SlideShare a Scribd company logo
1 of 21
Download to read offline
Ñëîæíîñòü ïðîïîçèöèîíàëüíûõ äîêàçàòåëüñòâ


            Ýäóàðä Àëåêñååâè÷ Ãèðø
       http://logic.pdmi.ras.ru/~hirsch

                   ÏÎÌÈ ÐÀÍ

              23 ñåíòÿáðÿ 2010 ã.



                                            1/6
Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå

Îïðåäåëåíèå
Ïóñòü S , W  ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L.
S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒
         S -äîê-âà  íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ):
∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |).




                                                                     2/6
Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå

Îïðåäåëåíèå
Ïóñòü S , W  ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L.
S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒
         S -äîê-âà  íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ):
∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |).
S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S .
Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè)  Res (ìåòîä ðåçîëþöèé).




                                                                     2/6
Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå

Îïðåäåëåíèå
Ïóñòü S , W  ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L.
S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒
         S -äîê-âà  íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ):
∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |).
S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S .
Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè)  Res (ìåòîä ðåçîëþöèé).
Îïðåäåëåíèå
p -ìîäåëèðîâàíèå (≤ )  êîíñòðóêòèâíàÿ âåðñèÿ:
çà ïîëèíîìèàëüíîå âðåìÿ ìîæíî òðàíñôîðìèðîâàòü
                    p




W -äîêàçàòåëüñòâî ðàçìåðà w â S -äîêàçàòåëüñòâî ðàçìåðà p (w ).


                                                                     2/6
Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå

Îïðåäåëåíèå
Ïóñòü S , W  ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L.
S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒
         S -äîê-âà  íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ):
∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |).
S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S .
Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè)  Res (ìåòîä ðåçîëþöèé).
Îïðåäåëåíèå
p -ìîäåëèðîâàíèå (≤ )  êîíñòðóêòèâíàÿ âåðñèÿ:
çà ïîëèíîìèàëüíîå âðåìÿ ìîæíî òðàíñôîðìèðîâàòü
                    p




W -äîêàçàòåëüñòâî ðàçìåðà w â S -äîêàçàòåëüñòâî ðàçìåðà p (w ).

Îïðåäåëåíèå
(p-)îïòèìàëüíàÿ ñèñòåìà äîê-â  íàèìåíüøèé ýëåìåíò äëÿ ≤ (≤ ). 2 / 6
                                                                 p
Ñèñòåìû Ôðåãå
Îïðåäåëåíèå
Ñèñòåìîé Ôðåãå íàçûâàåòñÿ ñèñòåìà, ñîñòîÿùàÿ èç êîððåêòíûõ ïðàâèë âèäà

                            F1 F2         ...   F   k
                                                        ,
                                      G
     F ,G
      i      ôîðìóëû ëîãèêè âûñêàçûâàíèé,

     â êà÷åñòâå ïåðåìåííûõ ìîæíî ïîäñòàâëÿòü ïðîèçâîëüíûå ôîðìóëû ñ
     âûáðàííûì ìíîæåñòâîì îïåðàöèé ( áàçèñîì),

     âûâîä íà÷èíàåòñÿ ñ àêñèîì (ãäå   k = 0),
     íîâûå ôîðìóëû âûâîäÿòñÿ ( ) ïðàâèëàìè èç ðàíåå âûâåäåííûõ.


Ïðèìåð
                       ,                                            ,
     P ⊃ (Q ⊃ P )                 (¬Q ⊃ ¬P ) ⊃ ((¬Q ⊃ P ) ⊃ Q )

      P       P ⊃Q
                   ,                                                .
              Q            (P ⊃ (Q ⊃ R )) ⊃ ((P ⊃ Q ) ⊃ (P ⊃ R ))
                                                                        3/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà           ïîëíà, åñëè F ∈ L   =⇒ ∃   äîê-âî F .




                                                          4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G )
                                       ˜           =⇒ F   ∗   G.




                                                                   4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G .
                                        ˜

Òåîðåìà
Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå
ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà).




                                                               4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G .
                                        ˜

Òåîðåìà
Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå
ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà).
     Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî.




                                                                    4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G .
                                        ˜

Òåîðåìà
Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå
ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà).
     Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî.

     Ïðè ñìåíå áàçèñà   ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè!




                                                                    4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G .
                                        ˜

Òåîðåìà
Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå
ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà).
     Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî.

     Ïðè ñìåíå áàçèñà   ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè!
     Íåïðÿìîé ïåðåâîä:
                                    F = T [G H ],
                  F = ((G        H ) ∧ T [1]) ∨ (¬(G   H ) ∧ T [0]).
     ßñíî, ÷òî ñîáñòâåííî îïåðàöèè ïåðåâîäÿòñÿ íà íèæíåì óðîâíå,
     à óðîâíåé ïîëó÷àåòñÿ   O (log . . .).

                                                                       4/6
Ñèñòåìû Ôðåãå
Ýêâèâàëåíòíîñòü
Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F .
Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G .
                                        ˜

Òåîðåìà
Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå
ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà).
     Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî.

     Ïðè ñìåíå áàçèñà   ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè!
     Íåïðÿìîé ïåðåâîä:
                                    F = T [G H ],
                  F = ((G        H ) ∧ T [1]) ∨ (¬(G   H ) ∧ T [0]).
     ßñíî, ÷òî ñîáñòâåííî îïåðàöèè ïåðåâîäÿòñÿ íà íèæíåì óðîâíå,
     à óðîâíåé ïîëó÷àåòñÿ   O (log . . .).
     Îñòà¼òñÿ íàó÷èòüñÿ ðàáîòàòü ñ òàêèì ïðåäñòàâëåíèåì.

                                                                       4/6
Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå

   Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G
                          k                  l


   Ñìûñë: F ⊃ G .i        j

             i        j




                                                 5/6
Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå

   Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!).
                        k             l


   Ñìûñë: F ⊃ G .
                i       j

            i       j




   Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆.
                                  Γ→∆

   Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬:
         Γ→F,∆              F,Γ→∆       G, Γ → ∆          F,Γ→∆
                    ,                            ,                  ,
       Γ → F ∨ G, ∆            F ∨ G, Γ → ∆              Γ → ¬F , ∆
         F,Γ→∆              Γ→F,∆     Γ → G, ∆            Γ→F,∆
                    ,                          ,                    .
       F ∧ G, Γ → ∆           Γ → F ∧ G, ∆               ¬F , Γ → ∆




                                                                        5/6
Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå

   Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!).
                        k             l


   Ñìûñë: F ⊃ G .
                i       j

            i       j




   Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆.
                                  Γ→∆

   Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬:
         Γ→F,∆              F,Γ→∆       G, Γ → ∆          F,Γ→∆
                    ,                            ,                  ,
       Γ → F ∨ G, ∆            F ∨ G, Γ → ∆              Γ → ¬F , ∆
         F,Γ→∆              Γ→F,∆     Γ → G, ∆            Γ→F,∆
                    ,                          ,                    .
       F ∧ G, Γ → ∆           Γ → F ∧ G, ∆               ¬F , Γ → ∆
   Ïðàâèëî ñå÷åíèÿ:         F,Γ→∆    Γ→F,∆
                                           .
                                  Γ→∆


                                                                        5/6
Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå

   Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!).
                        k             l


   Ñìûñë: F ⊃ G .
                i       j

            i       j




   Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆.
                                  Γ→∆

   Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬:
         Γ→F,∆              F,Γ→∆       G, Γ → ∆          F,Γ→∆
                    ,                            ,                  ,
       Γ → F ∨ G, ∆            F ∨ G, Γ → ∆              Γ → ¬F , ∆
         F,Γ→∆              Γ→F,∆     Γ → G, ∆            Γ→F,∆
                    ,                          ,                    .
       F ∧ G, Γ → ∆           Γ → F ∧ G, ∆               ¬F , Γ → ∆
   Ïðàâèëî ñå÷åíèÿ:         F,Γ→∆    Γ→F,∆
                                           .
                                  Γ→∆
   Ýêâèâàëåíòíû ñèñòåìàì Ôðåãå.
   Ñå÷åíèå âàæíî äëÿ äëèíû âûâîäà, íî íå äëÿ ïîëíîòû.
                                                                        5/6
Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå

   Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!).
                        k             l


   Ñìûñë: F ⊃ G .
                i       j

            i       j




   Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆.
                                  Γ→∆

   Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬:
         Γ→F,∆              F,Γ→∆       G, Γ → ∆          F,Γ→∆
                    ,                            ,                  ,
       Γ → F ∨ G, ∆            F ∨ G, Γ → ∆              Γ → ¬F , ∆
         F,Γ→∆              Γ→F,∆     Γ → G, ∆            Γ→F,∆
                    ,                          ,                    .
       F ∧ G, Γ → ∆           Γ → F ∧ G, ∆               ¬F , Γ → ∆
   Ïðàâèëî ñå÷åíèÿ:         F,Γ→∆    Γ→F,∆
                                           .
                                  Γ→∆
   Ýêâèâàëåíòíû ñèñòåìàì Ôðåãå.
   Ñå÷åíèå âàæíî äëÿ äëèíû âûâîäà, íî íå äëÿ ïîëíîòû.
   Äîêàçàòåëüñòâî îò ïðîòèâíîãî î÷åâèäíî ïðåîáðàçóåòñÿ â ïðÿìîå.5 / 6
Ïðàâèëî ðàñøèðåíèÿ

 Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F .
Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ!
(Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ).
                                               k                        k




                                                                            6/6
Ïðàâèëî ðàñøèðåíèÿ

 Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F .
Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ!
(Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ).
                                               k                        k




Êîðîòêîå äîêàçàòåëüñòâî ïðèíöèïà Äèðèõëå:
äîêàçûâàåì ïî èíäóêöèè (n + 1 → n → . . .), ââîäÿ íîâûå ïåðåìåííûå,
î÷åðåäíîå m-å îòîáðàæåíèå ñåëèò m êðîëèêîâ â m − 1 êëåòîê;
òåõ, êòî ñèäåë, êàê íàäî (j  m), îñòàâëÿåì;
â êëåòêó, ãäå áûë (m + 1)-é, ñåëèì òîãî, êòî ñèäåë â m-é êëåòêå:



                                                                            6/6
Ïðàâèëî ðàñøèðåíèÿ

 Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F .
Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ!
(Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ).
                                                                k                k




Êîðîòêîå äîêàçàòåëüñòâî ïðèíöèïà Äèðèõëå:
äîêàçûâàåì ïî èíäóêöèè (n + 1 → n → . . .), ââîäÿ íîâûå ïåðåìåííûå,
î÷åðåäíîå m-å îòîáðàæåíèå ñåëèò m êðîëèêîâ â m − 1 êëåòîê;
òåõ, êòî ñèäåë, êàê íàäî (j  m), îñòàâëÿåì;
â êëåòêó, ãäå áûë (m + 1)-é, ñåëèì òîãî, êòî ñèäåë â m-é êëåòêå:
                                          +1)          (m+1)        (m+1)
                      q (, ) ≡ q (,
                       i
                           m

                           j     i
                                     m

                                      j
                                                ∨ (q
                                                   m    +1, j   ∧q, i m
                                                                            ),
                      q (, +1) ≡ p , .
                       i
                           n

                           j          i   j




                                                                                     6/6

More Related Content

More from Computer Science Club

20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugsComputer Science Club
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12Computer Science Club
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11Computer Science Club
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10Computer Science Club
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09Computer Science Club
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02Computer Science Club
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01Computer Science Club
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04Computer Science Club
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01Computer Science Club
 

More from Computer Science Club (20)

20141223 kuznetsov distributed
20141223 kuznetsov distributed20141223 kuznetsov distributed
20141223 kuznetsov distributed
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04
 
20140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-0320140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-03
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01
 
20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 

20100923 proof complexity_hirsch_lecture02

  • 1. Ñëîæíîñòü ïðîïîçèöèîíàëüíûõ äîêàçàòåëüñòâ Ýäóàðä Àëåêñååâè÷ Ãèðø http://logic.pdmi.ras.ru/~hirsch ÏÎÌÈ ÐÀÍ 23 ñåíòÿáðÿ 2010 ã. 1/6
  • 2. Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå Îïðåäåëåíèå Ïóñòü S , W ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L. S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒ S -äîê-âà íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ): ∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |). 2/6
  • 3. Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå Îïðåäåëåíèå Ïóñòü S , W ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L. S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒ S -äîê-âà íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ): ∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |). S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S . Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè) Res (ìåòîä ðåçîëþöèé). 2/6
  • 4. Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå Îïðåäåëåíèå Ïóñòü S , W ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L. S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒ S -äîê-âà íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ): ∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |). S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S . Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè) Res (ìåòîä ðåçîëþöèé). Îïðåäåëåíèå p -ìîäåëèðîâàíèå (≤ ) êîíñòðóêòèâíàÿ âåðñèÿ: çà ïîëèíîìèàëüíîå âðåìÿ ìîæíî òðàíñôîðìèðîâàòü p W -äîêàçàòåëüñòâî ðàçìåðà w â S -äîêàçàòåëüñòâî ðàçìåðà p (w ). 2/6
  • 5. Ïîëèíîìèàëüíîå ìîäåëèðîâàíèå Îïðåäåëåíèå Ïóñòü S , W ñèñòåìû äëÿ îäíîãî è òîãî æå ÿçûêà L. S ìîäåëèðóåò W (ïèøåì S ≤W ) ⇐⇒ S -äîê-âà íå äëèííåå W -äîê-â (ñ òî÷íîñòüþ äî ïîëèíîìà p ): ∀F ∈ L |êðàò÷àéøåå S -äîê-âî äëÿ F | ≤ p (|êðàò÷àéøåå W -äîê-âî äëÿ F |). S ñòðîãî ìîäåëèðóåò W (ïèøåì S W ), åñëè åù¼ è W ≤ S . Íàïðèìåð, CP (ñåêóùèå ïëîñêîñòè) Res (ìåòîä ðåçîëþöèé). Îïðåäåëåíèå p -ìîäåëèðîâàíèå (≤ ) êîíñòðóêòèâíàÿ âåðñèÿ: çà ïîëèíîìèàëüíîå âðåìÿ ìîæíî òðàíñôîðìèðîâàòü p W -äîêàçàòåëüñòâî ðàçìåðà w â S -äîêàçàòåëüñòâî ðàçìåðà p (w ). Îïðåäåëåíèå (p-)îïòèìàëüíàÿ ñèñòåìà äîê-â íàèìåíüøèé ýëåìåíò äëÿ ≤ (≤ ). 2 / 6 p
  • 6. Ñèñòåìû Ôðåãå Îïðåäåëåíèå Ñèñòåìîé Ôðåãå íàçûâàåòñÿ ñèñòåìà, ñîñòîÿùàÿ èç êîððåêòíûõ ïðàâèë âèäà F1 F2 ... F k , G F ,G i ôîðìóëû ëîãèêè âûñêàçûâàíèé, â êà÷åñòâå ïåðåìåííûõ ìîæíî ïîäñòàâëÿòü ïðîèçâîëüíûå ôîðìóëû ñ âûáðàííûì ìíîæåñòâîì îïåðàöèé ( áàçèñîì), âûâîä íà÷èíàåòñÿ ñ àêñèîì (ãäå k = 0), íîâûå ôîðìóëû âûâîäÿòñÿ ( ) ïðàâèëàìè èç ðàíåå âûâåäåííûõ. Ïðèìåð , , P ⊃ (Q ⊃ P ) (¬Q ⊃ ¬P ) ⊃ ((¬Q ⊃ P ) ⊃ Q ) P P ⊃Q , . Q (P ⊃ (Q ⊃ R )) ⊃ ((P ⊃ Q ) ⊃ (P ⊃ R )) 3/6
  • 7. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà ïîëíà, åñëè F ∈ L =⇒ ∃ äîê-âî F . 4/6
  • 8. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) ˜ =⇒ F ∗ G. 4/6
  • 9. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G . ˜ Òåîðåìà Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà). 4/6
  • 10. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G . ˜ Òåîðåìà Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà). Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî. 4/6
  • 11. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G . ˜ Òåîðåìà Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà). Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî. Ïðè ñìåíå áàçèñà ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè! 4/6
  • 12. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G . ˜ Òåîðåìà Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà). Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî. Ïðè ñìåíå áàçèñà ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè! Íåïðÿìîé ïåðåâîä: F = T [G H ], F = ((G H ) ∧ T [1]) ∨ (¬(G H ) ∧ T [0]). ßñíî, ÷òî ñîáñòâåííî îïåðàöèè ïåðåâîäÿòñÿ íà íèæíåì óðîâíå, à óðîâíåé ïîëó÷àåòñÿ O (log . . .). 4/6
  • 13. Ñèñòåìû Ôðåãå Ýêâèâàëåíòíîñòü Ñèñòåìà Ôðåãå ïîëíà, åñëè F ∈ L =⇒ ∗ F . Ñèñòåìà Ôðåãå èìïëèêàòèâíî ïîëíà, åñëè ∀(F ⊃ G ) =⇒ F ∗ G . ˜ Òåîðåìà Âñå êîððåêòíûå ïîëíûå èìïëèêàòèâíî ïîëíûå ñèñòåìû Ôðåãå ïîëèíîìèàëüíî p-ýêâèâàëåíòíû (ò.å. p-ìîäåëèðóþò äðóã äðóãà). Äîê-âî äëÿ îäèíàêîâûõ áàçèñîâ: ïðîìîäåëèðóåì êàæäîå ïðàâèëî. Ïðè ñìåíå áàçèñà ãëóáîêèå ôîðìóëû ìîãóò âûðàñòè! Íåïðÿìîé ïåðåâîä: F = T [G H ], F = ((G H ) ∧ T [1]) ∨ (¬(G H ) ∧ T [0]). ßñíî, ÷òî ñîáñòâåííî îïåðàöèè ïåðåâîäÿòñÿ íà íèæíåì óðîâíå, à óðîâíåé ïîëó÷àåòñÿ O (log . . .). Îñòà¼òñÿ íàó÷èòüñÿ ðàáîòàòü ñ òàêèì ïðåäñòàâëåíèåì. 4/6
  • 14. Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G k l Ñìûñë: F ⊃ G .i j i j 5/6
  • 15. Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!). k l Ñìûñë: F ⊃ G . i j i j Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆. Γ→∆ Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬: Γ→F,∆ F,Γ→∆ G, Γ → ∆ F,Γ→∆ , , , Γ → F ∨ G, ∆ F ∨ G, Γ → ∆ Γ → ¬F , ∆ F,Γ→∆ Γ→F,∆ Γ → G, ∆ Γ→F,∆ , , . F ∧ G, Γ → ∆ Γ → F ∧ G, ∆ ¬F , Γ → ∆ 5/6
  • 16. Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!). k l Ñìûñë: F ⊃ G . i j i j Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆. Γ→∆ Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬: Γ→F,∆ F,Γ→∆ G, Γ → ∆ F,Γ→∆ , , , Γ → F ∨ G, ∆ F ∨ G, Γ → ∆ Γ → ¬F , ∆ F,Γ→∆ Γ→F,∆ Γ → G, ∆ Γ→F,∆ , , . F ∧ G, Γ → ∆ Γ → F ∧ G, ∆ ¬F , Γ → ∆ Ïðàâèëî ñå÷åíèÿ: F,Γ→∆ Γ→F,∆ . Γ→∆ 5/6
  • 17. Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!). k l Ñìûñë: F ⊃ G . i j i j Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆. Γ→∆ Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬: Γ→F,∆ F,Γ→∆ G, Γ → ∆ F,Γ→∆ , , , Γ → F ∨ G, ∆ F ∨ G, Γ → ∆ Γ → ¬F , ∆ F,Γ→∆ Γ→F,∆ Γ → G, ∆ Γ→F,∆ , , . F ∧ G, Γ → ∆ Γ → F ∧ G, ∆ ¬F , Γ → ∆ Ïðàâèëî ñå÷åíèÿ: F,Γ→∆ Γ→F,∆ . Γ→∆ Ýêâèâàëåíòíû ñèñòåìàì Ôðåãå. Ñå÷åíèå âàæíî äëÿ äëèíû âûâîäà, íî íå äëÿ ïîëíîòû. 5/6
  • 18. Ñåêâåíöèàëüíîå (ãåíöåíîâñêîå) èñ÷èñëåíèå Ñåêâåíöèÿ F1, . . . , F → G1, . . . , G (ñïèñêè êàê ìíîæåñòâà!). k l Ñìûñë: F ⊃ G . i j i j Àêñèîìû F → F , îñëàáëåíèå F , Γ → G , ∆. Γ→∆ Ïðàâèëà ââåäåíèÿ ∧, ∨, ¬: Γ→F,∆ F,Γ→∆ G, Γ → ∆ F,Γ→∆ , , , Γ → F ∨ G, ∆ F ∨ G, Γ → ∆ Γ → ¬F , ∆ F,Γ→∆ Γ→F,∆ Γ → G, ∆ Γ→F,∆ , , . F ∧ G, Γ → ∆ Γ → F ∧ G, ∆ ¬F , Γ → ∆ Ïðàâèëî ñå÷åíèÿ: F,Γ→∆ Γ→F,∆ . Γ→∆ Ýêâèâàëåíòíû ñèñòåìàì Ôðåãå. Ñå÷åíèå âàæíî äëÿ äëèíû âûâîäà, íî íå äëÿ ïîëíîòû. Äîêàçàòåëüñòâî îò ïðîòèâíîãî î÷åâèäíî ïðåîáðàçóåòñÿ â ïðÿìîå.5 / 6
  • 19. Ïðàâèëî ðàñøèðåíèÿ Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F . Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ! (Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ). k k 6/6
  • 20. Ïðàâèëî ðàñøèðåíèÿ Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F . Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ! (Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ). k k Êîðîòêîå äîêàçàòåëüñòâî ïðèíöèïà Äèðèõëå: äîêàçûâàåì ïî èíäóêöèè (n + 1 → n → . . .), ââîäÿ íîâûå ïåðåìåííûå, î÷åðåäíîå m-å îòîáðàæåíèå ñåëèò m êðîëèêîâ â m − 1 êëåòîê; òåõ, êòî ñèäåë, êàê íàäî (j m), îñòàâëÿåì; â êëåòêó, ãäå áûë (m + 1)-é, ñåëèì òîãî, êòî ñèäåë â m-é êëåòêå: 6/6
  • 21. Ïðàâèëî ðàñøèðåíèÿ Ðàçðåøèì ââîäèòü íîâûå ïåðåìåííûå: àêñèîìà x ≡ F . Ôðåãå ñ ïðàâèëîì ðàñøèðåíèÿ ≡ ðåçîëþöèè ñ ïðàâèëîì ðàñøèðåíèÿ! (Äëÿ ðåçîëþöèè: àêñèîìû (¬x ∨ a1 ∨ . . . ∨ a ) è (¬a1 ∨ x ), . . . , (¬a ∨ x ). k k Êîðîòêîå äîêàçàòåëüñòâî ïðèíöèïà Äèðèõëå: äîêàçûâàåì ïî èíäóêöèè (n + 1 → n → . . .), ââîäÿ íîâûå ïåðåìåííûå, î÷åðåäíîå m-å îòîáðàæåíèå ñåëèò m êðîëèêîâ â m − 1 êëåòîê; òåõ, êòî ñèäåë, êàê íàäî (j m), îñòàâëÿåì; â êëåòêó, ãäå áûë (m + 1)-é, ñåëèì òîãî, êòî ñèäåë â m-é êëåòêå: +1) (m+1) (m+1) q (, ) ≡ q (, i m j i m j ∨ (q m +1, j ∧q, i m ), q (, +1) ≡ p , . i n j i j 6/6