circumference of the right and left atrio- ventricular (A-V) iunctions, the maximal displacement of the tricuspid valve leaflets, distkce’fiom the apex to the semilunar valve in the right and left ven- tricles and distance from the apex to the posterior A-V junction in the right ventricle. Histologic evaluations were made of the selected hearts with special reference to (1) the musculature of the aneurysmally dilated right ventricular “wall,” (2) the presence or absence of muscle fibers in the anterior leaflet of the tricuspid valve, and (3) the displaced septal and posterior leaflets to determine whether April 1978 The American Journal of CARDIOLOGY Volume 41 739
  • 2. EBSTEIN’S ANOMALY-ANDERSON AND LIE Anterior Anterior NORMAL EBSTEIN’S the leaflet tissue was in continuity with the thickened endo- cardium of the wall of the inflow (atrial) chamber. The coronary arterial anatomy was examined in each heart and particular note was made of the coronary arteries in the right A-V groove where they might be in danger of being in- jured by plication procedures for the surgical correction of the incompetent malformed tricuspid valve. Results The A-V junction: In all 15 hearts studied, the ring where the right atrium joined the right ventricle (right A-V junction) did not correspond to the ring of at- tachment of the A-V valve leaflets (tricuspid valve ring). A consistent finding in Ebstein’s anomaly was en- largement of the right compared with the left A-V junction. This enlargement was readily apparent after comparing the distances around the A-V junction on either side from the pulmonary valve to the posterior interventricular septum (Fig. 1). In six normal hearts FIGURE 1. The ventricles viewed from the back. Left, in the heart, the distance around the left border of the heart from the pulmonary valve to the posterior inter- ventricular septum, at the level of the atrioventricular groove (A) is approximately the same as the distance similarly measured around the right border (A’). Right, in the heart with Ebstein’s anomaly, similar measurements reveal that the distance around the right border is con- siderably longer than the distance around the left border. The added distance (X’) corresponds approximately to the aneurysmally dilated portion of the right ventricular wall. LV = left ventricle; PA = pulmonary artery; RV = right ventricle. from patients of various ages these measurements were approximately equal, with the left A-V junction usually measuring slightly more than the right A-V junction. In the hearts with Ebstein’s anomaly, the measurement of the right A-V junction was 1.2 to 2.2 times greater than the left measurement (Table I). Comparison with other measurements, such as the apex to aortic valve distance of the left ventricle, demonstrated that the inequality of the A-V junction circumferences was-due to an absolute increase in size of the right A-V junction rather than a decreased size of the left junction. Among hearts with a posterior aneurysm, the increased cir- cumference of the right A-V junction approximately corresponded to the circumference of the aneurysm (X’ in Fig. 1). The tricuspid valve: When viewed from the right atrium, the typical deformity of the tricuspid valve in all hearts with Ebstein’s anomaly was clearly apparent. TABLE I Ebstein’s Anomaly: Atrioventricular Junction Measurements and Associated Anomalies Case no. Age Sex A-V Junction (mm) Right Left . A-V Junction Associated Ratio (R/L) Anomalies Right Ventricle Massively Dilated 5 1 day days 18 mo 2 6 yr yr 13yr l5yr 14yr 18yr 12yr 7 days 9 2 days yr 51 3 yr yr M L F F” M M M M F : M F 45 :: 110 :: 110 100 :: 150’ 80’ 180 110 70 90 160 80 Right Ventricle Moderately Dilated 110 60 Right Ventricle Not Dilated 55 :!z 110 60 100 :: 100 180 1.5 1.3 1.7 1.7 1.8 1.9’ 2.0 1.6 2.9 1.8 1.4 2.2 1.7 1.2 1.8 ASD PFO ASD, PS ASD ASD PFO i&D, LSVC PFO PFO PFO PFO ASD, PAtr PFO. PFO VSD l Estimated. A-V = atrioventricular; LSVC = persistent left superior vena cava; PAtr = pulmonary atresia; PFO = patent foramen ovale; PS = pulmonary stenosis; R/L = right to left; VSD = ventricular septal defect. 740 April 1978 The American Journal oi CARDIOLOGY Volume 41
  • 3. EBSTEIN’S ANOMALY-ANDERSON AND LIE The anterior leaflet was attached to the A-V junction in the correct position with the medial margin of the attachment contiguous with the anterior border of the septal leaflet at the membranous septum. As the ob- server’s eye moved posteriorly, the attachment of the septal leaflet was seen to be progressively displaced downward. Rather than being attached normally just below the A-V junction, it was attached to the ventric- ular septum, leaving a triangular portion of the ven- tricular septum exposed to the atrium (Fig. 2). At the posterior border of the ventricular septum, the septal leaflet met the posterior leaflet, whose attachment at this point was also displaced well below the A-V junc- tion. As the observer’s eye then moved laterally, along the posterior wall of the ventricle, the attachment of the posterior leaflet angled upward so that, at the lateral aspect of the valve, it met the attachment of the anterior leaflet to the A-V junction. The point of maximal dis- placement of the tricuspid valve leaflets was where the septal leaflet met the posterior l.eaflet on the postero- medial aspect of the right ventricular wall. The anterior leaflet: Although the anular attach- ments were similar, the size, shape and construction of the anterior leaflet in Ebstein’s anomaly bore little re- semblance to its counterpart in the normal heart (Fig. 3). It was considerably larger and structurally quite different. From the right margin of its insertion into the A-V junction, the lateral edge of anterior leaflet passed downward and medially, approximately parallel and close to the acute border of the heart. In contrast to the normal tricuspid valve, in which this edge is entirely free, in Ebstein’s anomaly it was attached variably to the ventricular wall. In 10 hearts, attachment was made by several abnormal papillary muscles and chordae tendineae, whereas in 5, there was continuous unin- terrupted muscular attachment of this edge of the leaflet to the ventricular wall. The markedly abnormal anterolateral papillary muscle was situated at the lower extent of the lateral edge. This muscle varied from a broad-based linear sheet to a more discrete muscle belly, but it was often difficult to separate visually the papil- lary muscle proper from the attachment of the lateral FIGURE 3. The parietal wall of the right ventricle with the anterior leaflet of the tricuspid valve (a-TV) attached, viewed as if looking toward the right side from within the cavity of the right ventricle. A, in a normal heart; B, in a heart with Eb- stein’s anomaly. The anterior leaflet in the tatter heart is greatly enlarged and abnormal in configuration. The anterolateral papillary muscle (aL- PM) is poorly formed and the leaflet is tethered to the posterior right ventricular wall by abnormal chordal attachments. PV = pulmonary valve; RA = right atrium. FIGURE 2. A view of the right atrium @A), right ventricle (RV) and tri- cuspid valve looking toward the ventricular septum. The insertion of the septal leaflet (S-TV) meets the insertion of the anterior leaflet (a-TV) on the membranous septum (asterisk). Progressing posteriorly, the insertion of the septal leaflet is displaced into the ventricle, thus ex- posing a triangular area of ventricular septal wall to the right atrium (broken lines enclose ventricular septum exposed to the atrium). edge of the leaflet to the ventricular wall. When this attachment was uninterrupted, it was often directly continuous with the papillary muscle. From the anterolateral papillary muscle, the rather taut anterior free edge of the leaflet extended in a direct line to its chordal attachment to the crista supraven- tricularis (infundibular septum). This free edge was often slightly thickened. This chordal attachment was remarkably constant in that it always reached the apex of the inverted V formed by the junction of the septal and parietal limbs of the crista. In the heart with Eb- stein’s anomaly, as in the normal heart, a fibrous ridge sometimes described as a fusion line may be seen at the apex of the crista. In the normal heart, the muscle of Lancisi is attached to the septal limb of the crista some distance from the cristal apex. In hearts with Ebstein’s April 1979 The American Journal of CARDIOLOGY Volume 41 741
  • 4. EBSTEIN’S ANOMALY-ANDERSON AND LIE FIGURE 4, left. The right ventricle (RV) in Ebstein’s anomaly. The anterior leaflet of the tricuspid valve (a-TV) is attached by chordae to the apex of the inverted V formed by the crista supraventricularis (CS) (arrow). A fibrous raphe sometimes may be visible here in both normal and congenitally malformed hearts. In the normal heart, the anterior leaflet of the tricuspid valve is attached to the septal bar of the crista some distance from the cristal apex. This attachment may be chordal or there may be a small papillary muscle (muscle of Lancisi). In Ebstein’s anomaly, the attachment is always chordal in nature. TSM = trabeculae septomarginalis. FIGURE 5, right. Close-up view of the anterior leaflet of the tricuspid valve (a-TV) in Ebstein’s anomaly showing the abnormal structure of the leaflet with fibrous strands incorporated in the leaflet stretching between its attachments to the right A-V junction and the right ventricular (RV) wall. These strands are in part muscular and in part fibrous. Ant = anterior; Post = posterior; RA = right atrium. anomaly, the chordal attachment of the anterior leaflet leaflet, the posterior leaflet was thickened, and abnor- was always directly into the mid line of the crista (Fig. mal chordal attachments tethered it to the ventricular 4). wall. The structure of the anterior leaflet was also dis- tinctly abnormal. Instead of being entirely a fibrous membrane, as in the normal heart, this leaflet was composed of easily visualized strands, stretching from the anterolateral papillary muscle to the insertion of the leaflet into the A-V junction (Fig. 5). These strands fanned out radially from the anterolateral muscle toward the attachment of the leaflet at the A-V junction. In one heart these strands were entirely composed of muscle, but in other hearts they were partly muscular and partly fibrous. Thus, muscular continuity appeared to exist from the anterolateral papillary muscle and the parietal right ventricular wall to the tricuspid valve ring at the right A-V junction. The right ventricle: The right ventricle was divided into two parts by the abnormal tricuspid valve. These are usually referred to as the proximal and distal chambers. The proximal chamber was continuous with the right atrium through the now unguarded A-V junction and was thus a functional part of the right atrium. It has sometimes been referred to as the atrialized portion of The septal and posterior (inferior) leaflets: The attachment of these leaflets in hearts with Ebstein’s anomaly was displaced below the A-V junction, thus exposing a triangular area of ventricular wall to the right atrium. The degree of displacement varied and deter- mined the relative size of the partitioned parts of the right ventricle. Greater displacement toward the apex resulted in a smaller functional right ventricle (distal chamber) and a larger “atrialized ventricle” (proximal chamber). The attachment of the septal leaflet was often displaced down to the trabecula septomarginalis (moderator band). The mobile part of the leaflet, always abnormal, varied markedly in size. There were often recesses in the right ventricle created by excessive tenting of the mobile part of the septal leaflet. In all hearts studied, both the septal and the posterior leaflets had abnormal chordal attachments. Like the septal FIGURE 6. The external appearance of the posterior surface of a heart with Ebsteln’s anomaly and a normal-sized (undilated) right ventricle (RV). A triangular-shaped thin-walled area of aneurysmal dilatation of the right ventricle is present (arrows). LV = left ventricle: RA = right atrium. 742 April 1978 The American Journal of CARDIOLGGY Volume 41
  • 5. EBSTEIN’S ANOMALY-ANDERSON AND LIE the right ventricle. The endocardium of this chamber was usually thick, fibrous and smooth, although some poorly formed trabeculae were sometimes present. The posterior wall corresponded approximately to the aneurysmally dilated portion of the right ventricle ob- served most noticeably in those hearts that did not have generalized right ventricular dilatation (Fig. 6). The wall of the “aneurysm” was often very thin with sparse muscle fibers. In two hearts, it was devoid of any muscle and composed entirely of fibrous tissue. The distal chamber was, or constituted the functional unit of, the right ventricle. It communicated with the proximal chamber by way of the variably sized and usually incompetent orifice of the tricuspid valve. The distal chamber was composed of three parts-the in- fundibulum, the apical part of the ventricle and the anterolateral recess, which was an appendage-like recess of the distal chamber situated behind the anterior leaflet of the tricuspid valve (Fig. 7). The trabecula septomarginalis often formed a distinctive landmark in the distal chamber (Fig. 7). Dilatation of the ventricle: In 9 of the 15 hearts with Ebstein’s anomaly of the right-sided tricuspid valve, the right ventricle was markedly dilated and thin-walled (Fig. 8). Dilatation involved the entire free wall of the right ventricle, but the posteromedial wall was thinner than the remainder. This area corresponded to the area that may be an aneurysmal pouch in the undilated examples. Of the remaining six hearts, one showed a moderate degree of dilatation, and five were either normal or thick-walled with a chamber of normal size. Generalized dilatation of the ventricle was sub- jectively assessed and did not appear to be related to the degree of enlargement of the right A-V ring circumfer- ence (Table I). No specific feature of the malformation FIGURE 7. Anterior view of the opened right ventricle in Ebstein’s anomaly. The anterior leaflet of the tricuspid valve (a-TV) separates the proximal chamber (PC) from the anterolateral recess of the distal chamber. The free edge of the anterior leaflet is attached below to the abnormally formed anterolateral papillary muscle and above to the apex formed by the junction of the two limbs of the crista supraventricularis (CS). The displaced septal leaflet (s-TV) is attached toa rather prominent trabecula septomarginalis (TSM). PV = pulmonary valve. of the tricuspid valve stood out as being associated with dilatation. The coronary arteries: The positions of the coro- nary ostia and the course of the proximal segments of the major main coronary arteries were similar to those in the normal heart. Special attention was directed to the topography of the coronary arterial anatomy at the posterior (inferior) surface of the heart because of sur- gical procedures involving plication of a portion of the right ventricular wall along the A-V groove. In five hearts the posterior descending artery was a branch of the left circumflex coronary artery, and in another five it was a branch of the right coronary artery. In the latter group, it seems inevitable that surgical plication of the posterior wall of the right ventricle would compromise the arterial circulation to the posterior ventricular wall. In the remaining five hearts, both the left circumflex and the right coronary arteries contributed to the de- scending branches. Associated cardiac anomalies: All but 1 of the 15 hearts had a shunt at the atria1 level, either an atria1 septal defect or a patent foramen ovale. The only other cardiac anomalies were one example each of pulmonary atresia, pulmonary stenosis, ventricular septal defect and persistent left superior vena cava (Table I). Discussion Anatomic Features In Ebstein’s anomaly of the tricuspid valve consid- erable variation exists in the pathologic anatomy of the malformation and in the clinical course of the patients FIGURE 8. Massive dilatationof the right ventricle in Ebstein’s anomaly. The right ventricle has been opened anteriorly. Ao = aorta; a-TV = anterior leaflet of the tricuspid valve; LV = left ventricle; PA = pul- monary artery: TSM = trabeculae septomarginalis. April 1979 The American Journal of CARDIOLOGY Volume 41 743
  • 6. EBSTEIN’S ANOMALY-ANDERSON AND LIE so afflicted. Previously published anatomic studies have dealt with most features of the anatomy of the malfor- mation in detail. These features include the displace- ment of the valve leaflets, the aneurysmally dilated posterior right ventricular wall7 and its abnormal structure,s dysplastic changes in the valve leaflets9 the occasionally observed “plastered” down nature of the septal leaflet,iOJ1 the architectural abnormality of the right ventricle11 and the A-V specialized conducting tissue.11-13 We observed these features in our study, but we emphasize certain points that have received less attention in the past. Enlarged circumference of the right A-V junc- tion: This was present in all our cases. It should not be confused with the tricuspid valve ring that in Ebstein’s anomaly is displaced into the right ventricle. Yater and Shapiro12 mentioned the enlargement of the right A-V orifice, and it was exemplified in their paper by a cited case report of Blackhall-Morison,14 who noted that the “auriculoventricular orifice admitted the whole hand.” The degree of enlargement of the right A-V junction circumference corresponded approximately to the width of the thinned segment of ventricular myocardium sit- uated posteromedially (Fig. 1). This thinned segment of ventricular wall was frequently aneurysmally dilated, and in two hearts it was a well circumscribed fibrous sac completely devoid of myocardium. Generalized dilatation of the entire right ven- tricle: This abnormality was also previously noted7 and was a common feature in 64 percent (9 of 15) of the hearts in our study. It was evident in some of the neo- natal examples but was more striking in the hearts from older patients. It was not observed in the oldest patient in our series (aged 51 years). Dilatation of this ventricle is probably in part an acquired phenomenon, but there is no sound hemodynamic explanation for massive di- latation. Dilatation of this degree has not been observed in other congenital valve disorders or in acquired disease of valve incompetence. Gross dilatation of a ventricle is usually associated with terminal cardiac failure or abnormalities of the ventricular myocardium such as congestive cardiomyopathy. We believe it is likely that some dilatation of the right ventricle is an integral component of Ebstein’s anomaly, associated with (and possibly due to) deficiency of the myocardium of the right ventricle. It is our impression that massive dila- tation of the right ventricle, when present, may be a limiting factor in achieving good results with surgical repair of Ebstein’s anomaly. Enlarged and abnormal anterior leaflet of tri- cuspid valve: The anterior leaflet in Ebstein’s anomaly of the right-sided tricuspid valve is often markedly enlarged and abnormally structured. This leaflet has been described as a “trapeze-like” structure or a “sail” hanging down into the ventricle. The free edge is stretched between a malformed anterolateral papillary muscle and an abnormal chordal attachment to the very apex of the crista supraventricularis. This attachment is presumably the equivalent of the muscle of Lancisi that, in the normal heart, is an anchorage for the ante- rior leaflet of the tricuspid valve and is located at the septal band of the crista supraventricularis. Embryologic Considerations The valve leaflets: The A-V valves are formed rel- atively late in cardiac embryogenesis, some time after the A-V connections have been established. The im- portance of the contribution of ventricular wall myo- cardium to the actual structure of the primitive valve leaflets was well known to early workers, and this subject was reviewed by Odgers in 193’7.15 This has led to the commonly held belief that the leaflets develop by a process of undermining or delamination of ventricular myocardium.16 It has been suggested17 that hemody- namic factors are important in the development of the semilunar valves,17 and it is not unreasonable to assume that hemodynamic factors play a role in the under- mining process by which the A-V valves develop. A necessary requirement for correct hemodynamic pat- terns of flow would be the structural integrity of the A-V canal, which is normally the narrowest orifice through which blood passes on its course from the atria to the ventricles. If an A-V canal was for some reason enlarged and was no longer the narrowest orifice of ventricular inflow, then hemodynamic forces in this area could be expected to be abnormal. If they were abnormal, proper undermining forces might no longer exist and the valve leaflets could be expected to form abnormally in both position and structure. In our study we consistently found an abnormally large circumference of the right A-V sulcus in classic Ebstein’s anomaly. This was found in hearts from pa- tients of all ages and does not appear to be an acquired phenomenon. If this enlarged A-V junction was present at the stage when the valve leaflets were being formed, it may have been responsible for the anomalous struc- ture and position of the leaflets. The diameter of max- imal restriction to blood entering the right ventricle would no longer be at the A-V junction but would be- come an area of the right ventricular inflow deeper into the ventricular chamber. Enlarged A-V junction: The reason for enlargement of the right A-V junction is elusive. One can theorize that the junction may lack proper support during de- velopment, perhaps because of a deficiency of sulcus tissue or myoepicardial mantle. However, Ebstein’s anomaly is almost exclusively a disorder of the tricuspid valve, and if such a concept of lack of support is valid, why should Ebstein’s anomaly not occur equally as often in the mitral valve? 0dgers15 observed several differ- ences in the developing A-V valves, including angulation of the lateral aspect at the right A-V orifice, observed at the 30,mm stage, which was associated with tempo- rary continuity between A-V sulcus tissue on the epi- cardial surface and the forming valve leaflet at the en- docardial surface. This latter point is of interest because at the equivalent lateral part of the developing mitral valve, atria1 and ventricular musculature separate the developing valve leaflet from the epicardially situated sulcus tissue. If sulcus tissue were deficient on the left side, the developing mitral valve could still be supported by left ventricular myocardium; however, if there were a deficiency of sulcus tissue on the right side, the lateral aspect of developing tricuspid valve would lack such 744 April 1979 The American Journal of CARDIOLOGY Volume 41
  • 7. EBSTEIN’S ANOMALY-ANDERSON AND LIE support. Lack of support could result in enlargment of the orifice followed by abnormal formation of the valve leaflets. Conclusion Apart from the well known downward displacement of the septal and posterior leaflets of the tricuspid valve, several other anatomic features are found consistently enough to warrant their inclusion as integral compo- nents of the congenital malformation complex of Eb- 1. 2. 3. 4. 5. 6. stein’s anomaly of the heart. These additional features include (1) malalignment, enlargement and abnormal construction of the anterior leaflet of the tricuspid valve; (2) circumferential expansion of the right A-V junction; (3) various degrees of aneurysmal dilatation of the entire right ventricle; and (4) a right to left shunt in the form of a patent foramen ovale or atria1 septal defect. These anatomic characteristics should be taken into consid- eration in designing or carrying out the surgical cor- rection of Ebstein’s anomaly of the heart. References Fontana RS, Edwards JE: Congenital Cardiac Disease: A Review of 357 Cases Studied Pathologically. Philadelphia, WB Saunders, 1962, p 29 Watson H: Natural history of Ebstein’s anomaly of the tricuspid valve in childhood and adolescence: an international cooperative study of 505 cases. Br Heart J 36:417-427, 1974 Lillehei CW, Gannon PG: Ebstein’s malformation of the tricuspid valve: method of surgical correction utilizinga ball valve prosthesis and delayed closure of the atrial septal defect. Circulation 31:Suppl 1:1-9-l-18. 1965 Bahnson HT, Bauersfeld SR, Smith JW: Pathological anatomy and surgical correction of Ebstein’s anomaly. Circulation 31:Suppl I: l-3-l-7, 1965 Lilfehei CW, Kalke BR, Carlson RG: Evolutionof corrective surgery for Ebstein’s anomaly. Circulation 35:Suppl l:l-11 l-l-l 18, 1967 McFaul RC, Davis 2, Giuliani ER, et al: Ebstein’s malformation: surgical experience at the Mayo Clinic. J Thorac Cardiovasc Surg 72:901-915, 1976 Engle MA, Payne TPB, Bruins C, et al: Ebstein’s anomaly of the tricuspid valve. Report of three cases and analysis of clinical syndrome. Circulation 1:1246-1260, 1950 Bialostozky D, Medrano GA, Munoz L, et al: Vectorcardiographic study and anatomic observations in 21 cases of Ebstein’s mal- formation of the tricuspid valve. Am J Cardiol 30:354-361, 1972 Becker AE, Becker MJ, Edwards JE: Pathologic spectrum of dysplasia of the tricuspid valve: features in common with Ebstein’s malformation. Arch Pathol 91:167-178, 1971 10. Taussig HB: Congenital Malformations of the Heart, second edition. Cambridge, Massachusetts, Harvard University Press, 1960, p 11. 12. 13. 14. 15. 16. 17. 467 Lev M, Liberthson RR, Joseph RH, et al: The pathologic anatomy of Ebstein’s disease. Arch Pathol 90:334-343, 1970 Yater WM, Shapiro MJ: Congenital displacement of the tricuspid valve (Ebstein’s disease): review and report of a case with elec- trocardiographic abnormalities and detailed histologic study of the conduction system. Ann Intern Med 11:1043-1062, 1937 Lev Y, Gibson S, Miller RA: Ebstein’s disease with Wolff-Parkin- son-white syndrome: report of a case with histopathologic study of possible conduction pathways. Am Heart J 49:724-741, 1955 Blackhall-Morison A: Malformed heart with redundant and dis- placed tricuspid segments and abnormal local attenuation of the right ventricular wall. J Anat 34:262-266, 1922-1923 Ddgers PNB: The development of the atrioventricularvalves in man. J Anat 73:643-657, 19381939 Van Mlerop LHS: Embryology, section 3. In, Netter FH: The Ciba Collection of Medical Illustrations,Vol 5, Heart (Yonkmann FF, ed). Summit, New Jersey, Ciba Pharmaceutical, 1969, p 125 Maron BJ, Hutchins GM: The development of the semilunar valves in the human heart. Am J Pathol 74:331-344, 1974 April 1978 The American Journal of CARDIOLOGY Volume 41 745