SlideShare a Scribd company logo
1 of 20
Download to read offline
MRF6S18100NR1 MRF6S18100NBR1
1
RF Device Data
Freescale Semiconductor
RF Power Field Effect Transistors
N-Channel Enhancement-Mode Lateral MOSFETs
Designed for GSM and GSM EDGE base station applications with
frequencies from 1800 to 2000 MHz. Suitable for TDMA, CDMA and
multicarrier amplifier applications.
GSM Application
• Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout =
100 Watts, Full Frequency Band (1805-1880 MHz or 1930-1990 MHz)
Power Gain — 14.5 dB
Drain Efficiency — 49%
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA,
Pout = 40 Watts Avg., Full Frequency Band (1805-1880 MHz or
1930-1990 MHz)
Power Gain — 15 dB
Drain Efficiency — 35%
Spectral Regrowth @ 400 kHz Offset = -63 dBc
Spectral Regrowth @ 600 kHz Offset = -76 dBc
EVM — 2% rms
• Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW
Output Power
Features
• Characterized with Series Equivalent Large-Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• Designed for Lower Memory Effects and Wide Instantaneous Bandwidth
Applications
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
Table 1. Maximum Ratings
Rating Symbol Value Unit
Drain-Source Voltage VDSS -0.5, +68 Vdc
Gate-Source Voltage VGS -0.5, +12 Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD 343
1.96
W
W/°C
Storage Temperature Range Tstg - 65 to +175 °C
Operating Junction Temperature TJ 200 °C
Table 2. Thermal Characteristics
Characteristic Symbol Value(1,2) Unit
Thermal Resistance, Junction to Case
Case Temperature 80°C, 100 CW
Case Temperature 77°C, 40 CW
RθJC
0.51
0.62
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
Document Number: MRF6S18100N
Rev. 1, 5/2006
Freescale Semiconductor
Technical Data
MRF6S18100NR1
MRF6S18100NBR1
1805-1990 MHz, 100 W, 28 V
GSM/GSM EDGE
LATERAL N-CHANNEL
RF POWER MOSFETs
CASE 1486-03, STYLE 1
TO-270 WB-4
MRF6S18100NR1
CASE 1484-04, STYLE 1
TO-272 WB-4
MRF6S18100NBR1
© Freescale Semiconductor, Inc., 2006. All rights reserved.
2
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
Table 3. ESD Protection Characteristics
Test Methodology Class
Human Body Model (per JESD22-A114) 1B (Minimum)
Machine Model (per EIA/JESD22-A115) A (Minimum)
Charge Device Model (per JESD22-C101) IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology Rating Package Peak Temperature Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020 3 260 °C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
Off Characteristics
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS — — 10 μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS — — 1 μAdc
Gate-Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS — — 500 nAdc
On Characteristics
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 330 μAdc)
VGS(th) 1.6 2 3 Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 900 mAdc, Measured in Functional Test)
VGS(Q) 1.5 2.8 3.5 Vdc
Drain-Source On-Voltage
(VGS = 10 Vdc, ID = 3.3 Adc)
VDS(on) — 0.24 — Vdc
Forward Transconductance
(VDS = 10 Vdc, ID = 3.3 Adc)
gfs — 5.3 — S
Dynamic Characteristics(1)
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss — 1.5 — pF
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1930-1990 MHz
Power Gain Gps 13 14.5 16 dB
Drain Efficiency ηD 47 49 — %
Input Return Loss IRL — -12 -9 dB
Pout @ 1 dB Compression Point P1dB 100 110 — W
1. Part internally matched both on input and output.
(continued)
MRF6S18100NR1 MRF6S18100NBR1
3
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted (continued)
Characteristic Symbol Min Typ Max Unit
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 700 mA, Pout =
40 W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation
Power Gain Gps — 15 — dB
Drain Efficiency ηD — 35 — %
Error Vector Magnitude EVM — 2 — % rms
Spectral Regrowth at 400 kHz Offset SR1 — -63 — dBc
Spectral Regrowth at 600 kHz Offset SR2 — -76 — dBc
Typical CW Performances (In Freescale GSM Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W,
1805-1880 MHz
Power Gain Gps — 14.5 — dB
Drain Efficiency ηD — 49 — %
Input Return Loss IRL — -12 — dB
Pout @ 1 dB Compression Point P1dB — 110 — W
4
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1930-1990 MHz
Z9 0.485″ x 1.000″ Microstrip
Z10* 0.590″ x 0.083″ Microstrip
Z11* 0.805″ x 0.083″ Microstrip
Z13, Z14 0.870″ x 0.080″ Microstrip
PCB Taconic TLX8-0300, 0.030″, εr = 2.55
*Variable for tuning.
Z1, Z12 0.250″ x 0.083″ Microstrip
Z2* 0.450″ x 0.083″ Microstrip
Z3* 0.535″ x 0.083″ Microstrip
Z4* 0.540″ x 0.083″ Microstrip
Z5 0.365″ x 1.000″ Microstrip
Z6 1.190″ x 0.080″ Microstrip
Z7, Z8 0.115″ x 1.000″ Microstrip
VBIAS VSUPPLY
RF
OUTPUT
RF
INPUT
DUT
C1 C2 C3 C4 C5
R1
Z1 Z2 Z3
C6
Z8
R2
Z6
R3
Z7
Z13
Z14
VSUPPLY
C11 C12 C13
C7 C8
Z4 Z5 Z9
C10
Z10 Z11 Z12
C14
+
C9
Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1930-1990 MHz
Part Description Part Number Manufacturer
C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX
C2, C3, C6, C10, C11 6.8 pF 600B Chip Capacitors 600B6R8BW ATC
C4, C5, C12, C13 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK
C7 0.3 pF 700B Chip Capacitor 700B0R3BW ATC
C8 1.3 pF 600B Chip Capacitor 600B1R3BW ATC
C9 0.5 pF 600B Chip Capacitor 600B0R5BW ATC
C14 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips
R1, R2 10 kΩ, 1/4 W Chip Resistors (1206)
R3 10 Ω, 1/4 W Chip Resistor (1206)
MRF6S18100NR1 MRF6S18100NBR1
5
RF Device Data
Freescale Semiconductor
Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1930-1990 MHz
MRF6S18100N
CUTOUTAREA
R1
Rev. 0
R2 C1 C2
R3
C6
C7 C8
C14
C3
C4 C5
C9
C10
C11 C12 C13
6
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
TYPICAL CHARACTERISTICS — 1930-1990 MHz
Gps,POWERGAIN(dB)
IRL,INPUTRETURNLOSS(dB)
f, FREQUENCY (MHz)
13
1900
20
Gps
VDD = 28 Vdc
IDQ = 900 mA
17 60
50
40
30
2020
IRL
Figure 3. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 Watts
−30
0
−10
−20
−40
ηD,DRAINEFFICIENCY(%)
16
15
14
ηD
1920 1940 1960 1980 2000
Gps,POWERGAIN(dB)
IRL,INPUTRETURNLOSS(dB)
f, FREQUENCY (MHz)
13
1900
20
Gps
VDD = 28 Vdc
IDQ = 900 mA
17 60
50
40
30
2020
IRL
Figure 4. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 Watts
−30
0
−10
−20
−40
ηD,DRAINEFFICIENCY(%)
16
15
14
ηD
1920 1940 1960 1980 2000
Figure 5. Power Gain versus Output Power
Pout, OUTPUT POWER (WATTS)
VDD = 28 Vdc
f = 1960 MHz
1125 mA
IDQ = 1350 mA
10
11
1
16
14
13
12
100
Gps,POWERGAIN(dB)
15
900 mA
665 mA
450 mA
40
2
0
16
12
10
6
4
20 16060 80
Figure 6. Power Gain versus Output Power
Pout, OUTPUT POWER (WATTS) CW
VDD = 12 V
28 V
IDQ = 900 mA
f = 1960 MHz
Gps,POWERGAIN(dB)
24 V
20 V
16 V
32 V
14
8
100 120 140
MRF6S18100NR1 MRF6S18100NBR1
7
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1930-1990 MHz
Figure 7. Power Gain and Drain Efficiency
versus CW Output Power
Figure 8. EVM versus Frequency
100
8
18
1
0
50
VDD = 28 Vdc
IDQ = 900 mA
f = 1960 MHz
TC = −30_C
−30_C
25_C
85_C
10
16
14
12
10
40
30
20
10
Pout, OUTPUT POWER (WATTS) CW
Figure 9. EVM and Drain Efficiency versus
Output Power
−50
−60
−65
−70
−75
1920
−85
Figure 10. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
f, FREQUENCY (MHz)
Pout = 61 W Avg.
44 W Avg.
20 W Avg.
VDD = 28 Vdc
IDQ = 700 mA
Pout, OUTPUT POWER (WATTS) AVG.
100
4
12
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
EDGE Modulation
8
6
0
101
2
20
60
40
30
0
10
85_C
Gps
TC = −30_C
25_C
85_C
−75
−40
0
Pout, OUTPUT POWER (WATTS)
−50
−55
−60
−65
−70
20
Figure 11. Spectral Regrowth at 400 kHz
versus Output Power
ηD,DRAINEFFICIENCY(%)ηD,DRAINEFFICIENCY(%)
ηD
Gps,POWERGAIN(dB)
EVM,ERRORVECTORMAGNITUDE(%rms)
2000
0
5
3
1
1980196019401920
4
2
EVM,ERRORVECTORMAGNITUDE(%rms)SPECTRALREGROWTH@400kHz(dBc)
SPECTRALREGROWTH@400kHzAND600kHz(dBc)
25_C
85_C
10 50
EVM
25_C
1940 1960 1980 2000
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
EDGE Modulation
Pout = 61 W Avg.
44 W Avg.
20 W Avg.
61 W Avg.
44 W Avg. 20 W Avg.
f, FREQUENCY (MHz)
40 60 80 100
VDD = 28 Vdc, IDQ = 700 mA
f = 1960 MHz, EDGE Modulation
85_C
25_C
−85
−55
0
Pout, OUTPUT POWER (WATTS)
−60
−70
−75
−80
Figure 12. Spectral Regrowth at 600 kHz
versus Output Power
SPECTRALREGROWTH@600kHz(dBc)
20 40 60 80 100
−65
SR @ 400 kHz
SR @ 600 kHz
TC = −30_C
−55
−80
1900 2020
−45
VDD = 28 Vdc, IDQ = 700 mA
f = 1960 MHz, EDGE Modulation
ηD
TC = −30_C
8
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
TYPICAL CHARACTERISTICS
210
1.E+09
90
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID
2 for MTTF in a particular application.
100 110 120 130 140 150 160 170 180
1.E+08
1.E+06
1.E+07
Figure 13. MTTF Factor versus Junction Temperature
MTTFFACTOR(HOURSXAMPS2)
190 200
GSM TEST SIGNAL
Figure 14. EDGE Spectrum
−10
−20
−30
−40
−50
−60
−70
−80
−90
−100
200 kHz Span 2 MHzCenter 1.96 GHz
−110
400 kHz
600 kHz
400 kHz
600 kHz
(dB)
Reference Power VBW = 30 kHz
Sweep Time = 70 ms
RBW = 30 kHz
MRF6S18100NR1 MRF6S18100NBR1
9
RF Device Data
Freescale Semiconductor
Zo = 5 Ω
Zload f = 1900 MHz
f = 2020 MHz
Zsource
f = 1900 MHz
f = 2020 MHz
VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W
f
MHz
Zsource
W
Zload
W
1900 2.80 - j4.53 1.75 - j3.52
1930 2.71 - j4.27 1.67 - j3.25
1960 2.63 - j4.03 1.59 - j2.99
1990 2.56 - j3.79 1.52 - j2.74
2020 2.51 - j3.57 1.47 - j2.51
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Z
source
Z
load
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
Figure 15. Series Equivalent Source and Load Impedance — 1930-1990 MHz
10
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1805-1880 MHz
Z9 0.485″ x 1.000″ Microstrip
Z10* 0.080″ x 0.083″ Microstrip
Z11* 0.340″ x 0.083″ Microstrip
Z12* 0.975″ x 0.083″ Microstrip
Z14, Z15 0.960″ x 0.080″ Microstrip
PCB Taconic TLX8-0300, 0.030″, εr = 2.55
*Variable for tuning.
Z1, Z13 0.250″ x 0.083″ Microstrip
Z2* 0.620″ x 0.083″ Microstrip
Z3* 0.715″ x 0.083″ Microstrip
Z4* 0.190″ x 0.083″ Microstrip
Z5 0.365″ x 1.000″ Microstrip
Z6 1.190″ x 0.080″ Microstrip
Z7, Z8 0.115″ x 1.000″ Microstrip
VBIAS VSUPPLY
RF
OUTPUT
RF
INPUT
DUT
C1 C2 C3 C4 C5
R1
Z1 Z2 Z3
C6
Z8
R2
Z6
R3
Z7
Z14
Z15
VSUPPLY
C14 C15 C16
C7 C8
Z4 Z5 Z9
C13
Z10 Z12 Z13
C17
+
C10 C12
Z11
C11C9
Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1805-1880 MHz
Part Description Part Number Manufacturer
C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX
C2, C3, C6, C13, C14 8.2 pF 600B Chip Capacitors 600B8R2BW ATC
C4, C5, C15, C16 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK
C7, C8, C11, C12 0.2 pF 700B Chip Capacitors 700B0R2BW ATC
C9 1 pF 600B Chip Capacitor 600B1R0BW ATC
C10 0.5 pF 600B Chip Capacitor 600B0R5BW ATC
C17 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips
R1, R2 10 kΩ, 1/4 W Chip Resistor (1206)
R3 10 Ω, 1/4 W Chip Resistor (1206)
MRF6S18100NR1 MRF6S18100NBR1
11
RF Device Data
Freescale Semiconductor
Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1805-1880 MHz
MRF6S18100N
CUTOUTAREA
R1
Rev. 0
R2 C1 C2
R3
C6
C7 C8
C17
C3 C4 C5
C10
C13
C14 C15 C16
C9 C11 C12
12
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
TYPICAL CHARACTERISTICS — 1805-1880 MHz
Gps,POWERGAIN(dB)
IRL,INPUTRETURNLOSS(dB)
f, FREQUENCY (MHz)
12
1800
20
Gps
VDD = 28 Vdc
IDQ = 900 mA
17 60
50
40
30
1880
IRL
Figure 18. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 100 Watts
−30
0
−10
−20
−40
ηD,DRAINEFFICIENCY(%)
16
15
14
ηD
1810 1820 1830 1840 1850
13
1860 1870
1800 18801810 1820 1830 1840 1850 1860 1870
Gps,POWERGAIN(dB)
IRL,INPUTRETURNLOSS(dB)
f, FREQUENCY (MHz)
13 20
Gps
VDD = 28 Vdc
IDQ = 900 mA
16 50
40
30
IRL
Figure 19. Power Gain, Input Return Loss and Drain
Efficiency versus Frequency @ Pout = 40 Watts
−30
−10
−20
−40
ηD,DRAINEFFICIENCY(%)
15
14
ηD
Figure 20. EVM versus Frequency
f, FREQUENCY (MHz)
Pout = 60 W Avg.
42 W Avg.
25 W Avg.
VDD = 28 Vdc
IDQ = 700 mA
EVM,ERRORVECTORMAGNITUDE(%rms)
1900
1
6
3
1880186018401800
4
2
5
1820
Figure 21. EVM and Drain Efficiency versus
Output Power
Pout, OUTPUT POWER (WATTS) AVG.
100
4
10
VDD = 28 Vdc
IDQ = 700 mA
f = 1840 MHz
EDGE Modulation
8
6
0
101
2
20
50
40
30
0
10
ηD,DRAINEFFICIENCY(%)
EVM,ERRORVECTORMAGNITUDE(%rms)
TC = 25_C
ηD
EVM
10
MRF6S18100NR1 MRF6S18100NBR1
13
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS — 1805-1880 MHZ
−45
−60
−65
−70
−75
1780
−85
Figure 22. Spectral Regrowth at 400 kHz and
600 kHz versus Frequency
SPECTRALREGROWTH@400kHzAND600kHz(dBc)
1800 1820 1840 1860
−55
1880 1900 1920
−75
−45
0
Pout, OUTPUT POWER (WATTS)
−50
−55
−60
−65
−70
Figure 23. Spectral Regrowth at 400 kHz
versus Output Power
SPECTRALREGROWTH@400kHz(dBc)
20 40 60 80
TC = 25_C
−85
−60
0
Pout, OUTPUT POWER (WATTS)
−70
−75
−80
20
Figure 24. Spectral Regrowth at 600 kHz
versus Output Power
SPECTRALREGROWTH@600kHz(dBc)
40 60 80
−65
f, FREQUENCY (MHz)
−50
−80
VDD = 28 Vdc
IDQ = 700 mA
f = 1960 MHz
Pout = 60 W Avg.
42 W Avg.
25 W Avg.
60 W Avg.
25 W Avg.
42 W Avg.
SR @ 400 kHz
SR @ 600 kHz
VDD = 28 Vdc, IDQ = 700 mA
f = 1840 MHz, EDGE Modulation
VDD = 28 Vdc, IDQ = 700 mA
f = 1840 MHz, EDGE Modulation
TC = 25_C
14
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
Zo = 5 Ω
Zload
Zsource
f = 1900 MHz
f = 1780 MHz
f = 1780 MHz
f = 1900 MHz
VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W
f
MHz
Zsource
W
Zload
W
1780 1.96 - j4.09 1.94 - j2.90
1804 1.90 - j3.86 1.88 - j2.67
1840 1.82 - j3.53 1.80 - j2.42
1880 1.76 - j3.16 1.73 - j1.99
1900 1.72 - j2.97 1.70 - j1.82
Zsource = Test circuit impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Z
source
Z
load
Input
Matching
Network
Device
Under
Test
Output
Matching
Network
Figure 25. Series Equivalent Source and Load Impedance — 1805-1880 MHz
MRF6S18100NR1 MRF6S18100NBR1
15
RF Device Data
Freescale Semiconductor
NOTES
16
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
PACKAGE DIMENSIONS
CASE 1486-03
ISSUE C
DATUM
PLANE
BOTTOM VIEW
A1
2X
D1
E3
E1
D3
E4
A2
PIN 5
NOTE 8
AB
C
H
DRAIN LEAD
D
AMaaa C
4X
b1
2X
D2 NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO
INCLUDE MOLD MISMATCH AND ARE DETER−
MINED AT DATUM PLANE −H−.
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE “b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA
OF THE HEAT SLUG.
c1
F
ZONE J
E2
2X
A
DIM
A
MIN MAX MIN MAX
MILLIMETERS
.100 .104 2.54 2.64
INCHES
A1 .039 .043 0.99 1.09
A2 .040 .042 1.02 1.07
D .712 .720 18.08 18.29
D1 .688 .692 17.48 17.58
D2 .011 .019 0.28 0.48
D3 .600 − − − 15.24 − − −
E .551 .559 14 14.2
E1 .353 .357 8.97 9.07
E2 .132 .140 3.35 3.56
E3 .124 .132 3.15 3.35
E4 .270 − − − 6.86 − − −
F
b1 .164 .170 4.17 4.32
c1 .007 .011 0.18 0.28
e
.025 BSC
.106 BSC
0.64 BSC
2.69 BSC
1
STYLE 1:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. GATE
5. SOURCE
aaa .004 0.10
GATE LEAD
4X
e
2X
E
SEATING
PLANE
4
23
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
NOTE 7
E5
E5
E5 .346 .350 8.79 8.89
TO-270 WB-4
MRF6S18100NR1
MRF6S18100NR1 MRF6S18100NBR1
17
RF Device Data
Freescale Semiconductor
18
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
MRF6S18100NR1 MRF6S18100NBR1
19
RF Device Data
Freescale Semiconductor
20
RF Device Data
Freescale Semiconductor
MRF6S18100NR1 MRF6S18100NBR1
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2006. All rights reserved.
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Document Number: MRF6S18100N
Rev. 1, 5/2006

More Related Content

What's hot

BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...CBO GmbH
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Analog Devices, Inc.
 
A Data Sheet Spec Sheet example with real Test Data
A Data Sheet Spec Sheet example with real Test DataA Data Sheet Spec Sheet example with real Test Data
A Data Sheet Spec Sheet example with real Test DataHTCS LLC
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductorauthelectroniccom
 
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...CBO GmbH
 
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...CBO GmbH
 
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...CBO GmbH
 
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...CBO GmbH
 
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...CBO GmbH
 
Eb1 dcs1800 datasheet
Eb1 dcs1800 datasheetEb1 dcs1800 datasheet
Eb1 dcs1800 datasheetstaubin
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...CBO GmbH
 
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...AUTHELECTRONIC
 
Antenna cetrek gps data
Antenna cetrek gps dataAntenna cetrek gps data
Antenna cetrek gps dataAtilla Sevic
 
Kannad 406 survival
Kannad 406 survivalKannad 406 survival
Kannad 406 survivalgelbyson
 

What's hot (19)

BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
 
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
Ims2016 micro apps_robertbrennan_pll_frequencyplanning_v2
 
A Data Sheet Spec Sheet example with real Test Data
A Data Sheet Spec Sheet example with real Test DataA Data Sheet Spec Sheet example with real Test Data
A Data Sheet Spec Sheet example with real Test Data
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 
Trio 27.6
Trio 27.6Trio 27.6
Trio 27.6
 
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
 
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...
BlueOptics Bo87jxx240d 10gbase-dwdm xenpak transceiver c-band 40 kilometer si...
 
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
 
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
BlueOptics Bo86jxx210d 10gbase-cwdm xenpak transceiver 1271nm-1451nm 10km sin...
 
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  40 kilo...
BlueOptics Bo86jxx240d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 40 kilo...
 
500 12
500 12500 12
500 12
 
PMIC_V3
PMIC_V3PMIC_V3
PMIC_V3
 
Eb1 dcs1800 datasheet
Eb1 dcs1800 datasheetEb1 dcs1800 datasheet
Eb1 dcs1800 datasheet
 
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm  80 kilo...
BlueOptics Bo86jxx280d 10gbase-cwdm xenpak transceiver 1471nm-1611nm 80 kilo...
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
 
Antenna cetrek gps data
Antenna cetrek gps dataAntenna cetrek gps data
Antenna cetrek gps data
 
Kannad 406 survival
Kannad 406 survivalKannad 406 survival
Kannad 406 survival
 
Aurora Small
Aurora Small Aurora Small
Aurora Small
 

Viewers also liked

RF Global Presentation
RF Global  PresentationRF Global  Presentation
RF Global PresentationIan Stuart
 
ทอดกฐิน วัดเลียบ
ทอดกฐิน วัดเลียบทอดกฐิน วัดเลียบ
ทอดกฐิน วัดเลียบtopzazana
 
ถวายสังฆทาน 6/14
ถวายสังฆทาน 6/14ถวายสังฆทาน 6/14
ถวายสังฆทาน 6/14topzazana
 
Laura Coble's Resume
Laura Coble's ResumeLaura Coble's Resume
Laura Coble's ResumeLaura Coble
 
Digital Insight Swarm on Influencers & The Power of Online Reviews
Digital Insight Swarm on Influencers & The Power of Online ReviewsDigital Insight Swarm on Influencers & The Power of Online Reviews
Digital Insight Swarm on Influencers & The Power of Online ReviewsVega School of Brand Leadership
 
Spyware and adware
Spyware and  adwareSpyware and  adware
Spyware and adwareRaja Kiran
 
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...Pete Jones
 
173544 introduction-aux-sockets
173544 introduction-aux-sockets173544 introduction-aux-sockets
173544 introduction-aux-socketsnaimanaima1
 
Types of Amalgamation
Types of AmalgamationTypes of Amalgamation
Types of Amalgamationakriti poddar
 
Positive & Negative Sides of Internet
Positive  &  Negative  Sides of  InternetPositive  &  Negative  Sides of  Internet
Positive & Negative Sides of InternetSagarneel Majumder
 

Viewers also liked (13)

RF Global Presentation
RF Global  PresentationRF Global  Presentation
RF Global Presentation
 
ทอดกฐิน วัดเลียบ
ทอดกฐิน วัดเลียบทอดกฐิน วัดเลียบ
ทอดกฐิน วัดเลียบ
 
ถวายสังฆทาน 6/14
ถวายสังฆทาน 6/14ถวายสังฆทาน 6/14
ถวายสังฆทาน 6/14
 
Laura Coble's Resume
Laura Coble's ResumeLaura Coble's Resume
Laura Coble's Resume
 
Digital Insight Swarm on Influencers & The Power of Online Reviews
Digital Insight Swarm on Influencers & The Power of Online ReviewsDigital Insight Swarm on Influencers & The Power of Online Reviews
Digital Insight Swarm on Influencers & The Power of Online Reviews
 
Androidwear
AndroidwearAndroidwear
Androidwear
 
Spyware and adware
Spyware and  adwareSpyware and  adware
Spyware and adware
 
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...
RF Transceiver Chip Market Demand and Development Status Updates In A New Rep...
 
173544 introduction-aux-sockets
173544 introduction-aux-sockets173544 introduction-aux-sockets
173544 introduction-aux-sockets
 
Pizarro-Berdichevsky, Javier CV
Pizarro-Berdichevsky, Javier CVPizarro-Berdichevsky, Javier CV
Pizarro-Berdichevsky, Javier CV
 
Types of Amalgamation
Types of AmalgamationTypes of Amalgamation
Types of Amalgamation
 
Positive & Negative Sides of Internet
Positive  &  Negative  Sides of  InternetPositive  &  Negative  Sides of  Internet
Positive & Negative Sides of Internet
 
Panorama des Perspectives 2015 de l'OCDE sur l'entreprise et la finance
Panorama des Perspectives 2015 de l'OCDE sur l'entreprise et la financePanorama des Perspectives 2015 de l'OCDE sur l'entreprise et la finance
Panorama des Perspectives 2015 de l'OCDE sur l'entreprise et la finance
 

Similar to Mrf6 s18100n pwrmosfet

RF Power Management Attach
RF Power Management AttachRF Power Management Attach
RF Power Management AttachAmanda Tucker
 
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training ModuleAnalog Devices, Inc.
 
Ic epower500 a_datasheet_2_2-1
Ic epower500 a_datasheet_2_2-1Ic epower500 a_datasheet_2_2-1
Ic epower500 a_datasheet_2_2-1henry4141
 
Ic epower500 a_datasheet amp
Ic epower500 a_datasheet ampIc epower500 a_datasheet amp
Ic epower500 a_datasheet amphenry4141
 
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0Electromate
 
IQxel-MW-7G-TechSpecs-022423-web.pdf
IQxel-MW-7G-TechSpecs-022423-web.pdfIQxel-MW-7G-TechSpecs-022423-web.pdf
IQxel-MW-7G-TechSpecs-022423-web.pdfCesarAdrinUrestiTrej
 
Blf1820 90 pwr mosfet
Blf1820 90 pwr mosfetBlf1820 90 pwr mosfet
Blf1820 90 pwr mosfetdreamboxsat
 
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...Allen He
 
Mag Layers Products
Mag Layers ProductsMag Layers Products
Mag Layers ProductsMagLayersUSA
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...Allen He
 
High-Speed Balanced Photoreceiver
High-Speed Balanced Photoreceiver High-Speed Balanced Photoreceiver
High-Speed Balanced Photoreceiver Anne Stiegler
 

Similar to Mrf6 s18100n pwrmosfet (20)

Trio 20.0-tl-outd-400
Trio 20.0-tl-outd-400Trio 20.0-tl-outd-400
Trio 20.0-tl-outd-400
 
PVI-10
PVI-10PVI-10
PVI-10
 
RF Power Management Attach
RF Power Management AttachRF Power Management Attach
RF Power Management Attach
 
Aurora Medium
Aurora MediumAurora Medium
Aurora Medium
 
RF Power Management Attach Training Module
RF Power Management Attach Training ModuleRF Power Management Attach Training Module
RF Power Management Attach Training Module
 
Ic epower500 a_datasheet_2_2-1
Ic epower500 a_datasheet_2_2-1Ic epower500 a_datasheet_2_2-1
Ic epower500 a_datasheet_2_2-1
 
Ic epower500 a_datasheet amp
Ic epower500 a_datasheet ampIc epower500 a_datasheet amp
Ic epower500 a_datasheet amp
 
Abb trio-tl-outd
Abb trio-tl-outdAbb trio-tl-outd
Abb trio-tl-outd
 
ABB Trio
ABB TrioABB Trio
ABB Trio
 
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0
JVL High Quality, High Torque AC Servo Motors MSE400, 800, 1K5 and 3K0
 
LMV221 sdx
LMV221 sdxLMV221 sdx
LMV221 sdx
 
IQxel-MW-7G-TechSpecs-022423-web.pdf
IQxel-MW-7G-TechSpecs-022423-web.pdfIQxel-MW-7G-TechSpecs-022423-web.pdf
IQxel-MW-7G-TechSpecs-022423-web.pdf
 
Blf1820 90 pwr mosfet
Blf1820 90 pwr mosfetBlf1820 90 pwr mosfet
Blf1820 90 pwr mosfet
 
Uno 2.0-2.5
Uno 2.0-2.5Uno 2.0-2.5
Uno 2.0-2.5
 
Max2837 hackrf
Max2837 hackrfMax2837 hackrf
Max2837 hackrf
 
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
10Gb/s DWDM XFP Transceiver Hot Pluggable, Duplex LC, +3.3V & +5V, 100GHz ITU...
 
Mag Layers Products
Mag Layers ProductsMag Layers Products
Mag Layers Products
 
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
10Gb/s Tunable SFP+ Transceiver Hot Pluggable, Duplex LC, +3.3V, 100GHz, Mono...
 
High-Speed Balanced Photoreceiver
High-Speed Balanced Photoreceiver High-Speed Balanced Photoreceiver
High-Speed Balanced Photoreceiver
 
DDS Bomb IED Jammer Direct Digital Synthesizer Technology
DDS Bomb IED Jammer Direct Digital Synthesizer TechnologyDDS Bomb IED Jammer Direct Digital Synthesizer Technology
DDS Bomb IED Jammer Direct Digital Synthesizer Technology
 

Mrf6 s18100n pwrmosfet

  • 1. MRF6S18100NR1 MRF6S18100NBR1 1 RF Device Data Freescale Semiconductor RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs Designed for GSM and GSM EDGE base station applications with frequencies from 1800 to 2000 MHz. Suitable for TDMA, CDMA and multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout = 100 Watts, Full Frequency Band (1805-1880 MHz or 1930-1990 MHz) Power Gain — 14.5 dB Drain Efficiency — 49% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout = 40 Watts Avg., Full Frequency Band (1805-1880 MHz or 1930-1990 MHz) Power Gain — 15 dB Drain Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = -63 dBc Spectral Regrowth @ 600 kHz Offset = -76 dBc EVM — 2% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power Features • Characterized with Series Equivalent Large-Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications • 200°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. Table 1. Maximum Ratings Rating Symbol Value Unit Drain-Source Voltage VDSS -0.5, +68 Vdc Gate-Source Voltage VGS -0.5, +12 Vdc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 343 1.96 W W/°C Storage Temperature Range Tstg - 65 to +175 °C Operating Junction Temperature TJ 200 °C Table 2. Thermal Characteristics Characteristic Symbol Value(1,2) Unit Thermal Resistance, Junction to Case Case Temperature 80°C, 100 CW Case Temperature 77°C, 40 CW RθJC 0.51 0.62 °C/W 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. Document Number: MRF6S18100N Rev. 1, 5/2006 Freescale Semiconductor Technical Data MRF6S18100NR1 MRF6S18100NBR1 1805-1990 MHz, 100 W, 28 V GSM/GSM EDGE LATERAL N-CHANNEL RF POWER MOSFETs CASE 1486-03, STYLE 1 TO-270 WB-4 MRF6S18100NR1 CASE 1484-04, STYLE 1 TO-272 WB-4 MRF6S18100NBR1 © Freescale Semiconductor, Inc., 2006. All rights reserved.
  • 2. 2 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22-A114) 1B (Minimum) Machine Model (per EIA/JESD22-A115) A (Minimum) Charge Device Model (per JESD22-C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD 22-A113, IPC/JEDEC J-STD-020 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate-Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 500 nAdc On Characteristics Gate Threshold Voltage (VDS = 10 Vdc, ID = 330 μAdc) VGS(th) 1.6 2 3 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 900 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.8 3.5 Vdc Drain-Source On-Voltage (VGS = 10 Vdc, ID = 3.3 Adc) VDS(on) — 0.24 — Vdc Forward Transconductance (VDS = 10 Vdc, ID = 3.3 Adc) gfs — 5.3 — S Dynamic Characteristics(1) Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.5 — pF Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1930-1990 MHz Power Gain Gps 13 14.5 16 dB Drain Efficiency ηD 47 49 — % Input Return Loss IRL — -12 -9 dB Pout @ 1 dB Compression Point P1dB 100 110 — W 1. Part internally matched both on input and output. (continued)
  • 3. MRF6S18100NR1 MRF6S18100NBR1 3 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted (continued) Characteristic Symbol Min Typ Max Unit Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 40 W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation Power Gain Gps — 15 — dB Drain Efficiency ηD — 35 — % Error Vector Magnitude EVM — 2 — % rms Spectral Regrowth at 400 kHz Offset SR1 — -63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — -76 — dBc Typical CW Performances (In Freescale GSM Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W, 1805-1880 MHz Power Gain Gps — 14.5 — dB Drain Efficiency ηD — 49 — % Input Return Loss IRL — -12 — dB Pout @ 1 dB Compression Point P1dB — 110 — W
  • 4. 4 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1930-1990 MHz Z9 0.485″ x 1.000″ Microstrip Z10* 0.590″ x 0.083″ Microstrip Z11* 0.805″ x 0.083″ Microstrip Z13, Z14 0.870″ x 0.080″ Microstrip PCB Taconic TLX8-0300, 0.030″, εr = 2.55 *Variable for tuning. Z1, Z12 0.250″ x 0.083″ Microstrip Z2* 0.450″ x 0.083″ Microstrip Z3* 0.535″ x 0.083″ Microstrip Z4* 0.540″ x 0.083″ Microstrip Z5 0.365″ x 1.000″ Microstrip Z6 1.190″ x 0.080″ Microstrip Z7, Z8 0.115″ x 1.000″ Microstrip VBIAS VSUPPLY RF OUTPUT RF INPUT DUT C1 C2 C3 C4 C5 R1 Z1 Z2 Z3 C6 Z8 R2 Z6 R3 Z7 Z13 Z14 VSUPPLY C11 C12 C13 C7 C8 Z4 Z5 Z9 C10 Z10 Z11 Z12 C14 + C9 Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1930-1990 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX C2, C3, C6, C10, C11 6.8 pF 600B Chip Capacitors 600B6R8BW ATC C4, C5, C12, C13 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C7 0.3 pF 700B Chip Capacitor 700B0R3BW ATC C8 1.3 pF 600B Chip Capacitor 600B1R3BW ATC C9 0.5 pF 600B Chip Capacitor 600B0R5BW ATC C14 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips R1, R2 10 kΩ, 1/4 W Chip Resistors (1206) R3 10 Ω, 1/4 W Chip Resistor (1206)
  • 5. MRF6S18100NR1 MRF6S18100NBR1 5 RF Device Data Freescale Semiconductor Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1930-1990 MHz MRF6S18100N CUTOUTAREA R1 Rev. 0 R2 C1 C2 R3 C6 C7 C8 C14 C3 C4 C5 C9 C10 C11 C12 C13
  • 6. 6 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 TYPICAL CHARACTERISTICS — 1930-1990 MHz Gps,POWERGAIN(dB) IRL,INPUTRETURNLOSS(dB) f, FREQUENCY (MHz) 13 1900 20 Gps VDD = 28 Vdc IDQ = 900 mA 17 60 50 40 30 2020 IRL Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts −30 0 −10 −20 −40 ηD,DRAINEFFICIENCY(%) 16 15 14 ηD 1920 1940 1960 1980 2000 Gps,POWERGAIN(dB) IRL,INPUTRETURNLOSS(dB) f, FREQUENCY (MHz) 13 1900 20 Gps VDD = 28 Vdc IDQ = 900 mA 17 60 50 40 30 2020 IRL Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts −30 0 −10 −20 −40 ηD,DRAINEFFICIENCY(%) 16 15 14 ηD 1920 1940 1960 1980 2000 Figure 5. Power Gain versus Output Power Pout, OUTPUT POWER (WATTS) VDD = 28 Vdc f = 1960 MHz 1125 mA IDQ = 1350 mA 10 11 1 16 14 13 12 100 Gps,POWERGAIN(dB) 15 900 mA 665 mA 450 mA 40 2 0 16 12 10 6 4 20 16060 80 Figure 6. Power Gain versus Output Power Pout, OUTPUT POWER (WATTS) CW VDD = 12 V 28 V IDQ = 900 mA f = 1960 MHz Gps,POWERGAIN(dB) 24 V 20 V 16 V 32 V 14 8 100 120 140
  • 7. MRF6S18100NR1 MRF6S18100NBR1 7 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930-1990 MHz Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 8. EVM versus Frequency 100 8 18 1 0 50 VDD = 28 Vdc IDQ = 900 mA f = 1960 MHz TC = −30_C −30_C 25_C 85_C 10 16 14 12 10 40 30 20 10 Pout, OUTPUT POWER (WATTS) CW Figure 9. EVM and Drain Efficiency versus Output Power −50 −60 −65 −70 −75 1920 −85 Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency f, FREQUENCY (MHz) Pout = 61 W Avg. 44 W Avg. 20 W Avg. VDD = 28 Vdc IDQ = 700 mA Pout, OUTPUT POWER (WATTS) AVG. 100 4 12 VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation 8 6 0 101 2 20 60 40 30 0 10 85_C Gps TC = −30_C 25_C 85_C −75 −40 0 Pout, OUTPUT POWER (WATTS) −50 −55 −60 −65 −70 20 Figure 11. Spectral Regrowth at 400 kHz versus Output Power ηD,DRAINEFFICIENCY(%)ηD,DRAINEFFICIENCY(%) ηD Gps,POWERGAIN(dB) EVM,ERRORVECTORMAGNITUDE(%rms) 2000 0 5 3 1 1980196019401920 4 2 EVM,ERRORVECTORMAGNITUDE(%rms)SPECTRALREGROWTH@400kHz(dBc) SPECTRALREGROWTH@400kHzAND600kHz(dBc) 25_C 85_C 10 50 EVM 25_C 1940 1960 1980 2000 VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation Pout = 61 W Avg. 44 W Avg. 20 W Avg. 61 W Avg. 44 W Avg. 20 W Avg. f, FREQUENCY (MHz) 40 60 80 100 VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation 85_C 25_C −85 −55 0 Pout, OUTPUT POWER (WATTS) −60 −70 −75 −80 Figure 12. Spectral Regrowth at 600 kHz versus Output Power SPECTRALREGROWTH@600kHz(dBc) 20 40 60 80 100 −65 SR @ 400 kHz SR @ 600 kHz TC = −30_C −55 −80 1900 2020 −45 VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation ηD TC = −30_C
  • 8. 8 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 TYPICAL CHARACTERISTICS 210 1.E+09 90 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID 2 for MTTF in a particular application. 100 110 120 130 140 150 160 170 180 1.E+08 1.E+06 1.E+07 Figure 13. MTTF Factor versus Junction Temperature MTTFFACTOR(HOURSXAMPS2) 190 200 GSM TEST SIGNAL Figure 14. EDGE Spectrum −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 200 kHz Span 2 MHzCenter 1.96 GHz −110 400 kHz 600 kHz 400 kHz 600 kHz (dB) Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz
  • 9. MRF6S18100NR1 MRF6S18100NBR1 9 RF Device Data Freescale Semiconductor Zo = 5 Ω Zload f = 1900 MHz f = 2020 MHz Zsource f = 1900 MHz f = 2020 MHz VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1900 2.80 - j4.53 1.75 - j3.52 1930 2.71 - j4.27 1.67 - j3.25 1960 2.63 - j4.03 1.59 - j2.99 1990 2.56 - j3.79 1.52 - j2.74 2020 2.51 - j3.57 1.47 - j2.51 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Z source Z load Input Matching Network Device Under Test Output Matching Network Figure 15. Series Equivalent Source and Load Impedance — 1930-1990 MHz
  • 10. 10 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1805-1880 MHz Z9 0.485″ x 1.000″ Microstrip Z10* 0.080″ x 0.083″ Microstrip Z11* 0.340″ x 0.083″ Microstrip Z12* 0.975″ x 0.083″ Microstrip Z14, Z15 0.960″ x 0.080″ Microstrip PCB Taconic TLX8-0300, 0.030″, εr = 2.55 *Variable for tuning. Z1, Z13 0.250″ x 0.083″ Microstrip Z2* 0.620″ x 0.083″ Microstrip Z3* 0.715″ x 0.083″ Microstrip Z4* 0.190″ x 0.083″ Microstrip Z5 0.365″ x 1.000″ Microstrip Z6 1.190″ x 0.080″ Microstrip Z7, Z8 0.115″ x 1.000″ Microstrip VBIAS VSUPPLY RF OUTPUT RF INPUT DUT C1 C2 C3 C4 C5 R1 Z1 Z2 Z3 C6 Z8 R2 Z6 R3 Z7 Z14 Z15 VSUPPLY C14 C15 C16 C7 C8 Z4 Z5 Z9 C13 Z10 Z12 Z13 C17 + C10 C12 Z11 C11C9 Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1805-1880 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor (1206) 1206C104KAT AVX C2, C3, C6, C13, C14 8.2 pF 600B Chip Capacitors 600B8R2BW ATC C4, C5, C15, C16 4.7 μF Chip Capacitors (1812) C4532X5R1H475MT TDK C7, C8, C11, C12 0.2 pF 700B Chip Capacitors 700B0R2BW ATC C9 1 pF 600B Chip Capacitor 600B1R0BW ATC C10 0.5 pF 600B Chip Capacitor 600B0R5BW ATC C17 470 μF, 63 V Electrolytic Capacitor, Radial 13661471 Philips R1, R2 10 kΩ, 1/4 W Chip Resistor (1206) R3 10 Ω, 1/4 W Chip Resistor (1206)
  • 11. MRF6S18100NR1 MRF6S18100NBR1 11 RF Device Data Freescale Semiconductor Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1805-1880 MHz MRF6S18100N CUTOUTAREA R1 Rev. 0 R2 C1 C2 R3 C6 C7 C8 C17 C3 C4 C5 C10 C13 C14 C15 C16 C9 C11 C12
  • 12. 12 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 TYPICAL CHARACTERISTICS — 1805-1880 MHz Gps,POWERGAIN(dB) IRL,INPUTRETURNLOSS(dB) f, FREQUENCY (MHz) 12 1800 20 Gps VDD = 28 Vdc IDQ = 900 mA 17 60 50 40 30 1880 IRL Figure 18. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts −30 0 −10 −20 −40 ηD,DRAINEFFICIENCY(%) 16 15 14 ηD 1810 1820 1830 1840 1850 13 1860 1870 1800 18801810 1820 1830 1840 1850 1860 1870 Gps,POWERGAIN(dB) IRL,INPUTRETURNLOSS(dB) f, FREQUENCY (MHz) 13 20 Gps VDD = 28 Vdc IDQ = 900 mA 16 50 40 30 IRL Figure 19. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts −30 −10 −20 −40 ηD,DRAINEFFICIENCY(%) 15 14 ηD Figure 20. EVM versus Frequency f, FREQUENCY (MHz) Pout = 60 W Avg. 42 W Avg. 25 W Avg. VDD = 28 Vdc IDQ = 700 mA EVM,ERRORVECTORMAGNITUDE(%rms) 1900 1 6 3 1880186018401800 4 2 5 1820 Figure 21. EVM and Drain Efficiency versus Output Power Pout, OUTPUT POWER (WATTS) AVG. 100 4 10 VDD = 28 Vdc IDQ = 700 mA f = 1840 MHz EDGE Modulation 8 6 0 101 2 20 50 40 30 0 10 ηD,DRAINEFFICIENCY(%) EVM,ERRORVECTORMAGNITUDE(%rms) TC = 25_C ηD EVM 10
  • 13. MRF6S18100NR1 MRF6S18100NBR1 13 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1805-1880 MHZ −45 −60 −65 −70 −75 1780 −85 Figure 22. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency SPECTRALREGROWTH@400kHzAND600kHz(dBc) 1800 1820 1840 1860 −55 1880 1900 1920 −75 −45 0 Pout, OUTPUT POWER (WATTS) −50 −55 −60 −65 −70 Figure 23. Spectral Regrowth at 400 kHz versus Output Power SPECTRALREGROWTH@400kHz(dBc) 20 40 60 80 TC = 25_C −85 −60 0 Pout, OUTPUT POWER (WATTS) −70 −75 −80 20 Figure 24. Spectral Regrowth at 600 kHz versus Output Power SPECTRALREGROWTH@600kHz(dBc) 40 60 80 −65 f, FREQUENCY (MHz) −50 −80 VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz Pout = 60 W Avg. 42 W Avg. 25 W Avg. 60 W Avg. 25 W Avg. 42 W Avg. SR @ 400 kHz SR @ 600 kHz VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation TC = 25_C
  • 14. 14 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 Zo = 5 Ω Zload Zsource f = 1900 MHz f = 1780 MHz f = 1780 MHz f = 1900 MHz VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1780 1.96 - j4.09 1.94 - j2.90 1804 1.90 - j3.86 1.88 - j2.67 1840 1.82 - j3.53 1.80 - j2.42 1880 1.76 - j3.16 1.73 - j1.99 1900 1.72 - j2.97 1.70 - j1.82 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Z source Z load Input Matching Network Device Under Test Output Matching Network Figure 25. Series Equivalent Source and Load Impedance — 1805-1880 MHz
  • 15. MRF6S18100NR1 MRF6S18100NBR1 15 RF Device Data Freescale Semiconductor NOTES
  • 16. 16 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 PACKAGE DIMENSIONS CASE 1486-03 ISSUE C DATUM PLANE BOTTOM VIEW A1 2X D1 E3 E1 D3 E4 A2 PIN 5 NOTE 8 AB C H DRAIN LEAD D AMaaa C 4X b1 2X D2 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO INCLUDE MOLD MISMATCH AND ARE DETER− MINED AT DATUM PLANE −H−. 5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE “b1" DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. DATUMS −A− AND −B− TO BE DETERMINED AT DATUM PLANE −H−. 7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY. 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. c1 F ZONE J E2 2X A DIM A MIN MAX MIN MAX MILLIMETERS .100 .104 2.54 2.64 INCHES A1 .039 .043 0.99 1.09 A2 .040 .042 1.02 1.07 D .712 .720 18.08 18.29 D1 .688 .692 17.48 17.58 D2 .011 .019 0.28 0.48 D3 .600 − − − 15.24 − − − E .551 .559 14 14.2 E1 .353 .357 8.97 9.07 E2 .132 .140 3.35 3.56 E3 .124 .132 3.15 3.35 E4 .270 − − − 6.86 − − − F b1 .164 .170 4.17 4.32 c1 .007 .011 0.18 0.28 e .025 BSC .106 BSC 0.64 BSC 2.69 BSC 1 STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. GATE 5. SOURCE aaa .004 0.10 GATE LEAD 4X e 2X E SEATING PLANE 4 23 ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ NOTE 7 E5 E5 E5 .346 .350 8.79 8.89 TO-270 WB-4 MRF6S18100NR1
  • 17. MRF6S18100NR1 MRF6S18100NBR1 17 RF Device Data Freescale Semiconductor
  • 18. 18 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1
  • 19. MRF6S18100NR1 MRF6S18100NBR1 19 RF Device Data Freescale Semiconductor
  • 20. 20 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved. How to Reach Us: Home Page: www.freescale.com E-mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Document Number: MRF6S18100N Rev. 1, 5/2006