SlideShare a Scribd company logo
1 of 343
Download to read offline
Estevam	
  R.	
  Hruschka	
  Jr.	
  
Federal	
  University	
  of	
  São	
  Carlos	
  
Machine Reading the Web:
Beyond Named Entity
Recognition and Relation
Extraction	
  
Disclaimers	
  
•  Previous	
  versions	
  of	
  this	
  tutorial	
  were	
  presented	
  at	
  
IBERAMIA2012	
  (h@p://iberamia2012.dsic.upv.es/tutorials/)	
  
and	
  WWW2013	
  (h@p://www2013.org/program/machine-­‐
reading-­‐the-­‐web/).	
  Also,	
  a	
  short	
  version	
  was	
  presented	
  at	
  
ECMLPKDD2015	
  Summer	
  School(h@p://
www.ecmlpkdd2015.org/summer-­‐school/ss-­‐schedule).	
  
•  Feel	
  free	
  to	
  e-­‐mail	
  me	
  (estevam.hruschka@gmail.com)	
  with	
  
quesTons	
  about	
  this	
  tutorial	
  or	
  any	
  feedback/suggesTons/
criTcisms.	
  Your	
  feedback	
  can	
  help	
  improving	
  the	
  quality	
  of	
  
these	
  slides,	
  thus,	
  they	
  are	
  very	
  welcome.	
  
•  As	
  in	
  many	
  tutorials’	
  slides,	
  these	
  slides	
  were	
  prepared	
  to	
  be	
  
presented,	
  and	
  la@er	
  studied.	
  Thus,	
  they	
  are	
  meant	
  to	
  be	
  
more	
  self-­‐contained	
  than	
  slides	
  from	
  a	
  paper	
  presentaTon.	
  
Disclaimers	
  
•  Due	
  to	
  Tme	
  constraints,	
  I	
  do	
  not	
  intend	
  to	
  cover	
  all	
  the	
  
algorithms	
  and	
  publicaTons	
  related	
  to	
  YAGO,	
  KnowItAll,	
  NELL	
  
and	
  DBPedia.	
  What	
  I	
  do	
  intend,	
  instead,	
  is	
  to	
  give	
  an	
  overview	
  
of	
  all	
  four	
  projects	
  and	
  what	
  is	
  the	
  main	
  approach	
  to	
  “Read	
  
the	
  Web”,	
  used	
  in	
  each	
  project.	
  	
  
•  YAGO,	
  KnowItAll,	
  NELL	
  and	
  DBPedia	
  are	
  not	
  the	
  only	
  research	
  
efforts	
  focusing	
  on	
  “Reading	
  the	
  Web”.	
  They	
  were	
  selected,	
  
to	
  be	
  presented	
  in	
  this	
  tutorial,	
  because	
  they	
  represent	
  four	
  
different	
  and	
  very	
  relevant	
  approaches	
  to	
  this	
  problem,	
  but	
  it	
  
does	
  not	
  mean	
  they	
  are	
  the	
  best	
  (or	
  the	
  only	
  relevant)	
  ones	
  
at	
  all.	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
– DBPedia	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
– DBPedia	
  
Picture	
  taken	
  from	
  [Fern,	
  2008]	
  	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
– DBPedia	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
– DBPedia	
  
Picture	
  taken	
  from	
  [DARPA,	
  2012]	
  	
  
Picture	
  taken	
  from	
  [DARPA,	
  2012]	
  	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
DBPedia	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
The	
  YAGO-­‐NAGA	
  Project:	
  
HarvesAng,	
  Searching,	
  and	
  Ranking	
  
Knowledge	
  from	
  the	
  Web	
  
	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
KnowItAll	
  
KnowItAll:	
  Open	
  InformaTon	
  ExtracTon	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Machine	
  Learning	
  
•  What	
  is	
  Machine	
  Learning?	
  
The	
  field	
  of	
  Machine	
  Learning	
  seeks	
  to	
  answer	
  
the	
  quesTon	
  
“How	
  can	
  we	
  build	
  computer	
  systems	
  that	
  
automaTcally	
  improve	
  with	
  experience,	
  and	
  
what	
  are	
  the	
  fundamental	
  laws	
  that	
  govern	
  all	
  
learning	
  processes?”	
  [Mitchell,	
  2006]	
  
Machine	
  Learning	
  
•  What	
  is	
  Machine	
  Learning?	
  
a	
  machine	
  learns	
  with	
  respect	
  to	
  a	
  parTcular:	
  
-­‐  task	
  T	
  	
  
-­‐  performance	
  metric	
  P	
  
-­‐  type	
  of	
  experience	
  E	
  	
  
	
  
if	
  the	
  system	
  reliably	
  improves	
  its	
  performance	
  P	
  at	
  
task	
  T,	
  following	
  experience	
  E.	
  [Mitchell,	
  1997]	
  
Machine	
  Learning	
  
•  Examples	
  of	
  Machine	
  Learning	
  approaches	
  
for	
  different	
  tasks	
  (T),	
  performance	
  metrics	
  
(P)	
  an	
  experiences	
  (E)	
  
-­‐  data	
  mining	
  
-­‐  autonomous	
  discovery	
  
-­‐  database	
  updaTng	
  
-­‐  programming	
  by	
  example	
  
-­‐  Pa@ern	
  recogniTon	
  	
  
Machine	
  Learning	
  
•  Supervised	
  Learning;	
  
•  Unsupervised	
  Learning	
  
•  Semi-­‐Supervised	
  Learning	
  
Supervised	
  Learning	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
?????????	
  
What	
  model	
  
should	
  be	
  
chosen?	
  
?????????	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Unsupervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Unsupervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Unsupervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Unsupervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
?????????	
  
What	
  model	
  
should	
  be	
  
chosen?	
  
?????????	
  
Unsupervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
0	
   5	
   10	
   15	
   20	
   25	
  
Series1	
  
Series2	
  
Unlabeled	
  
Semi-­‐supervised	
  Learning	
  
(one	
  simple	
  anecdotal	
  approach)	
  
?????????	
  
What	
  model	
  
should	
  be	
  
chosen?	
  
?????????	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Machine	
  Reading	
  
•  “The	
  autonomous	
  understanding	
  of	
  
text”	
  [Etzioni	
  et	
  al.,	
  2007]	
  
•  “One	
  of	
  the	
  most	
  important	
  methods	
  by	
  which	
  
human	
  beings	
  learn	
  is	
  by	
  reading”	
  [Clark	
  et	
  al.,	
  
2007],	
  thus	
  why	
  not	
  building	
  machines	
  capable	
  
of	
  learning	
  by	
  reading?	
  
Machine	
  Reading	
  
•  “The	
  problem	
  of	
  deciding	
  what	
  was	
  implied	
  by	
  a	
  
wri@en	
  text,	
  of	
  reading	
  between	
  the	
  lines	
  is	
  the	
  
problem	
  of	
  inference.”	
  [Norvig,	
  2007]	
  
	
  
•  Typically,	
  Machine	
  Reading	
  is	
  different	
  from	
  
Natural	
  Language	
  Processing	
  alone	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
same	
   same	
  
same	
  
same	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
same	
   same	
  
same	
  
same	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
uncleOf	
  
	
  	
  
	
  	
  
owns	
  
hires	
  
	
  	
   	
  	
  
headOf	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
same	
   same	
  
same	
  
same	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
uncleOf	
  
	
  	
  
	
  	
  
owns	
  
hires	
  
	
  	
   	
  	
  
headOf	
  
affairWith	
  
affairWith	
  
enemyOf	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
Machine	
  Reading	
  
•  One	
  important	
  (ini6al)	
  approach	
  to	
  machine	
  
reading	
  is	
  to	
  extract	
  facts	
  from	
  text	
  and	
  store	
  
them	
  in	
  a	
  structured	
  form.	
  
•  Facts	
  can	
  be	
  seen	
  as	
  enTTes	
  and	
  their	
  
relaTons	
  
•  Ontology	
  is	
  one	
  of	
  the	
  most	
  common	
  
representaTon	
  for	
  the	
  extracted	
  facts	
  
	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/RecogniTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Polysemy	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/RecogniTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Polysemy	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/RecogniTon	
  
–  Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
	
  
–  Free	
  text	
  
•  Hearst-­‐pa@erns;	
  clustering	
  by	
  verbal	
  phrases	
  
•  Natural-­‐language	
  processing	
  
•  Advanced	
  pa@erns	
  &	
  iteraTve	
  bootstrapping	
  
	
  (“Dual	
  IteraTve	
  Pa@ern	
  RelaTon	
  ExtracTon”)	
  
Named	
  EnTty	
  RecogniTon	
  
•  Named	
  EnTty	
  RecogniTon	
  [Nadeau	
  &	
  Sekine,	
  
2007]	
  
– term	
  “Named	
  EnTty”	
  coined	
  for	
  the	
  Sixth	
  Message	
  
Understanding	
  Conference	
  (MUC-­‐6)	
  (R.	
  Grishman	
  
&	
  Sundheim	
  1996).	
  	
  
– important	
  sub-­‐tasks	
  of	
  IE	
  called	
  “Named	
  EnTty	
  
RecogniTon	
  and	
  ClassificaTon	
  (NERC)”.	
  
•  recognize	
  informaTon	
  units	
  like	
  names,	
  
including	
  person,	
  organizaAon	
  and	
  locaAon	
  
names,	
  and	
  numeric	
  expressions	
  including	
  
Ame,	
  date,	
  money	
  and	
  percent	
  expressions.	
  
•  In	
  Machine	
  Reading,	
  many	
  other	
  enTTes:	
  
product,	
  kitchen	
  item,	
  sport,	
  etc.	
  
Named	
  EnTty	
  RecogniTon	
  
[Nadeau	
  &	
  Sekine,	
  2007]	
  
•  Named	
  EnTty	
  ResoluTon	
  [Theobald	
  &	
  Weikum,	
  
2012]	
  
– Which	
  individual	
  enTTes	
  belong	
  to	
  which	
  classes?	
  
•  instanceOf	
  (Surajit	
  Chaudhuri,	
  computer	
  scien6sts),	
  
•  instanceOf	
  (BarbaraLiskov,	
  computer	
  scien6sts),	
  
•  instanceOf	
  (Barbara	
  Liskov,	
  female	
  humans),	
  …	
  
Named	
  EnTty	
  ResoluTon	
  
•  Named	
  EnTTes	
  RecogniTon	
  as	
  a	
  machine	
  
learning	
  task.	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
Named	
  EnTty	
  RecogniTon	
  
•  Named	
  EnTty	
  RecogniTon	
  as	
  a	
  Machine	
  Learning	
  task.	
  
–  Supervised	
  Learning	
  
–  Possible	
  features	
  [RaTnov	
  &	
  Roth,	
  2009],	
  [Khambhatla,	
  
2004],	
  [Zhou	
  et.	
  al.	
  2005]	
  
•  	
  Words	
  “around”	
  and	
  including	
  enTTes	
  	
  
•  POS	
  (Part-­‐Of-­‐Speech)	
  
•  Prefixes	
  and	
  suffixes	
  
•  CapitalizaTon	
  
•  Number	
  of	
  words	
  
•  Number	
  of	
  characters	
  
•  First	
  word,	
  last	
  word	
  
•  gaze@eer	
  matches	
  	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
•  Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
   Classifier	
  
Named	
  EnTty	
  RecogniTon	
  
•  Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
   Classifier	
  
Kernels	
  
Named	
  EnTty	
  RecogniTon	
  
•  Supervised	
  Learning	
  using	
  Kernels	
  
– A	
  Kernel	
  defines	
  similarity	
  implicitly	
  in	
  a	
  higher	
  
dimensional	
  space	
  	
  
– Can	
  be	
  based	
  on	
  Strings,	
  Word	
  Sequences,	
  Parse	
  
Trees,	
  etc.	
  
•  For	
  strings	
  similarity∝	
  number	
  of	
  common	
  substrings	
  
(or	
  subsequences)	
  	
  
•  Recommended	
  reading	
  on	
  string	
  kernels	
  [Lodhi	
  et.	
  al.,	
  
2002]	
  	
  
	
  
Named	
  EnTty	
  RecogniTon	
  [Bach	
  &	
  Badaskar,	
  2007]	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
Named	
  EnTty	
  RecogniTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Named	
  EnTty	
  RecogniTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
Set	
  of	
  labeled	
  Instances	
  
	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
Set	
  of	
  labeled	
  Instances	
  
	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
Google	
  
Apple	
  
 
Set	
  of	
  labeled	
  Instances	
  
	
  
	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
Google	
  
Apple	
  
NE	
  
Pa@ern	
  
Classifier	
  
 
Set	
  of	
  labeled	
  Instances	
  
	
  
	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  
	
  is	
  the	
  CEO	
  of	
  X	
  
	
  
Named	
  EnTty	
  RecogniTon	
  
Google	
  
Apple	
  
NE	
  
Pa@ern	
  
Classifier	
  
What	
  about	
  
unsupervised?	
  
 
Set	
  of	
  labeled	
  Instances	
  
	
  
	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Named	
  EnTty	
  RecogniTon	
  
NE	
  
Pa@ern	
  
Classifier	
  
What	
  about	
  
unsupervised?	
  
 
Set	
  of	
  labeled	
  Instances	
  
	
  
	
  
•  Unsupervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  NE	
  instances.	
  	
  
NE	
  
Instances	
  
Classifier	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Named	
  EnTty	
  RecogniTon	
  
NE	
  
Pa@ern	
  
Classifier	
  
•  [RaTnov	
  &	
  Roth,	
  2009]	
  
Named	
  EnTty	
  RecogniTon	
  
•  [Pennington	
  &	
  Socher	
  &	
  Manning,	
  2014]	
  
Named	
  EnTty	
  RecogniTon	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Polysemy	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Machine	
  Reading	
  
•  RelaTon	
  ExtracTon	
  
–  Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
	
  
–  Free	
  text	
  
•  Hearst-­‐pa@erns;	
  clustering	
  by	
  verbal	
  phrases	
  
•  Natural-­‐language	
  processing	
  
•  Advanced	
  pa@erns	
  &	
  iteraTve	
  bootstrapping	
  
	
  (“Dual	
  IteraTve	
  Pa@ern	
  RelaTon	
  ExtracTon”)	
  
Machine	
  Reading	
  
•  RelaTon	
  ExtracTon	
  [Theobald	
  &	
  Weikum,	
  2012]	
  
–  Which	
  instances	
  (pairs	
  of	
  individual	
  enTTes)	
  are	
  there	
  
for	
  given	
  binary	
  relaTons	
  with	
  specific	
  type	
  
signatures?	
  
•  hasAdvisor	
  (JimGray,	
  MikeHarrison)	
  
•  hasAdvisor	
  (HectorGarcia-­‐Molina,	
  Gio	
  Wiederhold)	
  
•  hasAdvisor	
  (Susan	
  Davidson,	
  Hector	
  Garcia-­‐Molina)	
  
•  graduatedAt	
  (JimGray,	
  Berkeley)	
  
•  graduatedAt	
  (HectorGarcia-­‐Molina,	
  Stanford)	
  
•  hasWonPrize	
  (JimGray,	
  TuringAward)	
  
•  bornOn	
  (JohnLennon,	
  9Oct1940)	
  
•  diedOn	
  (JohnLennon,	
  8Dec1980)	
  
•  marriedTo	
  (JohnLennon,	
  YokoOno)	
  
RelaTon	
  ExtracTon	
  
•  ExtracTng	
  semanTc	
  relaTons	
  between	
  enTTes	
  
in	
  text	
  
•  RelaTon	
  extracTon	
  as	
  a	
  Machine	
  Learning	
  task.	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  
•  RelaTon	
  extracTon	
  as	
  a	
  Machine	
  Learning	
  task.	
  
–  Supervised	
  Learning	
  
–  Possible	
  features	
  [Khambhatla,	
  2004],	
  [Zhou	
  et.	
  al.	
  
2005]	
  
•  	
  Words	
  between	
  and	
  including	
  enTTes	
  	
  
•  Types	
  of	
  enTTes	
  (person,	
  locaTon,	
  etc)	
  	
  
•  Number	
  of	
  enTTes	
  between	
  the	
  two	
  enTTes,	
  whether	
  both	
  
enTTes	
  belong	
  to	
  same	
  chunk	
  	
  
•  #	
  words	
  separaTng	
  the	
  two	
  enTTes	
  	
  
•  Path	
  between	
  the	
  two	
  enTTes	
  in	
  a	
  parse	
  tree	
  	
  
	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  
•  ExtracTng	
  semanTc	
  relaTons	
  between	
  enTTes	
  
in	
  text	
  
•  RelaTon	
  extracTon	
  as	
  a	
  classificaTon	
  task.	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees,	
  NER)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  
•  ExtracTng	
  semanTc	
  relaTons	
  between	
  enTTes	
  
in	
  text	
  
•  RelaTon	
  extracTon	
  as	
  a	
  classificaTon	
  task.	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees,	
  NER)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
Kernels	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  
•  Supervised	
  Learning	
  using	
  Kernels	
  
– A	
  Kernel	
  defines	
  similarity	
  implicitly	
  in	
  a	
  higher	
  
dimensional	
  space	
  	
  
– Can	
  be	
  based	
  on	
  Strings,	
  Word	
  Sequences,	
  Parse	
  
Trees,	
  etc.	
  
•  For	
  strings,	
  similarity∝	
  number	
  of	
  common	
  substrings	
  
(or	
  subsequences)	
  	
  
•  Recommended	
  reading	
  on	
  string	
  kernels	
  [Lodhi	
  et.	
  al.,	
  
2002]	
  	
  
	
  
[Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  [Bach	
  &	
  Badaskar,	
  2007]	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
Google-­‐Mountain	
  View	
  
Apple-­‐CuperAno	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
Google-­‐Mountain	
  View	
  
Apple-­‐CuperAno	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
X	
  is	
  headquartered	
  in	
  Y	
  
Y	
  is	
  the	
  headquarter	
  of	
  X	
  
	
  
Google-­‐Mountain	
  View	
  
Apple-­‐CuperAno	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
What	
  about	
  
unsupervised?	
  
RelaTon	
  ExtracTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
What	
  about	
  
unsupervised?	
  
RelaTon	
  ExtracTon	
  
•  Unsupervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Supervised	
  learning	
  [Bunescu	
  &	
  Mooney,	
  2005]	
  
•  Distant	
  and	
  ParTal	
  Supervised	
  [Angeli	
  &	
  
Tibshirani	
  &	
  Wu	
  &	
  Manning,	
  2014]	
  
RelaTon	
  ExtracTon	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Polysemy	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  taken	
  from:	
  h@p://nlp.stanford.edu/projects/coref.shtml	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  taken	
  from:	
  h@p://nlp.stanford.edu/projects/coref.shtml	
  	
  
within-document co-reference
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  taken	
  from:	
  h@p://nlp.stanford.edu/projects/coref.shtml	
  	
  
within-document co-reference
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  adapted	
  from	
  [Krishnamurthy	
  &	
  Mitchell,	
  2011]	
  
apple	
  
computer	
  	
  
Apple	
  
Computer	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  adapted	
  from	
  [Krishnamurthy	
  &	
  Mitchell,	
  2011]	
  
apple	
  
apple	
  
computer	
  	
  
Apple	
  
Computer	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  
same	
  enTty	
  
Example	
  (figure)	
  adapted	
  from	
  [Krishnamurthy	
  &	
  Mitchell,	
  2011]	
  
apple	
  
apple	
  
computer	
  	
  
Apple	
  
Computer	
  	
  
cross-document co-reference
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference:	
  expressions	
  that	
  refer	
  to	
  the	
  same	
  
enTty	
  
•  Which	
  names	
  denote	
  which	
  enTTes?	
  [Theobald	
  
&	
  Weikum,	
  2012]	
  
–  means	
  (“Lady	
  Di“,	
  Diana	
  Spencer),	
  
–  means	
  (“Diana	
  Frances	
  Mountba@en-­‐Windsor”,	
  Diana	
  
Spencer),	
  …	
  
–  means	
  (“Madonna“,	
  Madonna	
  Louise	
  Ciccone),	
  
–  means	
  (“Madonna“,	
  Madonna(painTng	
  by	
  Edward	
  
Munch)),	
  …	
  
cross-document co-reference
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Polysemy:	
  is	
  the	
  capacity	
  for	
  a	
  sign	
  (such	
  as	
  a	
  
word,	
  phrase,	
  or	
  symbol)	
  to	
  have	
  mulTple	
  
meanings	
  [Wikipedia]	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Polysemy:	
  is	
  the	
  capacity	
  for	
  a	
  sign	
  (such	
  as	
  a	
  
word,	
  phrase,	
  or	
  symbol)	
  to	
  have	
  mulTple	
  
meanings	
  [Wikipedia]	
  
Example	
  (figure)	
  adapted	
  from	
  [Krishnamurthy	
  &	
  Mitchell,	
  2011]	
  
apple	
  
apple	
  	
  
(the	
  fruit)	
  
Apple	
  
Computer	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐Reference	
  and	
  Polysemy	
  
Example	
  (figure)	
  adapted	
  from	
  [Krishnamurthy	
  &	
  Mitchell,	
  2011]	
  
apple	
  
apple	
  
computer	
  	
  
apple	
  	
  
(the	
  fruit)	
  
Apple	
  
Computer	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference	
  and	
  Polysemy:	
  	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
•  Co-­‐Reference	
  
ResoluTon.	
  
– Supervised	
  
Learning	
  
– Possible	
  
features	
  
[Bengtson	
  &	
  
Roth,	
  2008]	
  
	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐Reference	
  
ResoluTon.	
  
– Supervised	
  
Learning	
  
– Possible	
  
features	
  
[Bengtson	
  &	
  
Roth,	
  2008]	
  
	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐reference	
  and	
  Polysemy:	
  	
  
– Supervised	
  Learning	
  
	
  
NLP	
  tools	
  
(POS,	
  Parse	
  
Trees)	
  
text	
  
Features	
  
ExtracTon	
  
Classifier	
  
Kernels	
  
•  Supervised	
  Learning	
  using	
  Kernels	
  
– A	
  Kernel	
  defines	
  similarity	
  implicitly	
  in	
  a	
  higher	
  
dimensional	
  space	
  	
  
– Can	
  be	
  based	
  on	
  Strings,	
  Word	
  Sequences,	
  Parse	
  
Trees,	
  etc.	
  
•  For	
  strings	
  similarity∝	
  number	
  of	
  common	
  substrings	
  
(or	
  subsequences)	
  	
  
•  Recommended	
  reading	
  on	
  string	
  kernels	
  [Lodhi	
  et.	
  al.,	
  
2002]	
  	
  
	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
	
  
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Apple	
  Computer	
  -­‐	
  
Apple	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
Apple	
  Computer	
  -­‐	
  
Apple	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
Apple	
  Computer	
  -­‐	
  
Apple	
  
X	
  also	
  know	
  as	
  Y	
  
	
  
What	
  about	
  
unsupervised?	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
What	
  about	
  
unsupervised?	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
Pa@ern	
  
Classifier	
  
Pair	
  of	
  
Instances	
  
Classifier	
  
•  Semi-­‐supervised	
  
Approaches	
  	
  
– Bootstrap	
  can	
  
generate	
  a	
  large	
  
number	
  of	
  pa@erns	
  
and	
  relaTon	
  
instances.	
  	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
•  Co-­‐Reference	
  ResoluTon:	
  	
  
[Singh	
  et	
  al.,	
  2011],	
  [Krishnamurthy	
  &	
  Mitchell,	
  
2011],[Du@a	
  &	
  Weikum,	
  2015]	
  
•  Polysemy	
  ResoluTon:	
  
[Krishnamurthy	
  &	
  Mitchell,	
  2011],	
  [Galárraga	
  et	
  
al.,	
  	
  2014]	
  
Co-­‐Reference	
  and	
  Polysemy	
  ResoluTon	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Synonym	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Machine	
  Reading	
  
•  RelaTon	
  Discovery	
  
– Which	
  new	
  relaTons	
  are	
  there	
  for	
  given	
  pair	
  of	
  
enTTes?	
  
•  hasAdvisor	
  (JimGray,	
  MikeHarrison)	
  
Machine	
  Reading	
  
•  RelaTon	
  Discovery	
  
– Which	
  new	
  relaTons	
  are	
  there	
  for	
  given	
  pair	
  of	
  
enTTes?	
  
•  hasAdvisor	
  (JimGray,	
  MikeHarrison)	
  
•  hasCoAuthor(HectorGarcia-­‐Molina,	
  Gio	
  Wiederhold)	
  
Machine	
  Reading	
  
•  RelaTon	
  Discovery	
  
– Which	
  new	
  relaTons	
  are	
  there	
  for	
  given	
  pair	
  of	
  
enTTes?	
  
•  hasAdvisor	
  (JimGray,	
  MikeHarrison)	
  
•  hasCoAuthor(HectorGarcia-­‐Molina,	
  Gio	
  Wiederhold)	
  
•  graduatedAt	
  (JimGray,	
  Berkeley)	
  
Machine	
  Reading	
  
•  RelaTon	
  Discovery	
  
– Which	
  new	
  relaTons	
  are	
  there	
  for	
  given	
  pair	
  of	
  
enTTes?	
  
•  hasAdvisor	
  (JimGray,	
  MikeHarrison)	
  
•  hasCoAuthor(HectorGarcia-­‐Molina,	
  Gio	
  Wiederhold)	
  
•  graduatedAt	
  (JimGray,	
  Berkeley)	
  
•  studiedAt	
  (HectorGarcia-­‐Molina,	
  Stanford)	
  
•  bornOn	
  (JohnLennon,	
  9Oct1940)	
  
•  releasedAlbum	
  (JohnLennon,	
  10Dec1965)	
  
 
Set	
  of	
  labeled	
  pairs	
  of	
  
Instances	
  Examples	
  
	
  
Set	
  of	
  
labeled	
  Pa@ern	
  
Examples	
  
RelaTon	
  Discovery	
  
Clustering	
  
Algorithm	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Synonym	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Inference	
  
•  Inference	
  is	
  the	
  act	
  or	
  process	
  of	
  deriving	
  
logical	
  conclusions	
  from	
  premises	
  known	
  or	
  
assumed	
  to	
  be	
  true	
  [Wikipedia]	
  
Inference	
  
•  Manually	
  craved	
  inference	
  rules	
  
•  AutomaTcally	
  learned	
  inference	
  rules	
  
•  Data	
  mining	
  the	
  Knowledge	
  Base	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Synonym	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Machine	
  Reading	
  
•  Ontology	
  RepresentaTon	
  
	
  Facts	
  (RDF	
  triples)	
  
1:	
  (Jim,	
  hasAdvisor,	
  Mike)	
  
2:	
  (Surajit,	
  hasAdvisor,	
  Jeff)	
  
3:	
  (Madonna,	
  marriedTo,	
  GuyRitchie)	
  
4:	
  (Nicolas,	
  marriedTo,	
  Carla)	
  
5:	
  (ManchesterU,	
  wonCup,	
  ChampionsLeague)	
  
ReificaTon:	
  
“Facts	
  about	
  Facts”:	
  
6:	
  	
  	
  (1,	
  inYear,	
  1968)	
  
7:	
  	
  	
  (2,	
  inYear,	
  2006)	
  
8:	
  	
  	
  (3,	
  validFrom,	
  22-­‐Dec-­‐2000)	
  	
  
9:	
  	
  	
  (3,	
  validUnTl,	
  Nov-­‐2008)	
  
10:	
  (4,	
  validFrom,	
  2-­‐Feb-­‐2008)	
  
11:	
  (2,	
  source,	
  SigmodRecord)	
  
12:	
  (5,	
  inYear,	
  1999)	
  
13:	
  (5,	
  locaTon,	
  CampNou)	
  
14:	
  (5,	
  source,	
  Wikipedia)	
  
Machine	
  Reading	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  
•  RelaTon	
  ExtracTon	
  
•  Co-­‐reference	
  and	
  Synonym	
  ResoluTon	
  
•  RelaTon	
  Discovery	
  
•  Inference	
  
•  Knowledge	
  Base	
  RepresentaTon	
  
•  Document/Sentence	
  Understanding	
  (Micro-­‐
Reading)	
  
Document/Sentence	
  UnderstanTng	
  	
  
(MicroRead)	
  
•  “The	
  scienTst	
  observed	
  the	
  bu@erfly	
  with	
  the	
  
blue	
  circle”	
  
	
  
	
  
Document/Sentence	
  UnderstanTng	
  	
  
(MicroRead)	
  
•  “The	
  scienTst	
  observed	
  the	
  bu[erfly	
  with	
  the	
  
blue	
  circle”	
  
	
  
	
  
Document/Sentence	
  UnderstanTng	
  	
  
(MicroRead)	
  
•  “The	
  scienTst	
  observed	
  the	
  bu[erfly	
  with	
  the	
  
blue	
  circle”	
  
	
  
	
  
•  “The	
  scienTst	
  observed	
  the	
  bu@erfly	
  with	
  the	
  
blue	
  microscope”	
  
Document/Sentence	
  UnderstanTng	
  	
  
(MicroRead)	
  
•  “The	
  scienTst	
  observed	
  the	
  bu[erfly	
  with	
  the	
  
blue	
  circle”	
  
	
  
	
  
•  “The	
  scienAst	
  observed	
  the	
  bu@erfly	
  with	
  the	
  
blue	
  microscope”	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
DBPedia	
  
h@p://wiki.dbpedia.org/	
  
DBPedia	
  
Mapping	
  Wikipedia	
  semi-­‐structured	
  data	
  into	
  RDF	
  triples	
  
DBPedia	
  
Mapping	
  Wikipedia	
  semi-­‐structured	
  data	
  into	
  RDF	
  triples	
  
Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
DBPedia	
  
•  How	
  to	
  Read	
  Wikipedia	
  Semi-­‐structured	
  data?	
  
[Lehmann	
  et	
  al.,	
  2014]	
  
– Parse	
  Wikipedia	
  Markup	
  language	
  
– Overcome	
  the	
  lack	
  of	
  standard	
  problem	
  
•  Same	
  properTes	
  might	
  have	
  different	
  names	
  
•  “Datebirth”	
  and	
  “Birth_date”	
  
•  “Birthplace”	
  and	
  “Birth_place”	
  
– Instead	
  of	
  “Modeling	
  the	
  World”,	
  try	
  to	
  structure	
  
the	
  available	
  informaTon	
  
DBPedia	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
The	
  YAGO-­‐NAGA	
  Project:	
  
HarvesAng,	
  Searching,	
  and	
  Ranking	
  Knowledge	
  
from	
  the	
  Web	
  
	
  
The	
  YAGO-­‐NAGA	
  Project:	
  
HarvesAng,	
  Searching,	
  and	
  Ranking	
  
Knowledge	
  from	
  the	
  Web	
  
	
  
YAGO	
  
•  Yet	
  Another	
  Great	
  Ontology	
  -­‐	
  YAGO	
  
•  Main	
  Goal:	
  building	
  a	
  conveniently	
  searchable,	
  
large-­‐scale,	
  highly	
  accurate	
  knowledge	
  base	
  of	
  
common	
  facts	
  in	
  a	
  machine-­‐processable	
  
representaTon	
  
YAGO	
  
YAGO	
  
•  Turn	
  Web	
  into	
  Knowledge	
  Base	
  [Weikum	
  et	
  
al.,	
  2009]	
  
– Building	
  a	
  comprehensive	
  Knowledge	
  Base	
  of	
  
human	
  knowledge	
  
– knowledge	
  from	
  Wikipedia	
  and	
  WordNet	
  
– the	
  ontology	
  check	
  itself	
  for	
  precision	
  
	
  
YAGO	
  
•  The	
  knowledge	
  base	
  is	
  automaTcally	
  
constructed	
  from	
  Wikipedia	
  
•  Each	
  arTcle	
  in	
  Wikipedia	
  becomes	
  an	
  enTty	
  in	
  
the	
  kb	
  (e.g.,	
  since	
  Leonard	
  Cohen	
  has	
  an	
  
arTcle	
  in	
  Wikipedia,	
  LeonardCohen	
  becomes	
  
an	
  enTty	
  in	
  YAGO).	
  	
  
YAGO	
  
YAGO	
  
Free	
  
Text	
  
YAGO	
  
Free	
  
Text	
  
YAGO	
  
Free	
  
Text	
  
InfoBox	
  
YAGO	
  
Wikipedia	
  InfoBox	
  
YAGO	
  
Wikipedia	
  InfoBox	
  
Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
YAGO	
  
Wikipedia	
  InfoBox	
  
Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
YAGO	
  
•  Certain	
  categories	
  are	
  exploited	
  to	
  deliver	
  
type	
  informaTon	
  (e.g.,	
  the	
  arTcle	
  about	
  
Leonard	
  Cohen	
  is	
  in	
  the	
  category	
  Canadian	
  
male	
  poets,	
  so	
  he	
  becomes	
  a	
  Canadian	
  poet).	
  	
  
YAGO	
  
YAGO	
  
YAGO	
  
•  For	
  each	
  category	
  of	
  a	
  page	
  [Hoffart	
  et	
  al.,	
  2012]	
  
–  Using	
  shallow	
  parsing,	
  determine	
  the	
  head	
  word	
  of	
  the	
  
category	
  name.	
  In	
  the	
  example	
  of	
  Canadian	
  poets,	
  the	
  
head	
  word	
  is	
  poets.	
  	
  
–  If	
  the	
  head	
  word	
  is	
  in	
  plural,	
  then	
  proposes	
  the	
  category	
  as	
  
a	
  class	
  and	
  the	
  arTcle	
  enTty	
  as	
  an	
  instance	
  	
  
–  Link	
  the	
  class	
  to	
  the	
  WordNet	
  taxonomy	
  (most	
  frequent	
  
sense	
  of	
  the	
  head	
  word	
  in	
  WordNet)	
  
•  only	
  countable	
  nouns	
  can	
  appear	
  in	
  plural	
  form	
  
•  only	
  countable	
  nouns	
  can	
  be	
  ontological	
  classes	
  
•  themaTc	
  categories	
  (such	
  as	
  Canadian	
  poetry)	
  are	
  
different	
  from	
  conceptual	
  Categories	
  
YAGO	
  
•  head	
  words	
  that	
  are	
  not	
  conceptual	
  even	
  though	
  
they	
  appear	
  in	
  plural	
  (such	
  as	
  stubs	
  in	
  Canadian	
  
poetry	
  stubs)	
  are	
  in	
  the	
  first	
  list	
  of	
  excepTons.	
  	
  
•  words	
  that	
  do	
  not	
  map	
  to	
  their	
  most	
  frequent	
  
sense,	
  but	
  to	
  a	
  different	
  sense	
  are	
  in	
  the	
  second	
  
excepTon	
  list	
  
–  The	
  word	
  capital,	
  e.g.,	
  refers	
  to	
  the	
  main	
  city	
  of	
  a	
  
country	
  in	
  the	
  majority	
  of	
  cases	
  and	
  not	
  to	
  the	
  
financial	
  amount,	
  which	
  is	
  the	
  most	
  frequent	
  sense	
  in	
  
WordNet.	
  
YAGO	
  
•  About	
  100	
  manually	
  defined	
  relaTons	
  
–  wasBornOnDate	
  	
  
–  locatedIn	
  	
  
–  hasPopulaTon	
  	
  
•  Categories	
  and	
  infoboxes	
  are	
  exploited	
  to	
  deliver	
  facts	
  
(instances	
  of	
  relaTons).	
  	
  
•  Manually	
  defined	
  pa@erns	
  that	
  map	
  categories	
  and	
  
infobox	
  a@ributes	
  to	
  fact	
  templates	
  
–  infobox	
  a@ribute	
  born=Montreal,	
  thus	
  
wasBornIn(LeonardCohen,	
  Montreal)	
  	
  
•  Pa@ern-­‐based	
  extracTons	
  resulted	
  in	
  2	
  million	
  
extracted	
  enTTes	
  and	
  20	
  million	
  facts	
  
YAGO	
  
•  Based	
  on	
  declaraTve	
  rules	
  (stored	
  in	
  text	
  files)	
  
•  The	
  rules	
  take	
  the	
  form	
  of	
  subject-­‐	
  predicate-­‐
object	
  triples,	
  so	
  that	
  they	
  are	
  basically	
  
addiTonal	
  facts	
  
•  There	
  are	
  different	
  types	
  of	
  rules	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
Knowledge	
  
RepresentaTon	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
	
  
Inference	
  
	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  Knowledge	
  
RepresentaTon	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
YAGO	
  
•  Factual	
  rules:	
  	
  definiTon	
  of	
  all	
  relaTons,	
  their	
  domains	
  and	
  
ranges,	
  and	
  the	
  definiTon	
  of	
  the	
  classes	
  that	
  make	
  up	
  the	
  
YAGO	
  hierarchy	
  of	
  literal	
  types.	
  
•  ImplicaAon	
  rules:	
  express	
  that	
  if	
  certain	
  facts	
  appear	
  in	
  the	
  
knowledge	
  base,	
  then	
  another	
  fact	
  shall	
  be	
  added.	
  Horn	
  
clause	
  rules.	
  
•  Replacement	
  rules:	
  for	
  interpreTng	
  micro-­‐formats,	
  
cleaning	
  up	
  HTML	
  tags,	
  and	
  normalizing	
  numbers.	
  
•  ExtracAon	
  rules:	
  apply	
  primarily	
  to	
  pa@erns	
  found	
  in	
  the	
  
Wikipedia	
  infoboxes,	
  but	
  also	
  to	
  Wikipedia	
  categories,	
  
arTcle	
  Ttles,	
  and	
  even	
  other	
  regular	
  elements	
  in	
  the	
  source	
  
such	
  as	
  headings,	
  links,	
  or	
  references.	
  
InformaTon	
  
ExtracTon	
  
YAGO	
  
•  AutomaTcally	
  verifies	
  consistency	
  
– Check	
  uniqueness	
  of	
  funcTonal	
  arguments	
  
•  spouse(x,y)	
  ∧	
  diff(y,z)	
  ⇒	
  ¬spouse(x,z)	
  
– Check	
  domains	
  and	
  ranges	
  of	
  relaTons	
  
•  spouse(x,y)	
  ⇒	
  female(x)	
  
•  spouse(x,y)	
  ⇒	
  male(y)	
  
•  spouse(x,y)	
  ⇒	
  (f(x)∧m(y))	
  ∨	
  (m(x)∧f(y))	
  	
  
	
  
YAGO	
  
•  AutomaTcally	
  verifies	
  consistency	
  
– Hard	
  Constraint	
  
•  hasAdvisor(x,y)	
  ∧	
  graduatedInYear(x,t)	
  ∧	
  graduatedInYear(y,s)	
  ⇒	
  s	
  <	
  t	
  
– Sov	
  Constraint	
  	
  
•  firstPaper(x,p)	
  ∧	
  firstPaper(y,q)	
  ∧	
  author(p,x)	
  ∧	
  author(p,y)	
  )	
  ∧	
  	
  
	
  inYear(p)	
  >	
  inYear(q)	
  +	
  5years	
  ⇒	
  hasAdvisor(x,y)	
  [0.6]	
  
	
  
YAGO	
  
•  AutomaTcally	
  verifies	
  consistency	
  
– Hard	
  Constraint	
  
•  hasAdvisor(x,y)	
  ∧	
  graduatedInYear(x,t)	
  ∧	
  graduatedInYear(y,s)	
  ⇒	
  s	
  <	
  t	
  
– Sov	
  Constraint	
  	
  
•  firstPaper(x,p)	
  ∧	
  firstPaper(y,q)	
  ∧	
  author(p,x)	
  ∧	
  author(p,y)	
  )	
  ∧	
  	
  
	
  inYear(p)	
  >	
  inYear(q)	
  +	
  5years	
  ⇒	
  hasAdvisor(x,y)	
  [0.6]	
  
	
  
Inference	
  
YAGO	
  
•  Ontology	
  RepresentaTon	
  
– EnTTes	
  and	
  RelaTons	
  of	
  public	
  interest	
  
– Format:	
  TSV,	
  RDF,	
  XML,	
  N3,	
  Web	
  Interface	
  
– Learns	
  
•  Instances	
  and	
  pa@erns	
  from	
  Wikipedia;	
  
•  Taxonomy	
  from	
  WordNet;	
  
•  Geotags	
  informaTon	
  from	
  Geonames.	
  
YAGO	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  [Theobald	
  &	
  
Weikum,	
  2012]	
  
– Based	
  on	
  rules	
  and	
  pa@erns	
  extracted	
  from	
  
Wikipedia	
  
– DisambiguaTon	
  is	
  a	
  relevant	
  issue	
  
– Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
YAGO	
  
•  Named	
  EnTty	
  ResoluTon/ExtracTon	
  [Theobald	
  &	
  
Weikum,	
  2012]	
  
– Based	
  on	
  rules	
  and	
  pa@erns	
  extracted	
  from	
  
Wikipedia	
  
– DisambiguaTon	
  is	
  a	
  relevant	
  issue	
  
– Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
Natural	
  Language	
  
Processing	
  
Machine	
  
Learning	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
YAGO	
  
•  RelaTon	
  ExtracTon	
  [Theobald	
  &	
  Weikum,	
  2012]	
  
– Based	
  on	
  rules	
  and	
  pa@erns	
  extracted	
  from	
  
Wikipedia	
  
– Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
YAGO	
  
•  RelaTon	
  ExtracTon	
  [Theobald	
  &	
  Weikum,	
  2012]	
  
– Based	
  on	
  rules	
  and	
  pa@erns	
  extracted	
  from	
  
Wikipedia	
  
– Semi-­‐structured	
  data	
  
The	
  “Low-­‐Hanging	
  Fruit”	
  
•  Wikipedia	
  infoboxes	
  &	
  categories	
  
•  HMTL	
  lists	
  &	
  tables,	
  etc.	
  
Natural	
  Language	
  
Processing	
  
Machine	
  
Learning	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
same	
   same	
  
same	
  
same	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
   	
  	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
It’s about the disappearance forty years ago of Harriet Vanger, a young
scion of one of the wealthiest families in Sweden, and about her uncle,
determined to know the truth about what he believes was her murder.
Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby.
The old man draws Blomkvist in by promising solid evidence against Wennerström.
Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real
assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is
home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist
becomes acquainted with the members of the extended Vanger family, most of whom resent
his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik.
After discovering that Salander has hacked into his computer, he persuades her to assist
him with research. They eventually become lovers, but Blomkvist has trouble getting close
to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two
discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer.
A 24-year-old computer hacker sporting an assortment of tattoos and body piercings
supports herself by doing deep background investigations for Dragan Armansky, who, in
turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
Machine	
  Reading	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
same	
  
same	
   same	
  
same	
  
same	
  
same	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
	
  	
  
uncleOf	
  
	
  	
  
	
  	
  
owns	
  
hires	
  
	
  	
   	
  	
  
headOf	
  
This	
  slide	
  was	
  adapted	
  from	
  [Hady	
  et	
  al.,	
  2011]	
  	
  
Machine	
  Reading	
  
This	
  slide	
  was	
  taken	
  from	
  [Hoffart	
  et	
  al.,	
  2015]	
  	
  
YAGO	
  
•  YAGO2:	
  Exploring	
  and	
  Querying	
  World	
  
Knowledge	
  in	
  Time,	
  Space,	
  Context,	
  and	
  Many	
  
Languages	
  
– New	
  relaTons	
  specifically	
  designed	
  to	
  cover	
  Tme,	
  
space	
  and	
  context	
  
– Wikipedia	
  translated	
  pages	
  as	
  sources	
  for	
  other	
  
languages	
  
YAGO	
  
•  YAGO3	
  [Mahdisoltani	
  &	
  Biega	
  &	
  Suchanek,	
  2015]	
  
–  an	
  extension	
  of	
  the	
  YAGO	
  knowledge	
  base;	
  
–  built	
  from	
  the	
  Wikipedias	
  in	
  mulTple	
  languages.	
  	
  
–  fuses	
  the	
  mulTlingual	
  informaTon	
  with	
  the	
  English	
  WordNet	
  
–  categories,	
  infoboxes,	
  and	
  Wikidata,	
  to	
  learn	
  the	
  meaning	
  of	
  
infobox	
  a@ributes	
  across	
  languages	
  
–  10	
  different	
  languages	
  
–  precision	
  of	
  95%-­‐100%	
  in	
  the	
  a@ribute	
  mapping	
  
–  enlarges	
  YAGO	
  by	
  1m	
  new	
  enTTes	
  and	
  7m	
  new	
  facts.	
  	
  
YAGO	
  
•  More	
  on	
  YAGO:	
  
–  Very	
  nice	
  tutorials:	
  
•  “Knowledge	
  Bases	
  for	
  Web	
  Content	
  AnalyTcs”	
  at	
  WWW	
  
2015,	
  Florence,	
  May	
  2015.	
  
•  "SemanTc	
  Knowledge	
  Bases	
  from	
  Web	
  Sources"	
  at	
  IJCAI	
  
2011,	
  Barcelona,	
  July	
  2011	
  
"HarvesTng	
  Knowledge	
  from	
  Web	
  Data	
  and	
  Text"	
  at	
  CIKM	
  
2010,	
  Toronto,	
  October	
  2010	
  
"From	
  InformaTon	
  to	
  Knowledge:	
  HarvesTng	
  EnTTes	
  and	
  
RelaTonships	
  from	
  Web	
  Sources"	
  at	
  PODS	
  2010,	
  
Indianapolis,	
  June	
  2010	
  
–  Project	
  Website:	
  
•  h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
?X	
  <hasChild>	
  ?C	
  ?Y	
  <hasChild>	
  ?C	
  =>	
  ?X	
  <isMarriedTo>	
  ?Y	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
?X	
  <hasChild>	
  ?C	
  ?Y	
  <hasChild>	
  ?C	
  =>	
  ?X	
  <isMarriedTo>	
  ?Y	
  
Machine	
  
Learning	
  
YAGO	
  
•  More	
  on	
  YAGO	
  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)	
  
?X	
  <hasChild>	
  ?C	
  ?Y	
  <hasChild>	
  ?C	
  =>	
  ?X	
  <isMarriedTo>	
  ?Y	
  
Machine	
  
Learning	
  
Inference	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
Outline	
  
•  Machine	
  Learning	
  
•  Machine	
  Reading	
  
•  Reading	
  the	
  Web	
  
– DBPedia	
  
– YAGO	
  
– KnowItAll	
  
– NELL	
  
KnowItAll	
  
KnowItAll:	
  Open	
  InformaTon	
  ExtracTon	
  
KnowItAll:	
  Open	
  InformaTon	
  ExtracTon	
  
KnowItAll	
  
•  MoTvaTon:	
  New	
  Paradigm	
  for	
  Search	
  [Etzioni,	
  2008]	
  
–  The	
  future	
  of	
  Web	
  Search	
  
–  Read	
  the	
  Web	
  instead	
  of	
  retrieving	
  Web	
  pages	
  to	
  
perform	
  Web	
  Search	
  
KnowItAll	
  
•  InformaTon	
  ExtracTon	
  (IE)	
  +	
  tractable	
  
inference	
  	
  
–  IE(sentence)	
  =	
  who	
  did	
  what?	
  
•  speaker(P.	
  Smith,	
  ECMLPKDD2012)	
  
–  Inference	
  =	
  uncover	
  implicit	
  informaTon	
  
•  Will	
  Pi@sburgh	
  Steelers	
  be	
  champions	
  again?	
  
	
  
•  Open	
  InformaTon	
  ExtracTon	
  [Banko	
  et	
  al.,	
  2007]	
  
Open	
  InformaTon	
  ExtracTon	
  	
  
[Banko	
  et	
  al.,	
  2007]	
  
•  Open	
  IE	
  systems	
  avoid	
  specific	
  nouns	
  and	
  
verbs	
  	
  
•  Extractors	
  are	
  unlexicalized—formulated	
  only	
  
in	
  terms	
  of:	
  
–  	
  syntacTc	
  tokens	
  (e.g.,	
  part-­‐of-­‐speech	
  tags)	
  	
  
–  closed-­‐word	
  classes	
  (e.g.,	
  of,	
  in,	
  such	
  as).	
  	
  
•  Open	
  IE	
  extractors	
  focus	
  on	
  generic	
  ways	
  in	
  
which	
  relaTonships	
  are	
  expressed	
  in	
  English	
  
–  naturally	
  generalizing	
  across	
  domains.	
  
Open	
  InformaTon	
  ExtracTon	
  	
  
[Banko	
  et	
  al.,	
  2007]	
  
•  Open	
  IE	
  extractors	
  focus	
  on	
  generic	
  ways	
  in	
  
which	
  relaTonships	
  are	
  expressed	
  in	
  English	
  
–  naturally	
  generalizing	
  across	
  domains.	
  
RelaTon	
  
Discovery	
  
Open	
  InformaTon	
  ExtracTon	
  	
  
•  Open	
  IE	
  systems	
  are	
  tradiTonally	
  based	
  on	
  	
  
three	
  steps	
  [Etzioni	
  et	
  al.,	
  2011]:	
  
–  1.	
  Label:	
  Sentences	
  are	
  automaTcally	
  labeled	
  with	
  
extracTons	
  using	
  heurisTcs	
  or	
  distant	
  supervision.	
  
Unsupervised	
  
Learning	
  
Open	
  InformaTon	
  ExtracTon	
  	
  
•  Open	
  IE	
  systems	
  are	
  tradiTonally	
  based	
  on	
  	
  
three	
  steps	
  [Etzioni	
  et	
  al.,	
  2011]:	
  
–  1.	
  Label:	
  Sentences	
  are	
  automaTcally	
  labeled	
  with	
  
extracTons	
  using	
  heurisTcs	
  or	
  distant	
  supervision.	
  
–  2.	
  Learn:	
  A	
  relaTon	
  phrase	
  extractor	
  is	
  learned	
  using	
  a	
  
sequence-­‐labeling	
  graphical	
  model	
  (e.g.,	
  CRF).	
  
Supervised	
  
Learning	
  
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction
Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction

More Related Content

Viewers also liked (17)

L0102189100
L0102189100L0102189100
L0102189100
 
L012228185
L012228185L012228185
L012228185
 
F1303042428
F1303042428F1303042428
F1303042428
 
Endla soostikku matk
Endla soostikku matkEndla soostikku matk
Endla soostikku matk
 
Greence
GreenceGreence
Greence
 
vega rochat cv 2014
vega rochat cv 2014vega rochat cv 2014
vega rochat cv 2014
 
curriculam vitae
curriculam vitaecurriculam vitae
curriculam vitae
 
C012431215
C012431215C012431215
C012431215
 
E1103013743
E1103013743E1103013743
E1103013743
 
Service graphics 2015
Service graphics 2015Service graphics 2015
Service graphics 2015
 
B010421824
B010421824B010421824
B010421824
 
J012626269
J012626269J012626269
J012626269
 
I012265155
I012265155I012265155
I012265155
 
E010323842
E010323842E010323842
E010323842
 
R01741124127
R01741124127R01741124127
R01741124127
 
H011114758
H011114758H011114758
H011114758
 
vega rochat portfolio 2014
vega rochat portfolio 2014vega rochat portfolio 2014
vega rochat portfolio 2014
 

Similar to Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction

Stories About Renraku — the new Quality Model of Pharo (esug2016)
Stories About Renraku — the new Quality Model of Pharo (esug2016)Stories About Renraku — the new Quality Model of Pharo (esug2016)
Stories About Renraku — the new Quality Model of Pharo (esug2016)Yuriy Tymchuk
 
Stories About Renraku — the new Quality Model of Pharo
Stories About Renraku — the new Quality Model of PharoStories About Renraku — the new Quality Model of Pharo
Stories About Renraku — the new Quality Model of PharoESUG
 
Troubleshooting Deep Neural Networks - Full Stack Deep Learning
Troubleshooting Deep Neural Networks - Full Stack Deep LearningTroubleshooting Deep Neural Networks - Full Stack Deep Learning
Troubleshooting Deep Neural Networks - Full Stack Deep LearningSergey Karayev
 
Hpai class 16 - learning - 041320
Hpai   class 16 - learning - 041320Hpai   class 16 - learning - 041320
Hpai class 16 - learning - 041320melendez321
 
Using data science to analyse feedback for complex systems
Using data science to analyse feedback for complex systemsUsing data science to analyse feedback for complex systems
Using data science to analyse feedback for complex systemsKaren Pudner
 
CM UTaipei Kaggle Share
CM UTaipei Kaggle ShareCM UTaipei Kaggle Share
CM UTaipei Kaggle Share志明 陳
 
Machine Learning Experimentation at Sift Science
Machine Learning Experimentation at Sift ScienceMachine Learning Experimentation at Sift Science
Machine Learning Experimentation at Sift ScienceSift Science
 
Deep learning in retail london
Deep learning in retail londonDeep learning in retail london
Deep learning in retail londonDenis Troyanov
 
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...Chris Hammerschmidt
 
The deep bootstrap framework review
The deep bootstrap framework reviewThe deep bootstrap framework review
The deep bootstrap framework reviewtaeseon ryu
 
The Art Of Performance Tuning - with presenter notes!
The Art Of Performance Tuning - with presenter notes!The Art Of Performance Tuning - with presenter notes!
The Art Of Performance Tuning - with presenter notes!Jonathan Ross
 
Recommender Systems from A to Z – Model Training
Recommender Systems from A to Z – Model TrainingRecommender Systems from A to Z – Model Training
Recommender Systems from A to Z – Model TrainingCrossing Minds
 
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...Thomas Ploetz
 
CM NCCU Class2
CM NCCU Class2CM NCCU Class2
CM NCCU Class2志明 陳
 
The UNE VLE Implementation: an initial overview
The UNE VLE Implementation: an initial overviewThe UNE VLE Implementation: an initial overview
The UNE VLE Implementation: an initial overviewmylescarrick
 
Java andml may17-v1
Java andml may17-v1Java andml may17-v1
Java andml may17-v1Ferosh Jacob
 
Begin with Machine Learning
Begin with Machine LearningBegin with Machine Learning
Begin with Machine LearningNarong Intiruk
 
Scalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data MiningScalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data MiningGerard de Melo
 

Similar to Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction (20)

Stories About Renraku — the new Quality Model of Pharo (esug2016)
Stories About Renraku — the new Quality Model of Pharo (esug2016)Stories About Renraku — the new Quality Model of Pharo (esug2016)
Stories About Renraku — the new Quality Model of Pharo (esug2016)
 
Stories About Renraku — the new Quality Model of Pharo
Stories About Renraku — the new Quality Model of PharoStories About Renraku — the new Quality Model of Pharo
Stories About Renraku — the new Quality Model of Pharo
 
Troubleshooting Deep Neural Networks - Full Stack Deep Learning
Troubleshooting Deep Neural Networks - Full Stack Deep LearningTroubleshooting Deep Neural Networks - Full Stack Deep Learning
Troubleshooting Deep Neural Networks - Full Stack Deep Learning
 
Kanban in Action
Kanban in ActionKanban in Action
Kanban in Action
 
Hpai class 16 - learning - 041320
Hpai   class 16 - learning - 041320Hpai   class 16 - learning - 041320
Hpai class 16 - learning - 041320
 
Using data science to analyse feedback for complex systems
Using data science to analyse feedback for complex systemsUsing data science to analyse feedback for complex systems
Using data science to analyse feedback for complex systems
 
An Introduction to Face Detection
An Introduction to Face DetectionAn Introduction to Face Detection
An Introduction to Face Detection
 
CM UTaipei Kaggle Share
CM UTaipei Kaggle ShareCM UTaipei Kaggle Share
CM UTaipei Kaggle Share
 
Machine Learning Experimentation at Sift Science
Machine Learning Experimentation at Sift ScienceMachine Learning Experimentation at Sift Science
Machine Learning Experimentation at Sift Science
 
Deep learning in retail london
Deep learning in retail londonDeep learning in retail london
Deep learning in retail london
 
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...
Machine Learning for (DF)IR with Velociraptor: From Setting Expectations to a...
 
The deep bootstrap framework review
The deep bootstrap framework reviewThe deep bootstrap framework review
The deep bootstrap framework review
 
The Art Of Performance Tuning - with presenter notes!
The Art Of Performance Tuning - with presenter notes!The Art Of Performance Tuning - with presenter notes!
The Art Of Performance Tuning - with presenter notes!
 
Recommender Systems from A to Z – Model Training
Recommender Systems from A to Z – Model TrainingRecommender Systems from A to Z – Model Training
Recommender Systems from A to Z – Model Training
 
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...
Bridging the Gap: Machine Learning for Ubiquitous Computing -- Applied Machin...
 
CM NCCU Class2
CM NCCU Class2CM NCCU Class2
CM NCCU Class2
 
The UNE VLE Implementation: an initial overview
The UNE VLE Implementation: an initial overviewThe UNE VLE Implementation: an initial overview
The UNE VLE Implementation: an initial overview
 
Java andml may17-v1
Java andml may17-v1Java andml may17-v1
Java andml may17-v1
 
Begin with Machine Learning
Begin with Machine LearningBegin with Machine Learning
Begin with Machine Learning
 
Scalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data MiningScalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data Mining
 

Recently uploaded

Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...shivangimorya083
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxolyaivanovalion
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysismanisha194592
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceDelhi Call girls
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfRachmat Ramadhan H
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Researchmichael115558
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightDelhi Call girls
 
Zuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxZuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxolyaivanovalion
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...shambhavirathore45
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 

Recently uploaded (20)

Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...Vip Model  Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
Vip Model Call Girls (Delhi) Karol Bagh 9711199171✔️Body to body massage wit...
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort ServiceBDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
BDSM⚡Call Girls in Mandawali Delhi >༒8448380779 Escort Service
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Research
 
BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 nightCheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
Cheap Rate Call girls Sarita Vihar Delhi 9205541914 shot 1500 night
 
Zuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptxZuja dropshipping via API with DroFx.pptx
Zuja dropshipping via API with DroFx.pptx
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get CytotecAbortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
 

Machine Reading the Web: beyond Named Entity Recognition and Relation Extraction

  • 1. Estevam  R.  Hruschka  Jr.   Federal  University  of  São  Carlos   Machine Reading the Web: Beyond Named Entity Recognition and Relation Extraction  
  • 2. Disclaimers   •  Previous  versions  of  this  tutorial  were  presented  at   IBERAMIA2012  (h@p://iberamia2012.dsic.upv.es/tutorials/)   and  WWW2013  (h@p://www2013.org/program/machine-­‐ reading-­‐the-­‐web/).  Also,  a  short  version  was  presented  at   ECMLPKDD2015  Summer  School(h@p:// www.ecmlpkdd2015.org/summer-­‐school/ss-­‐schedule).   •  Feel  free  to  e-­‐mail  me  (estevam.hruschka@gmail.com)  with   quesTons  about  this  tutorial  or  any  feedback/suggesTons/ criTcisms.  Your  feedback  can  help  improving  the  quality  of   these  slides,  thus,  they  are  very  welcome.   •  As  in  many  tutorials’  slides,  these  slides  were  prepared  to  be   presented,  and  la@er  studied.  Thus,  they  are  meant  to  be   more  self-­‐contained  than  slides  from  a  paper  presentaTon.  
  • 3. Disclaimers   •  Due  to  Tme  constraints,  I  do  not  intend  to  cover  all  the   algorithms  and  publicaTons  related  to  YAGO,  KnowItAll,  NELL   and  DBPedia.  What  I  do  intend,  instead,  is  to  give  an  overview   of  all  four  projects  and  what  is  the  main  approach  to  “Read   the  Web”,  used  in  each  project.     •  YAGO,  KnowItAll,  NELL  and  DBPedia  are  not  the  only  research   efforts  focusing  on  “Reading  the  Web”.  They  were  selected,   to  be  presented  in  this  tutorial,  because  they  represent  four   different  and  very  relevant  approaches  to  this  problem,  but  it   does  not  mean  they  are  the  best  (or  the  only  relevant)  ones   at  all.  
  • 4. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – YAGO   – KnowItAll   – NELL   – DBPedia  
  • 5. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – YAGO   – KnowItAll   – NELL   – DBPedia  
  • 6. Picture  taken  from  [Fern,  2008]    
  • 7. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – YAGO   – KnowItAll   – NELL   – DBPedia  
  • 8. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – YAGO   – KnowItAll   – NELL   – DBPedia  
  • 9. Picture  taken  from  [DARPA,  2012]    
  • 10. Picture  taken  from  [DARPA,  2012]    
  • 11. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 12. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 13. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 15. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 16. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 17. The  YAGO-­‐NAGA  Project:   HarvesAng,  Searching,  and  Ranking   Knowledge  from  the  Web    
  • 18. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 19. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 22. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 23. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 25. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 26. Machine  Learning   •  What  is  Machine  Learning?   The  field  of  Machine  Learning  seeks  to  answer   the  quesTon   “How  can  we  build  computer  systems  that   automaTcally  improve  with  experience,  and   what  are  the  fundamental  laws  that  govern  all   learning  processes?”  [Mitchell,  2006]  
  • 27. Machine  Learning   •  What  is  Machine  Learning?   a  machine  learns  with  respect  to  a  parTcular:   -­‐  task  T     -­‐  performance  metric  P   -­‐  type  of  experience  E       if  the  system  reliably  improves  its  performance  P  at   task  T,  following  experience  E.  [Mitchell,  1997]  
  • 28. Machine  Learning   •  Examples  of  Machine  Learning  approaches   for  different  tasks  (T),  performance  metrics   (P)  an  experiences  (E)   -­‐  data  mining   -­‐  autonomous  discovery   -­‐  database  updaTng   -­‐  programming  by  example   -­‐  Pa@ern  recogniTon    
  • 29. Machine  Learning   •  Supervised  Learning;   •  Unsupervised  Learning   •  Semi-­‐Supervised  Learning  
  • 31. Supervised  Learning   (one  simple  anecdotal  approach)   0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2  
  • 32. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 33. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 34. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 35. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 36. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 37. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 38. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 39. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 40. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 41. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 42. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)  
  • 43. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Supervised  Learning   (one  simple  anecdotal  approach)   ?????????   What  model   should  be   chosen?   ?????????  
  • 44. 0   5   10   15   20   25   0   5   10   15   20   25   Unsupervised  Learning   (one  simple  anecdotal  approach)  
  • 45. 0   5   10   15   20   25   0   5   10   15   20   25   Unsupervised  Learning   (one  simple  anecdotal  approach)  
  • 46. 0   5   10   15   20   25   0   5   10   15   20   25   Unsupervised  Learning   (one  simple  anecdotal  approach)  
  • 47. 0   5   10   15   20   25   0   5   10   15   20   25   Unsupervised  Learning   (one  simple  anecdotal  approach)  
  • 48. 0   5   10   15   20   25   0   5   10   15   20   25   ?????????   What  model   should  be   chosen?   ?????????   Unsupervised  Learning   (one  simple  anecdotal  approach)  
  • 49. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 50. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 51. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 52. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 53. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 54. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 55. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 56. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 57. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 58. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 59. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 60. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 61. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)  
  • 62. 0   5   10   15   20   25   0   5   10   15   20   25   Series1   Series2   Unlabeled   Semi-­‐supervised  Learning   (one  simple  anecdotal  approach)   ?????????   What  model   should  be   chosen?   ?????????  
  • 63. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 64. Machine  Reading   •  “The  autonomous  understanding  of   text”  [Etzioni  et  al.,  2007]   •  “One  of  the  most  important  methods  by  which   human  beings  learn  is  by  reading”  [Clark  et  al.,   2007],  thus  why  not  building  machines  capable   of  learning  by  reading?  
  • 65. Machine  Reading   •  “The  problem  of  deciding  what  was  implied  by  a   wri@en  text,  of  reading  between  the  lines  is  the   problem  of  inference.”  [Norvig,  2007]     •  Typically,  Machine  Reading  is  different  from   Natural  Language  Processing  alone  
  • 66. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                                                                   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 67. Machine  Reading                                                       same                                               This  slide  was  adapted  from  [Hady  et  al.,  2011]     It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
  • 68. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                       same   same   same   same   same   same                                               This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 69. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                       same   same   same   same   same   same                               uncleOf           owns   hires           headOf   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 70. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                       same   same   same   same   same   same                               uncleOf           owns   hires           headOf   affairWith   affairWith   enemyOf   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 71. Machine  Reading   •  One  important  (ini6al)  approach  to  machine   reading  is  to  extract  facts  from  text  and  store   them  in  a  structured  form.   •  Facts  can  be  seen  as  enTTes  and  their   relaTons   •  Ontology  is  one  of  the  most  common   representaTon  for  the  extracted  facts    
  • 80. Machine  Reading   •  Named  EnTty  ResoluTon/RecogniTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Polysemy  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 81. Machine  Reading   •  Named  EnTty  ResoluTon/RecogniTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Polysemy  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 82. Machine  Reading   •  Named  EnTty  ResoluTon/RecogniTon   –  Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.     –  Free  text   •  Hearst-­‐pa@erns;  clustering  by  verbal  phrases   •  Natural-­‐language  processing   •  Advanced  pa@erns  &  iteraTve  bootstrapping    (“Dual  IteraTve  Pa@ern  RelaTon  ExtracTon”)  
  • 83. Named  EnTty  RecogniTon   •  Named  EnTty  RecogniTon  [Nadeau  &  Sekine,   2007]   – term  “Named  EnTty”  coined  for  the  Sixth  Message   Understanding  Conference  (MUC-­‐6)  (R.  Grishman   &  Sundheim  1996).     – important  sub-­‐tasks  of  IE  called  “Named  EnTty   RecogniTon  and  ClassificaTon  (NERC)”.  
  • 84. •  recognize  informaTon  units  like  names,   including  person,  organizaAon  and  locaAon   names,  and  numeric  expressions  including   Ame,  date,  money  and  percent  expressions.   •  In  Machine  Reading,  many  other  enTTes:   product,  kitchen  item,  sport,  etc.   Named  EnTty  RecogniTon   [Nadeau  &  Sekine,  2007]  
  • 85. •  Named  EnTty  ResoluTon  [Theobald  &  Weikum,   2012]   – Which  individual  enTTes  belong  to  which  classes?   •  instanceOf  (Surajit  Chaudhuri,  computer  scien6sts),   •  instanceOf  (BarbaraLiskov,  computer  scien6sts),   •  instanceOf  (Barbara  Liskov,  female  humans),  …   Named  EnTty  ResoluTon  
  • 86. •  Named  EnTTes  RecogniTon  as  a  machine   learning  task.   – Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier   Named  EnTty  RecogniTon  
  • 87. •  Named  EnTty  RecogniTon  as  a  Machine  Learning  task.   –  Supervised  Learning   –  Possible  features  [RaTnov  &  Roth,  2009],  [Khambhatla,   2004],  [Zhou  et.  al.  2005]   •   Words  “around”  and  including  enTTes     •  POS  (Part-­‐Of-­‐Speech)   •  Prefixes  and  suffixes   •  CapitalizaTon   •  Number  of  words   •  Number  of  characters   •  First  word,  last  word   •  gaze@eer  matches       Named  EnTty  RecogniTon  
  • 88. •  Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier   Named  EnTty  RecogniTon  
  • 89. •  Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier   Kernels   Named  EnTty  RecogniTon  
  • 90. •  Supervised  Learning  using  Kernels   – A  Kernel  defines  similarity  implicitly  in  a  higher   dimensional  space     – Can  be  based  on  Strings,  Word  Sequences,  Parse   Trees,  etc.   •  For  strings  similarity∝  number  of  common  substrings   (or  subsequences)     •  Recommended  reading  on  string  kernels  [Lodhi  et.  al.,   2002]       Named  EnTty  RecogniTon  [Bach  &  Badaskar,  2007]  
  • 91. [Bach  &  Badaskar,  2007]   Named  EnTty  RecogniTon  
  • 92. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     Set  of   labeled  Pa@ern   Examples   Named  EnTty  RecogniTon  
  • 93. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon  
  • 94. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon  
  • 95. Set  of  labeled  Instances     •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon  
  • 96. Set  of  labeled  Instances     •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon   Google   Apple  
  • 97.   Set  of  labeled  Instances       •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon   Google   Apple   NE   Pa@ern   Classifier  
  • 98.   Set  of  labeled  Instances       •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in    is  the  CEO  of  X     Named  EnTty  RecogniTon   Google   Apple   NE   Pa@ern   Classifier   What  about   unsupervised?  
  • 99.   Set  of  labeled  Instances       •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   Named  EnTty  RecogniTon   NE   Pa@ern   Classifier   What  about   unsupervised?  
  • 100.   Set  of  labeled  Instances       •  Unsupervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  NE  instances.     NE   Instances   Classifier   Set  of   labeled  Pa@ern   Examples   Named  EnTty  RecogniTon   NE   Pa@ern   Classifier  
  • 101. •  [RaTnov  &  Roth,  2009]   Named  EnTty  RecogniTon  
  • 102. •  [Pennington  &  Socher  &  Manning,  2014]   Named  EnTty  RecogniTon  
  • 103. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Polysemy  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 104. Machine  Reading   •  RelaTon  ExtracTon   –  Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.     –  Free  text   •  Hearst-­‐pa@erns;  clustering  by  verbal  phrases   •  Natural-­‐language  processing   •  Advanced  pa@erns  &  iteraTve  bootstrapping    (“Dual  IteraTve  Pa@ern  RelaTon  ExtracTon”)  
  • 105. Machine  Reading   •  RelaTon  ExtracTon  [Theobald  &  Weikum,  2012]   –  Which  instances  (pairs  of  individual  enTTes)  are  there   for  given  binary  relaTons  with  specific  type   signatures?   •  hasAdvisor  (JimGray,  MikeHarrison)   •  hasAdvisor  (HectorGarcia-­‐Molina,  Gio  Wiederhold)   •  hasAdvisor  (Susan  Davidson,  Hector  Garcia-­‐Molina)   •  graduatedAt  (JimGray,  Berkeley)   •  graduatedAt  (HectorGarcia-­‐Molina,  Stanford)   •  hasWonPrize  (JimGray,  TuringAward)   •  bornOn  (JohnLennon,  9Oct1940)   •  diedOn  (JohnLennon,  8Dec1980)   •  marriedTo  (JohnLennon,  YokoOno)  
  • 106. RelaTon  ExtracTon   •  ExtracTng  semanTc  relaTons  between  enTTes   in  text   •  RelaTon  extracTon  as  a  Machine  Learning  task.   – Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier   [Bach  &  Badaskar,  2007]  
  • 107. RelaTon  ExtracTon   •  RelaTon  extracTon  as  a  Machine  Learning  task.   –  Supervised  Learning   –  Possible  features  [Khambhatla,  2004],  [Zhou  et.  al.   2005]   •   Words  between  and  including  enTTes     •  Types  of  enTTes  (person,  locaTon,  etc)     •  Number  of  enTTes  between  the  two  enTTes,  whether  both   enTTes  belong  to  same  chunk     •  #  words  separaTng  the  two  enTTes     •  Path  between  the  two  enTTes  in  a  parse  tree       [Bach  &  Badaskar,  2007]  
  • 108. RelaTon  ExtracTon   •  ExtracTng  semanTc  relaTons  between  enTTes   in  text   •  RelaTon  extracTon  as  a  classificaTon  task.   – Supervised  Learning     NLP  tools   (POS,  Parse   Trees,  NER)   text   Features   ExtracTon   Classifier   [Bach  &  Badaskar,  2007]  
  • 109. RelaTon  ExtracTon   •  ExtracTng  semanTc  relaTons  between  enTTes   in  text   •  RelaTon  extracTon  as  a  classificaTon  task.   – Supervised  Learning     NLP  tools   (POS,  Parse   Trees,  NER)   text   Features   ExtracTon   Classifier   Kernels   [Bach  &  Badaskar,  2007]  
  • 110. RelaTon  ExtracTon   •  Supervised  Learning  using  Kernels   – A  Kernel  defines  similarity  implicitly  in  a  higher   dimensional  space     – Can  be  based  on  Strings,  Word  Sequences,  Parse   Trees,  etc.   •  For  strings,  similarity∝  number  of  common  substrings   (or  subsequences)     •  Recommended  reading  on  string  kernels  [Lodhi  et.  al.,   2002]       [Bach  &  Badaskar,  2007]  
  • 111. RelaTon  ExtracTon  [Bach  &  Badaskar,  2007]  
  • 112. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples  
  • 113. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X    
  • 114. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X     Pair  of   Instances   Classifier  
  • 115. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.       Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X     Pair  of   Instances   Classifier  
  • 116. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Pair  of   Instances   Classifier     Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X     Google-­‐Mountain  View   Apple-­‐CuperAno  
  • 117. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.       Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X     Google-­‐Mountain  View   Apple-­‐CuperAno   Pair  of   Instances   Classifier  
  • 118. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.       Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   X  is  headquartered  in  Y   Y  is  the  headquarter  of  X     Google-­‐Mountain  View   Apple-­‐CuperAno   Pair  of   Instances   Classifier   What  about   unsupervised?  
  • 119. RelaTon  ExtracTon   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.       Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier   What  about   unsupervised?  
  • 120. RelaTon  ExtracTon   •  Unsupervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.       Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier  
  • 121. •  Supervised  learning  [Bunescu  &  Mooney,  2005]   •  Distant  and  ParTal  Supervised  [Angeli  &   Tibshirani  &  Wu  &  Manning,  2014]   RelaTon  ExtracTon  
  • 122. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Polysemy  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 123. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  taken  from:  h@p://nlp.stanford.edu/projects/coref.shtml    
  • 124. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  taken  from:  h@p://nlp.stanford.edu/projects/coref.shtml     within-document co-reference
  • 125. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  taken  from:  h@p://nlp.stanford.edu/projects/coref.shtml     within-document co-reference
  • 126. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  adapted  from  [Krishnamurthy  &  Mitchell,  2011]   apple   computer     Apple   Computer    
  • 127. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  adapted  from  [Krishnamurthy  &  Mitchell,  2011]   apple   apple   computer     Apple   Computer    
  • 128. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the   same  enTty   Example  (figure)  adapted  from  [Krishnamurthy  &  Mitchell,  2011]   apple   apple   computer     Apple   Computer     cross-document co-reference
  • 129. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference:  expressions  that  refer  to  the  same   enTty   •  Which  names  denote  which  enTTes?  [Theobald   &  Weikum,  2012]   –  means  (“Lady  Di“,  Diana  Spencer),   –  means  (“Diana  Frances  Mountba@en-­‐Windsor”,  Diana   Spencer),  …   –  means  (“Madonna“,  Madonna  Louise  Ciccone),   –  means  (“Madonna“,  Madonna(painTng  by  Edward   Munch)),  …   cross-document co-reference
  • 130. Co-­‐Reference  and  Polysemy  ResoluTon   •  Polysemy:  is  the  capacity  for  a  sign  (such  as  a   word,  phrase,  or  symbol)  to  have  mulTple   meanings  [Wikipedia]  
  • 131. Co-­‐Reference  and  Polysemy  ResoluTon   •  Polysemy:  is  the  capacity  for  a  sign  (such  as  a   word,  phrase,  or  symbol)  to  have  mulTple   meanings  [Wikipedia]   Example  (figure)  adapted  from  [Krishnamurthy  &  Mitchell,  2011]   apple   apple     (the  fruit)   Apple   Computer    
  • 132. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐Reference  and  Polysemy   Example  (figure)  adapted  from  [Krishnamurthy  &  Mitchell,  2011]   apple   apple   computer     apple     (the  fruit)   Apple   Computer    
  • 133. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference  and  Polysemy:     – Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier  
  • 134. •  Co-­‐Reference   ResoluTon.   – Supervised   Learning   – Possible   features   [Bengtson  &   Roth,  2008]     Co-­‐Reference  and  Polysemy  ResoluTon  
  • 135. •  Co-­‐Reference   ResoluTon.   – Supervised   Learning   – Possible   features   [Bengtson  &   Roth,  2008]     Co-­‐Reference  and  Polysemy  ResoluTon  
  • 136. Co-­‐Reference  and  Polysemy  ResoluTon   •  Co-­‐reference  and  Polysemy:     – Supervised  Learning     NLP  tools   (POS,  Parse   Trees)   text   Features   ExtracTon   Classifier   Kernels  
  • 137. •  Supervised  Learning  using  Kernels   – A  Kernel  defines  similarity  implicitly  in  a  higher   dimensional  space     – Can  be  based  on  Strings,  Word  Sequences,  Parse   Trees,  etc.   •  For  strings  similarity∝  number  of  common  substrings   (or  subsequences)     •  Recommended  reading  on  string  kernels  [Lodhi  et.  al.,   2002]       Co-­‐Reference  and  Polysemy  ResoluTon  
  • 138. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples   Co-­‐Reference  and  Polysemy  ResoluTon  
  • 139. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples   X  also  know  as  Y     Co-­‐Reference  and  Polysemy  ResoluTon  
  • 140. •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Set  of   labeled  Pa@ern   Examples   Pair  of   Instances   Classifier   Co-­‐Reference  and  Polysemy  ResoluTon   X  also  know  as  Y    
  • 141.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pair  of   Instances   Classifier   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon   X  also  know  as  Y    
  • 142. Pair  of   Instances   Classifier     Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Apple  Computer  -­‐   Apple   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon   X  also  know  as  Y    
  • 143.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon   Apple  Computer  -­‐   Apple   X  also  know  as  Y    
  • 144.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon   Apple  Computer  -­‐   Apple   X  also  know  as  Y     What  about   unsupervised?  
  • 145.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon   What  about   unsupervised?  
  • 146.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   Pa@ern   Classifier   Pair  of   Instances   Classifier   •  Semi-­‐supervised   Approaches     – Bootstrap  can   generate  a  large   number  of  pa@erns   and  relaTon   instances.     Co-­‐Reference  and  Polysemy  ResoluTon  
  • 147. •  Co-­‐Reference  ResoluTon:     [Singh  et  al.,  2011],  [Krishnamurthy  &  Mitchell,   2011],[Du@a  &  Weikum,  2015]   •  Polysemy  ResoluTon:   [Krishnamurthy  &  Mitchell,  2011],  [Galárraga  et   al.,    2014]   Co-­‐Reference  and  Polysemy  ResoluTon  
  • 148. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Synonym  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 149. Machine  Reading   •  RelaTon  Discovery   – Which  new  relaTons  are  there  for  given  pair  of   enTTes?   •  hasAdvisor  (JimGray,  MikeHarrison)  
  • 150. Machine  Reading   •  RelaTon  Discovery   – Which  new  relaTons  are  there  for  given  pair  of   enTTes?   •  hasAdvisor  (JimGray,  MikeHarrison)   •  hasCoAuthor(HectorGarcia-­‐Molina,  Gio  Wiederhold)  
  • 151. Machine  Reading   •  RelaTon  Discovery   – Which  new  relaTons  are  there  for  given  pair  of   enTTes?   •  hasAdvisor  (JimGray,  MikeHarrison)   •  hasCoAuthor(HectorGarcia-­‐Molina,  Gio  Wiederhold)   •  graduatedAt  (JimGray,  Berkeley)  
  • 152. Machine  Reading   •  RelaTon  Discovery   – Which  new  relaTons  are  there  for  given  pair  of   enTTes?   •  hasAdvisor  (JimGray,  MikeHarrison)   •  hasCoAuthor(HectorGarcia-­‐Molina,  Gio  Wiederhold)   •  graduatedAt  (JimGray,  Berkeley)   •  studiedAt  (HectorGarcia-­‐Molina,  Stanford)   •  bornOn  (JohnLennon,  9Oct1940)   •  releasedAlbum  (JohnLennon,  10Dec1965)  
  • 153.   Set  of  labeled  pairs  of   Instances  Examples     Set  of   labeled  Pa@ern   Examples   RelaTon  Discovery   Clustering   Algorithm  
  • 154. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Synonym  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 155. Inference   •  Inference  is  the  act  or  process  of  deriving   logical  conclusions  from  premises  known  or   assumed  to  be  true  [Wikipedia]  
  • 156. Inference   •  Manually  craved  inference  rules   •  AutomaTcally  learned  inference  rules   •  Data  mining  the  Knowledge  Base  
  • 157. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Synonym  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 158. Machine  Reading   •  Ontology  RepresentaTon    Facts  (RDF  triples)   1:  (Jim,  hasAdvisor,  Mike)   2:  (Surajit,  hasAdvisor,  Jeff)   3:  (Madonna,  marriedTo,  GuyRitchie)   4:  (Nicolas,  marriedTo,  Carla)   5:  (ManchesterU,  wonCup,  ChampionsLeague)   ReificaTon:   “Facts  about  Facts”:   6:      (1,  inYear,  1968)   7:      (2,  inYear,  2006)   8:      (3,  validFrom,  22-­‐Dec-­‐2000)     9:      (3,  validUnTl,  Nov-­‐2008)   10:  (4,  validFrom,  2-­‐Feb-­‐2008)   11:  (2,  source,  SigmodRecord)   12:  (5,  inYear,  1999)   13:  (5,  locaTon,  CampNou)   14:  (5,  source,  Wikipedia)  
  • 159. Machine  Reading   •  Named  EnTty  ResoluTon/ExtracTon   •  RelaTon  ExtracTon   •  Co-­‐reference  and  Synonym  ResoluTon   •  RelaTon  Discovery   •  Inference   •  Knowledge  Base  RepresentaTon   •  Document/Sentence  Understanding  (Micro-­‐ Reading)  
  • 160. Document/Sentence  UnderstanTng     (MicroRead)   •  “The  scienTst  observed  the  bu@erfly  with  the   blue  circle”      
  • 161. Document/Sentence  UnderstanTng     (MicroRead)   •  “The  scienTst  observed  the  bu[erfly  with  the   blue  circle”      
  • 162. Document/Sentence  UnderstanTng     (MicroRead)   •  “The  scienTst  observed  the  bu[erfly  with  the   blue  circle”       •  “The  scienTst  observed  the  bu@erfly  with  the   blue  microscope”  
  • 163. Document/Sentence  UnderstanTng     (MicroRead)   •  “The  scienTst  observed  the  bu[erfly  with  the   blue  circle”       •  “The  scienAst  observed  the  bu@erfly  with  the   blue  microscope”  
  • 164. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 165. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 167. DBPedia   Mapping  Wikipedia  semi-­‐structured  data  into  RDF  triples  
  • 168. DBPedia   Mapping  Wikipedia  semi-­‐structured  data  into  RDF  triples   Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”  
  • 169. DBPedia   •  How  to  Read  Wikipedia  Semi-­‐structured  data?   [Lehmann  et  al.,  2014]   – Parse  Wikipedia  Markup  language   – Overcome  the  lack  of  standard  problem   •  Same  properTes  might  have  different  names   •  “Datebirth”  and  “Birth_date”   •  “Birthplace”  and  “Birth_place”   – Instead  of  “Modeling  the  World”,  try  to  structure   the  available  informaTon  
  • 171. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 172. The  YAGO-­‐NAGA  Project:   HarvesAng,  Searching,  and  Ranking  Knowledge   from  the  Web    
  • 173. The  YAGO-­‐NAGA  Project:   HarvesAng,  Searching,  and  Ranking   Knowledge  from  the  Web    
  • 174. YAGO   •  Yet  Another  Great  Ontology  -­‐  YAGO   •  Main  Goal:  building  a  conveniently  searchable,   large-­‐scale,  highly  accurate  knowledge  base  of   common  facts  in  a  machine-­‐processable   representaTon  
  • 176. YAGO   •  Turn  Web  into  Knowledge  Base  [Weikum  et   al.,  2009]   – Building  a  comprehensive  Knowledge  Base  of   human  knowledge   – knowledge  from  Wikipedia  and  WordNet   – the  ontology  check  itself  for  precision    
  • 177. YAGO   •  The  knowledge  base  is  automaTcally   constructed  from  Wikipedia   •  Each  arTcle  in  Wikipedia  becomes  an  enTty  in   the  kb  (e.g.,  since  Leonard  Cohen  has  an   arTcle  in  Wikipedia,  LeonardCohen  becomes   an  enTty  in  YAGO).    
  • 181. YAGO   Free   Text   InfoBox  
  • 183. YAGO   Wikipedia  InfoBox   Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”  
  • 184. YAGO   Wikipedia  InfoBox   Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”  
  • 185. YAGO   •  Certain  categories  are  exploited  to  deliver   type  informaTon  (e.g.,  the  arTcle  about   Leonard  Cohen  is  in  the  category  Canadian   male  poets,  so  he  becomes  a  Canadian  poet).    
  • 188. YAGO   •  For  each  category  of  a  page  [Hoffart  et  al.,  2012]   –  Using  shallow  parsing,  determine  the  head  word  of  the   category  name.  In  the  example  of  Canadian  poets,  the   head  word  is  poets.     –  If  the  head  word  is  in  plural,  then  proposes  the  category  as   a  class  and  the  arTcle  enTty  as  an  instance     –  Link  the  class  to  the  WordNet  taxonomy  (most  frequent   sense  of  the  head  word  in  WordNet)   •  only  countable  nouns  can  appear  in  plural  form   •  only  countable  nouns  can  be  ontological  classes   •  themaTc  categories  (such  as  Canadian  poetry)  are   different  from  conceptual  Categories  
  • 189. YAGO   •  head  words  that  are  not  conceptual  even  though   they  appear  in  plural  (such  as  stubs  in  Canadian   poetry  stubs)  are  in  the  first  list  of  excepTons.     •  words  that  do  not  map  to  their  most  frequent   sense,  but  to  a  different  sense  are  in  the  second   excepTon  list   –  The  word  capital,  e.g.,  refers  to  the  main  city  of  a   country  in  the  majority  of  cases  and  not  to  the   financial  amount,  which  is  the  most  frequent  sense  in   WordNet.  
  • 190. YAGO   •  About  100  manually  defined  relaTons   –  wasBornOnDate     –  locatedIn     –  hasPopulaTon     •  Categories  and  infoboxes  are  exploited  to  deliver  facts   (instances  of  relaTons).     •  Manually  defined  pa@erns  that  map  categories  and   infobox  a@ributes  to  fact  templates   –  infobox  a@ribute  born=Montreal,  thus   wasBornIn(LeonardCohen,  Montreal)     •  Pa@ern-­‐based  extracTons  resulted  in  2  million   extracted  enTTes  and  20  million  facts  
  • 191. YAGO   •  Based  on  declaraTve  rules  (stored  in  text  files)   •  The  rules  take  the  form  of  subject-­‐  predicate-­‐ object  triples,  so  that  they  are  basically   addiTonal  facts   •  There  are  different  types  of  rules  
  • 192. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  
  • 193. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  
  • 194. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.   Knowledge   RepresentaTon  
  • 195. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  
  • 196. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.     Inference    
  • 197. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  
  • 198. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  Knowledge   RepresentaTon  
  • 199. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.  
  • 200. YAGO   •  Factual  rules:    definiTon  of  all  relaTons,  their  domains  and   ranges,  and  the  definiTon  of  the  classes  that  make  up  the   YAGO  hierarchy  of  literal  types.   •  ImplicaAon  rules:  express  that  if  certain  facts  appear  in  the   knowledge  base,  then  another  fact  shall  be  added.  Horn   clause  rules.   •  Replacement  rules:  for  interpreTng  micro-­‐formats,   cleaning  up  HTML  tags,  and  normalizing  numbers.   •  ExtracAon  rules:  apply  primarily  to  pa@erns  found  in  the   Wikipedia  infoboxes,  but  also  to  Wikipedia  categories,   arTcle  Ttles,  and  even  other  regular  elements  in  the  source   such  as  headings,  links,  or  references.   InformaTon   ExtracTon  
  • 201. YAGO   •  AutomaTcally  verifies  consistency   – Check  uniqueness  of  funcTonal  arguments   •  spouse(x,y)  ∧  diff(y,z)  ⇒  ¬spouse(x,z)   – Check  domains  and  ranges  of  relaTons   •  spouse(x,y)  ⇒  female(x)   •  spouse(x,y)  ⇒  male(y)   •  spouse(x,y)  ⇒  (f(x)∧m(y))  ∨  (m(x)∧f(y))      
  • 202. YAGO   •  AutomaTcally  verifies  consistency   – Hard  Constraint   •  hasAdvisor(x,y)  ∧  graduatedInYear(x,t)  ∧  graduatedInYear(y,s)  ⇒  s  <  t   – Sov  Constraint     •  firstPaper(x,p)  ∧  firstPaper(y,q)  ∧  author(p,x)  ∧  author(p,y)  )  ∧      inYear(p)  >  inYear(q)  +  5years  ⇒  hasAdvisor(x,y)  [0.6]    
  • 203. YAGO   •  AutomaTcally  verifies  consistency   – Hard  Constraint   •  hasAdvisor(x,y)  ∧  graduatedInYear(x,t)  ∧  graduatedInYear(y,s)  ⇒  s  <  t   – Sov  Constraint     •  firstPaper(x,p)  ∧  firstPaper(y,q)  ∧  author(p,x)  ∧  author(p,y)  )  ∧      inYear(p)  >  inYear(q)  +  5years  ⇒  hasAdvisor(x,y)  [0.6]     Inference  
  • 204. YAGO   •  Ontology  RepresentaTon   – EnTTes  and  RelaTons  of  public  interest   – Format:  TSV,  RDF,  XML,  N3,  Web  Interface   – Learns   •  Instances  and  pa@erns  from  Wikipedia;   •  Taxonomy  from  WordNet;   •  Geotags  informaTon  from  Geonames.  
  • 205. YAGO   •  Named  EnTty  ResoluTon/ExtracTon  [Theobald  &   Weikum,  2012]   – Based  on  rules  and  pa@erns  extracted  from   Wikipedia   – DisambiguaTon  is  a  relevant  issue   – Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.  
  • 206. YAGO   •  Named  EnTty  ResoluTon/ExtracTon  [Theobald  &   Weikum,  2012]   – Based  on  rules  and  pa@erns  extracted  from   Wikipedia   – DisambiguaTon  is  a  relevant  issue   – Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.   Natural  Language   Processing   Machine   Learning  
  • 207. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                                                       This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 208. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                                                                   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 209. YAGO   •  RelaTon  ExtracTon  [Theobald  &  Weikum,  2012]   – Based  on  rules  and  pa@erns  extracted  from   Wikipedia   – Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.  
  • 210. YAGO   •  RelaTon  ExtracTon  [Theobald  &  Weikum,  2012]   – Based  on  rules  and  pa@erns  extracted  from   Wikipedia   – Semi-­‐structured  data   The  “Low-­‐Hanging  Fruit”   •  Wikipedia  infoboxes  &  categories   •  HMTL  lists  &  tables,  etc.   Natural  Language   Processing   Machine   Learning  
  • 211. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                                                                   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 212. Machine  Reading                                                       same                                               This  slide  was  adapted  from  [Hady  et  al.,  2011]     It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill."
  • 213. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                       same   same   same   same   same   same                                               This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 214. It’s about the disappearance forty years ago of Harriet Vanger, a young scion of one of the wealthiest families in Sweden, and about her uncle, determined to know the truth about what he believes was her murder. Blomkvist visits Henrik Vanger at his estate on the tiny island of Hedeby. The old man draws Blomkvist in by promising solid evidence against Wennerström. Blomkvist agrees to spend a year writing the Vanger family history as a cover for the real assignment: the disappearance of Vanger's niece Harriet some 40 years earlier. Hedeby is home to several generations of Vangers, all part owners in Vanger Enterprises. Blomkvist becomes acquainted with the members of the extended Vanger family, most of whom resent his presence. He does, however, start a short lived affair with Cecilia, the niece of Henrik. After discovering that Salander has hacked into his computer, he persuades her to assist him with research. They eventually become lovers, but Blomkvist has trouble getting close to Lisbeth who treats virtually everyone she meets with hostility. Ultimately the two discover that Harriet's brother Martin, CEO of Vanger Industries, is secretly a serial killer. A 24-year-old computer hacker sporting an assortment of tattoos and body piercings supports herself by doing deep background investigations for Dragan Armansky, who, in turn, worries that Lisbeth Salander is “the perfect victim for anyone who wished her ill." Machine  Reading                                                       same   same   same   same   same   same                               uncleOf           owns   hires           headOf   This  slide  was  adapted  from  [Hady  et  al.,  2011]    
  • 215. Machine  Reading   This  slide  was  taken  from  [Hoffart  et  al.,  2015]    
  • 216. YAGO   •  YAGO2:  Exploring  and  Querying  World   Knowledge  in  Time,  Space,  Context,  and  Many   Languages   – New  relaTons  specifically  designed  to  cover  Tme,   space  and  context   – Wikipedia  translated  pages  as  sources  for  other   languages  
  • 217. YAGO   •  YAGO3  [Mahdisoltani  &  Biega  &  Suchanek,  2015]   –  an  extension  of  the  YAGO  knowledge  base;   –  built  from  the  Wikipedias  in  mulTple  languages.     –  fuses  the  mulTlingual  informaTon  with  the  English  WordNet   –  categories,  infoboxes,  and  Wikidata,  to  learn  the  meaning  of   infobox  a@ributes  across  languages   –  10  different  languages   –  precision  of  95%-­‐100%  in  the  a@ribute  mapping   –  enlarges  YAGO  by  1m  new  enTTes  and  7m  new  facts.    
  • 218. YAGO   •  More  on  YAGO:   –  Very  nice  tutorials:   •  “Knowledge  Bases  for  Web  Content  AnalyTcs”  at  WWW   2015,  Florence,  May  2015.   •  "SemanTc  Knowledge  Bases  from  Web  Sources"  at  IJCAI   2011,  Barcelona,  July  2011   "HarvesTng  Knowledge  from  Web  Data  and  Text"  at  CIKM   2010,  Toronto,  October  2010   "From  InformaTon  to  Knowledge:  HarvesTng  EnTTes  and   RelaTonships  from  Web  Sources"  at  PODS  2010,   Indianapolis,  June  2010   –  Project  Website:   •  h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/  
  • 219. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)  
  • 220. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)  
  • 221. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)  
  • 222. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)   ?X  <hasChild>  ?C  ?Y  <hasChild>  ?C  =>  ?X  <isMarriedTo>  ?Y  
  • 223. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)   ?X  <hasChild>  ?C  ?Y  <hasChild>  ?C  =>  ?X  <isMarriedTo>  ?Y   Machine   Learning  
  • 224. YAGO   •  More  on  YAGO  (h[p://www.mpi-­‐inf.mpg.de/yago-­‐naga/)   ?X  <hasChild>  ?C  ?Y  <hasChild>  ?C  =>  ?X  <isMarriedTo>  ?Y   Machine   Learning   Inference  
  • 225. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 226. Outline   •  Machine  Learning   •  Machine  Reading   •  Reading  the  Web   – DBPedia   – YAGO   – KnowItAll   – NELL  
  • 230. KnowItAll   •  MoTvaTon:  New  Paradigm  for  Search  [Etzioni,  2008]   –  The  future  of  Web  Search   –  Read  the  Web  instead  of  retrieving  Web  pages  to   perform  Web  Search  
  • 231. KnowItAll   •  InformaTon  ExtracTon  (IE)  +  tractable   inference     –  IE(sentence)  =  who  did  what?   •  speaker(P.  Smith,  ECMLPKDD2012)   –  Inference  =  uncover  implicit  informaTon   •  Will  Pi@sburgh  Steelers  be  champions  again?     •  Open  InformaTon  ExtracTon  [Banko  et  al.,  2007]  
  • 232. Open  InformaTon  ExtracTon     [Banko  et  al.,  2007]   •  Open  IE  systems  avoid  specific  nouns  and   verbs     •  Extractors  are  unlexicalized—formulated  only   in  terms  of:   –   syntacTc  tokens  (e.g.,  part-­‐of-­‐speech  tags)     –  closed-­‐word  classes  (e.g.,  of,  in,  such  as).     •  Open  IE  extractors  focus  on  generic  ways  in   which  relaTonships  are  expressed  in  English   –  naturally  generalizing  across  domains.  
  • 233. Open  InformaTon  ExtracTon     [Banko  et  al.,  2007]   •  Open  IE  extractors  focus  on  generic  ways  in   which  relaTonships  are  expressed  in  English   –  naturally  generalizing  across  domains.   RelaTon   Discovery  
  • 234. Open  InformaTon  ExtracTon     •  Open  IE  systems  are  tradiTonally  based  on     three  steps  [Etzioni  et  al.,  2011]:   –  1.  Label:  Sentences  are  automaTcally  labeled  with   extracTons  using  heurisTcs  or  distant  supervision.   Unsupervised   Learning  
  • 235. Open  InformaTon  ExtracTon     •  Open  IE  systems  are  tradiTonally  based  on     three  steps  [Etzioni  et  al.,  2011]:   –  1.  Label:  Sentences  are  automaTcally  labeled  with   extracTons  using  heurisTcs  or  distant  supervision.   –  2.  Learn:  A  relaTon  phrase  extractor  is  learned  using  a   sequence-­‐labeling  graphical  model  (e.g.,  CRF).   Supervised   Learning