MAT225 TEST4A Name:
Show all work algebraically if possible.
(1) Double Integrals (Cartesian Coordinates)
0
1
∫
𝑦
2
1
2
∫ 𝑒
−𝑥
2
𝑑𝑥𝑑𝑦
(1a) Describe the region R over which we are integrating.
(1b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥.
(1b) Evaluate the new integral over said region R.
TEST4A page: 1
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 2
MAT225 TEST4A Name:
Show all work algebraically if possible.
(2) Double Integrals (Polar Coordinates)
0
3
∫
0
9−𝑥
2
∫ 𝑥 𝑑𝑦𝑑𝑥
(2a) Describe the region R over which we are integrating.
(2b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ.
(2b) Evaluate the new integral over said region R.
TEST4A page: 3
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 4
MAT225 TEST4A Name:
Show all work algebraically if possible.
(3) Double Integrals (Polar Coordinates)
𝑆 = ∫
𝑅
∫ 1 + 𝑓𝑥
2
+ 𝑓𝑦
2
𝑑𝐴
(3) Find the surface area of in the first octant.
𝑧 = 16 − 𝑥
2
− 𝑦
2
(3a) Write the integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥.
(3b) Rewrite this integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ.
(3c) Evaluate the new integral to find S.
TEST4A page: 5
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 6
MAT225 TEST4A Name:
Show all work algebraically if possible.
(4) Triple Integrals (Cylindrical Coordinates)
(4) Find the volume of the solid bounded by and z=0.
𝑧 = 16 − 𝑥
2
− 𝑦
2
(4a) Write the integral such that the volume element 𝑑𝑉 = 𝑑𝑧𝑑𝑦𝑑𝑥.
(4b) Rewrite this integral such that the volume element 𝑑𝑉 = 𝑟𝑑𝑧𝑑𝑟𝑑θ.
(4c) Evaluate the new integral to find V.
TEST4A page: 7
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 8
MAT225 TEST4A Name:
Show all work algebraically if possible.
(5) Triple Integrals (Spherical Coordinates)
𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ)
𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ)
𝑧 = ρ 𝑐𝑜𝑠(ϕ)
ρ
2
= 𝑟
2
+ 𝑧
2
= 𝑥
2
+ 𝑦
2
+ 𝑧
2
(5) Find the coordinates of the center of mass ( ) for the solid bounded by the
𝑥, 𝑦, 𝑧
upper half of the sphere and z=0 with variable density
ρ = 6 δ(ρ, ϕ, θ) = 1 +
ρ
4
(5a) Find the total mass, m=∫∫
𝑄
∫ δ(ρ, ϕ, θ) 𝑑𝑉
(5b) Find 𝑥 =
1
𝑚
∫∫
𝑄
∫ 𝑥 δ(ρ, ϕ, θ) 𝑑𝑉
(5c) Find 𝑦 =
1
𝑚
∫∫
𝑄
∫ 𝑦 δ(ρ, ϕ, θ) 𝑑𝑉
TEST4A page: 9
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 10
MAT225 TEST4A Name:
Show all work algebraically if possible.
(5) Triple Integrals (Spherical Coordinates)
𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ)
𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ)
𝑧 = ρ 𝑐𝑜𝑠(ϕ)
ρ
2
= 𝑟
2
+ 𝑧
2
= 𝑥
2
+ 𝑦
2
+ 𝑧
2
(5) Find the coordinates of the center of mass ( ) for the solid bounded by the
𝑥, 𝑦, 𝑧
upper half of the sphere and z=0 with variable density
ρ = 6 δ(ρ, ϕ, θ) = 1 +
ρ
4
(5d) Find 𝑧 =
1
𝑚
∫∫
𝑄
∫ 𝑧 δ(ρ, ϕ, θ) 𝑑𝑉
TEST4A page: 11
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 12
MAT225 TEST4A Name:
Show all work algebraically if possible.
(6) Line Integrals
Find the work done by the force field F(x,y) = <x,2y> done on a particle
moving along the path C: y = from the point (0,0) to the point (2,8).
𝑥
3
F = <M,N>
<M,N><dx,dy> =
𝑊 =
𝐶
∫ 𝐹𝑑𝑟 =
𝐶
∫
𝐶
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
(6a) Parametrize the path C in terms of a single parameter t.
(6b) Write the Line Integral for Work in terms of t.
(6c) Evaluate your integral from t = 0 to t = 2.
TEST4A page: 13
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 14
MAT225 TEST4A Name:
Show all work algebraically if possible.
(7) Fundamental Theorem of Line Integrals
F = <M,N> = <2xy, 𝑥
2
+ 𝑦
2
>
(7a) Show that F is a Conservative Vector Field.
(7b) Find the Potential Function f(x,y) for the Vector Field F.
(7c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C:
𝐶
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝑥
2
25
+
𝑦
2
16
= 1
TEST4A page: 15
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 16
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8a) Parametrize the path C1: along the curve from (0,0) to (1,1) in terms of t.
𝑦 = 𝑥
2
(8b) Use this parametrization to find the work done:
<M,N><dx,dy> =
𝑊 =
𝐶1
∫
𝐶1
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
TEST4A page: 17
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 18
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8c) Parametrize the path C2: along the curve from (1,1) to (0,0) in terms of t.
𝑦 = 𝑥
(8d) Use this parametrization to find the work done:
<M,N><dx,dy> =
𝑊 =
𝐶2
∫
𝐶2
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
TEST4A page: 19
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 20
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8e) Verify Green’s Theorem for Work in the Plane.
TEST4A page: 21
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 22
MAT225 TEST4A Name:
Show all work algebraically if possible.
(9) Surface Integrals
Given the density function ρ
ρ(𝑥, 𝑦, 𝑧) = 𝑥 − 2𝑦 + 𝑧
find the mass of the planar region S
𝑧 = 4 − 𝑥, 0 ≤ 𝑥 ≤ 4, 0 ≤ 𝑦 ≤ 3
(9a) State the surface area element such that dA = dydx.
𝑑𝑆 = 1 + 𝑓𝑥
2
+ 𝑓𝑦
2
𝑑𝐴
(9b) Evaluate the surface integral
𝑆 = ∫
𝑅
∫ ρ(𝑥, 𝑦, 𝑧)𝑑𝑆
TEST4A page: 23
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 24
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold!
Power Functions:
𝑑
𝑑𝑥
𝑥
𝑛
= 𝑛𝑥
𝑛−1
Trig Functions:
𝑑
𝑑𝑥
𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥)
𝑑
𝑑𝑥
𝑐𝑜𝑠(𝑥) = − 𝑠𝑖𝑛(𝑥)
𝑑
𝑑𝑥
𝑡𝑎𝑛(𝑥) = 𝑠𝑒𝑐
2
(𝑥)
𝑑
𝑑𝑥
𝑐𝑜𝑡(𝑥) = − 𝑐𝑠𝑐
2
(𝑥)
𝑑
𝑑𝑥
𝑠𝑒𝑐(𝑥) = 𝑠𝑒𝑐(𝑥) 𝑡𝑎𝑛(𝑥)
𝑑
𝑑𝑥
𝑐𝑠𝑐(𝑥) = − 𝑐𝑠𝑐(𝑥) 𝑐𝑜𝑡(𝑥)
Transcendental Functions:
𝑑
𝑑𝑥
𝑒
𝑥
= 𝑒
𝑥 𝑑
𝑑𝑥
𝑎
𝑥
= 𝑙𝑛(𝑎) 𝑎
𝑥
𝑑
𝑑𝑥
𝑙𝑛(𝑥) =
1
𝑥
𝑑
𝑑𝑥
𝑙𝑜𝑔𝑎
(𝑥) =
1
𝑙𝑛(𝑎)
1
𝑥
Inverse Trig Functions:
𝑑
𝑑𝑥
𝑠𝑖𝑛
−1
(𝑥) =
1
1−𝑥
2
𝑑
𝑑𝑥
𝑐𝑜𝑠
−1
(𝑥) =
−1
1−𝑥
2
𝑑
𝑑𝑥
𝑡𝑎𝑛
−1
(𝑥) =
1
1+𝑥
2
𝑑
𝑑𝑥
𝑐𝑜𝑡
−1
(𝑥) =
−1
1+𝑥
2
Product Rule:
𝑑
𝑑𝑥
𝑓(𝑥) 𝑔(𝑥) = 𝑓(𝑥) 𝑔'(𝑥) + 𝑔(𝑥) 𝑓'(𝑥)
Quotient Rule:
𝑑
𝑑𝑥
𝑓(𝑥)
𝑔(𝑥)
=
𝑔(𝑥) 𝑓'(𝑥) − 𝑓(𝑥) 𝑔'(𝑥)
𝑔
2
(𝑥)
Chain Rule:
𝑑
𝑑𝑥
𝑓(𝑔(𝑥)) = 𝑓'(𝑔(𝑥)) 𝑔'(𝑥)
Difference Quotient:
f’(x) =
ℎ 0
lim
→
𝑓(𝑥+ℎ) − 𝑓(𝑥)
ℎ
TEST4A page: 25
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Anti-Derivatives You Should Know Cold!
Power Functions:
∫ 𝑥
𝑛
𝑑𝑥 = 𝑛𝑥
𝑛−1
Trig Functions:
∫ 𝑐𝑜𝑠(𝑥)𝑑𝑥 = 𝑠𝑖𝑛(𝑥) + 𝐶 ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = − 𝑐𝑜𝑠(𝑥) + 𝐶
∫ 𝑠𝑒𝑐
2
(𝑥)𝑑𝑥 = 𝑡𝑎𝑛(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐
2
(𝑥)𝑑𝑥 = − 𝑐𝑜𝑡(𝑥) + 𝐶
∫ 𝑠𝑒𝑐(𝑥)𝑡𝑎𝑛(𝑥)𝑑𝑥 = 𝑠𝑒𝑐(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐(𝑥)𝑐𝑜𝑠(𝑥)𝑑𝑥 = − 𝑐𝑠𝑐(𝑥) + 𝐶
Transcendental Functions:
∫ 𝑒
𝑥
𝑑𝑥 = 𝑒
𝑥
+ 𝐶 ∫ 𝑎
𝑥
𝑑𝑥 =
𝑎
𝑥
𝑙𝑛(𝑎)
+ 𝐶
∫
1
𝑥
𝑑𝑥 = 𝑙𝑛(𝑥) + 𝐶 ∫
1
𝑙𝑛(𝑎)
1
𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑎
(𝑥) + 𝐶
Inverse Trig Functions:
∫
1
1−𝑥
2
𝑑𝑥 = 𝑠𝑖𝑛
−1
(𝑥) + 𝐶 ∫
−1
1−𝑥
2
𝑑𝑥 = 𝑐𝑜𝑠(𝑥) + 𝐶
∫
1
1+𝑥
2 𝑑𝑥 = 𝑡𝑎𝑛
−1
(𝑥) + 𝐶 ∫
−1
1+𝑥
2 𝑑𝑥 = 𝑐𝑜𝑡
−1
(𝑥) + 𝐶
Integration By Parts (Product Rule):
∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 + 𝐶
Integration By Partial Fractions Example (Quotient Rule):
∫
𝑑𝑥
𝑥(𝑥+1)
= ∫
𝐴𝑑𝑥
𝑥
+ ∫
𝐵𝑑𝑥
𝑥+1
TEST4A page: 26

2021 preTEST4A Vector Calculus

  • 1.
    MAT225 TEST4A Name: Showall work algebraically if possible. (1) Double Integrals (Cartesian Coordinates) 0 1 ∫ 𝑦 2 1 2 ∫ 𝑒 −𝑥 2 𝑑𝑥𝑑𝑦 (1a) Describe the region R over which we are integrating. (1b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥. (1b) Evaluate the new integral over said region R. TEST4A page: 1
  • 2.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 2
  • 3.
    MAT225 TEST4A Name: Showall work algebraically if possible. (2) Double Integrals (Polar Coordinates) 0 3 ∫ 0 9−𝑥 2 ∫ 𝑥 𝑑𝑦𝑑𝑥 (2a) Describe the region R over which we are integrating. (2b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ. (2b) Evaluate the new integral over said region R. TEST4A page: 3
  • 4.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 4
  • 5.
    MAT225 TEST4A Name: Showall work algebraically if possible. (3) Double Integrals (Polar Coordinates) 𝑆 = ∫ 𝑅 ∫ 1 + 𝑓𝑥 2 + 𝑓𝑦 2 𝑑𝐴 (3) Find the surface area of in the first octant. 𝑧 = 16 − 𝑥 2 − 𝑦 2 (3a) Write the integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥. (3b) Rewrite this integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ. (3c) Evaluate the new integral to find S. TEST4A page: 5
  • 6.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 6
  • 7.
    MAT225 TEST4A Name: Showall work algebraically if possible. (4) Triple Integrals (Cylindrical Coordinates) (4) Find the volume of the solid bounded by and z=0. 𝑧 = 16 − 𝑥 2 − 𝑦 2 (4a) Write the integral such that the volume element 𝑑𝑉 = 𝑑𝑧𝑑𝑦𝑑𝑥. (4b) Rewrite this integral such that the volume element 𝑑𝑉 = 𝑟𝑑𝑧𝑑𝑟𝑑θ. (4c) Evaluate the new integral to find V. TEST4A page: 7
  • 8.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 8
  • 9.
    MAT225 TEST4A Name: Showall work algebraically if possible. (5) Triple Integrals (Spherical Coordinates) 𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ) 𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ) 𝑧 = ρ 𝑐𝑜𝑠(ϕ) ρ 2 = 𝑟 2 + 𝑧 2 = 𝑥 2 + 𝑦 2 + 𝑧 2 (5) Find the coordinates of the center of mass ( ) for the solid bounded by the 𝑥, 𝑦, 𝑧 upper half of the sphere and z=0 with variable density ρ = 6 δ(ρ, ϕ, θ) = 1 + ρ 4 (5a) Find the total mass, m=∫∫ 𝑄 ∫ δ(ρ, ϕ, θ) 𝑑𝑉 (5b) Find 𝑥 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑥 δ(ρ, ϕ, θ) 𝑑𝑉 (5c) Find 𝑦 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑦 δ(ρ, ϕ, θ) 𝑑𝑉 TEST4A page: 9
  • 10.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 10
  • 11.
    MAT225 TEST4A Name: Showall work algebraically if possible. (5) Triple Integrals (Spherical Coordinates) 𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ) 𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ) 𝑧 = ρ 𝑐𝑜𝑠(ϕ) ρ 2 = 𝑟 2 + 𝑧 2 = 𝑥 2 + 𝑦 2 + 𝑧 2 (5) Find the coordinates of the center of mass ( ) for the solid bounded by the 𝑥, 𝑦, 𝑧 upper half of the sphere and z=0 with variable density ρ = 6 δ(ρ, ϕ, θ) = 1 + ρ 4 (5d) Find 𝑧 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑧 δ(ρ, ϕ, θ) 𝑑𝑉 TEST4A page: 11
  • 12.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 12
  • 13.
    MAT225 TEST4A Name: Showall work algebraically if possible. (6) Line Integrals Find the work done by the force field F(x,y) = <x,2y> done on a particle moving along the path C: y = from the point (0,0) to the point (2,8). 𝑥 3 F = <M,N> <M,N><dx,dy> = 𝑊 = 𝐶 ∫ 𝐹𝑑𝑟 = 𝐶 ∫ 𝐶 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 (6a) Parametrize the path C in terms of a single parameter t. (6b) Write the Line Integral for Work in terms of t. (6c) Evaluate your integral from t = 0 to t = 2. TEST4A page: 13
  • 14.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 14
  • 15.
    MAT225 TEST4A Name: Showall work algebraically if possible. (7) Fundamental Theorem of Line Integrals F = <M,N> = <2xy, 𝑥 2 + 𝑦 2 > (7a) Show that F is a Conservative Vector Field. (7b) Find the Potential Function f(x,y) for the Vector Field F. (7c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C: 𝐶 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 𝑥 2 25 + 𝑦 2 16 = 1 TEST4A page: 15
  • 16.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 16
  • 17.
    MAT225 TEST4A Name: Showall work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8a) Parametrize the path C1: along the curve from (0,0) to (1,1) in terms of t. 𝑦 = 𝑥 2 (8b) Use this parametrization to find the work done: <M,N><dx,dy> = 𝑊 = 𝐶1 ∫ 𝐶1 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 TEST4A page: 17
  • 18.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 18
  • 19.
    MAT225 TEST4A Name: Showall work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8c) Parametrize the path C2: along the curve from (1,1) to (0,0) in terms of t. 𝑦 = 𝑥 (8d) Use this parametrization to find the work done: <M,N><dx,dy> = 𝑊 = 𝐶2 ∫ 𝐶2 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 TEST4A page: 19
  • 20.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 20
  • 21.
    MAT225 TEST4A Name: Showall work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8e) Verify Green’s Theorem for Work in the Plane. TEST4A page: 21
  • 22.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 22
  • 23.
    MAT225 TEST4A Name: Showall work algebraically if possible. (9) Surface Integrals Given the density function ρ ρ(𝑥, 𝑦, 𝑧) = 𝑥 − 2𝑦 + 𝑧 find the mass of the planar region S 𝑧 = 4 − 𝑥, 0 ≤ 𝑥 ≤ 4, 0 ≤ 𝑦 ≤ 3 (9a) State the surface area element such that dA = dydx. 𝑑𝑆 = 1 + 𝑓𝑥 2 + 𝑓𝑦 2 𝑑𝐴 (9b) Evaluate the surface integral 𝑆 = ∫ 𝑅 ∫ ρ(𝑥, 𝑦, 𝑧)𝑑𝑆 TEST4A page: 23
  • 24.
    MAT225 TEST4A Name: Showall work algebraically if possible. TEST4A page: 24
  • 25.
    MAT225 TEST4A Name: Showall work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold! Power Functions: 𝑑 𝑑𝑥 𝑥 𝑛 = 𝑛𝑥 𝑛−1 Trig Functions: 𝑑 𝑑𝑥 𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥) 𝑑 𝑑𝑥 𝑐𝑜𝑠(𝑥) = − 𝑠𝑖𝑛(𝑥) 𝑑 𝑑𝑥 𝑡𝑎𝑛(𝑥) = 𝑠𝑒𝑐 2 (𝑥) 𝑑 𝑑𝑥 𝑐𝑜𝑡(𝑥) = − 𝑐𝑠𝑐 2 (𝑥) 𝑑 𝑑𝑥 𝑠𝑒𝑐(𝑥) = 𝑠𝑒𝑐(𝑥) 𝑡𝑎𝑛(𝑥) 𝑑 𝑑𝑥 𝑐𝑠𝑐(𝑥) = − 𝑐𝑠𝑐(𝑥) 𝑐𝑜𝑡(𝑥) Transcendental Functions: 𝑑 𝑑𝑥 𝑒 𝑥 = 𝑒 𝑥 𝑑 𝑑𝑥 𝑎 𝑥 = 𝑙𝑛(𝑎) 𝑎 𝑥 𝑑 𝑑𝑥 𝑙𝑛(𝑥) = 1 𝑥 𝑑 𝑑𝑥 𝑙𝑜𝑔𝑎 (𝑥) = 1 𝑙𝑛(𝑎) 1 𝑥 Inverse Trig Functions: 𝑑 𝑑𝑥 𝑠𝑖𝑛 −1 (𝑥) = 1 1−𝑥 2 𝑑 𝑑𝑥 𝑐𝑜𝑠 −1 (𝑥) = −1 1−𝑥 2 𝑑 𝑑𝑥 𝑡𝑎𝑛 −1 (𝑥) = 1 1+𝑥 2 𝑑 𝑑𝑥 𝑐𝑜𝑡 −1 (𝑥) = −1 1+𝑥 2 Product Rule: 𝑑 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) = 𝑓(𝑥) 𝑔'(𝑥) + 𝑔(𝑥) 𝑓'(𝑥) Quotient Rule: 𝑑 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) = 𝑔(𝑥) 𝑓'(𝑥) − 𝑓(𝑥) 𝑔'(𝑥) 𝑔 2 (𝑥) Chain Rule: 𝑑 𝑑𝑥 𝑓(𝑔(𝑥)) = 𝑓'(𝑔(𝑥)) 𝑔'(𝑥) Difference Quotient: f’(x) = ℎ 0 lim → 𝑓(𝑥+ℎ) − 𝑓(𝑥) ℎ TEST4A page: 25
  • 26.
    MAT225 TEST4A Name: Showall work algebraically if possible. Reference Sheet: Anti-Derivatives You Should Know Cold! Power Functions: ∫ 𝑥 𝑛 𝑑𝑥 = 𝑛𝑥 𝑛−1 Trig Functions: ∫ 𝑐𝑜𝑠(𝑥)𝑑𝑥 = 𝑠𝑖𝑛(𝑥) + 𝐶 ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = − 𝑐𝑜𝑠(𝑥) + 𝐶 ∫ 𝑠𝑒𝑐 2 (𝑥)𝑑𝑥 = 𝑡𝑎𝑛(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐 2 (𝑥)𝑑𝑥 = − 𝑐𝑜𝑡(𝑥) + 𝐶 ∫ 𝑠𝑒𝑐(𝑥)𝑡𝑎𝑛(𝑥)𝑑𝑥 = 𝑠𝑒𝑐(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐(𝑥)𝑐𝑜𝑠(𝑥)𝑑𝑥 = − 𝑐𝑠𝑐(𝑥) + 𝐶 Transcendental Functions: ∫ 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 + 𝐶 ∫ 𝑎 𝑥 𝑑𝑥 = 𝑎 𝑥 𝑙𝑛(𝑎) + 𝐶 ∫ 1 𝑥 𝑑𝑥 = 𝑙𝑛(𝑥) + 𝐶 ∫ 1 𝑙𝑛(𝑎) 1 𝑥 𝑑𝑥 = 𝑙𝑜𝑔𝑎 (𝑥) + 𝐶 Inverse Trig Functions: ∫ 1 1−𝑥 2 𝑑𝑥 = 𝑠𝑖𝑛 −1 (𝑥) + 𝐶 ∫ −1 1−𝑥 2 𝑑𝑥 = 𝑐𝑜𝑠(𝑥) + 𝐶 ∫ 1 1+𝑥 2 𝑑𝑥 = 𝑡𝑎𝑛 −1 (𝑥) + 𝐶 ∫ −1 1+𝑥 2 𝑑𝑥 = 𝑐𝑜𝑡 −1 (𝑥) + 𝐶 Integration By Parts (Product Rule): ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 + 𝐶 Integration By Partial Fractions Example (Quotient Rule): ∫ 𝑑𝑥 𝑥(𝑥+1) = ∫ 𝐴𝑑𝑥 𝑥 + ∫ 𝐵𝑑𝑥 𝑥+1 TEST4A page: 26