SlideShare a Scribd company logo
1 of 88
Genotype x Environment
Interactions
Analyses of Multiple Location Trials
Previous Class
Why do researchers conduct experiments
over multiple locations and multiple times?
What causes genotype x environment
interactions?
What is the difference between a ‘true’
interaction and a scalar interaction?
What environments can be considered to
be controlled, partially controlled or nor
controlled.
How many environments do I need?
Where should
they be?
Number of Environments
Availability of planting material.
Diversity of environmental conditions.
Magnitude of error variances and genetic
variances in any one year or location.
Availability of suitable cooperators
Cost of each trial ($’s and time).
Location of Environments
 Variability of environment
throughout the target region.
Proximity to research base.
 Availability of good cooperators.
 $$$’s.
Analyses of Multiple
Experiments
Points to Consider before Analyses
Normality.
Homoscalestisity
(homogeneity) of error
variance.
Additive.
Randomness.
Points to Consider before Analyses
Normality.
Homoscalestisity
(homogeneity) of error
variance.
Additive.
Randomness.
Bartlett Test
(same degrees of freedom)
M = df{nLn(S) - Ln2}
Where, S = 2/n
2
n-1 = M/C
C = 1 + (n+1)/3ndf
n = number of variances, df is the df
of each variance
Bartlett Test
(same degrees of freedom)
df 2
Ln(2
)
5 178 5.148
5 60 4.094
5 98 4.585
5 68 4.202
Total 404 18.081
S = 101.0; Ln(S) = 4.614
Bartlett Test
(same degrees of freedom)
df 2
Ln(2
)
5 178 5.148
5 60 4.094
5 98 4.585
5 68 4.202
Total 404 18.081
S = 100.0; Ln(S) = 4.614
M = (5)[(4)(4.614)-18.081] = 1.880, 3df
C = 1 + (5)/[(3)(4)(5)] = 1.083
Bartlett Test
(same degrees of freedom)
df 2
Ln(2
)
5 178 5.148
5 60 4.094
5 98 4.585
5 68 4.202
Total 404 18.081
S = 100.0; Ln(S) = 4.614
M = (5)[(4)(4.614)-18.081] = 1.880, 3df
C = 1 + (5)/[(3)(4)(5)] = 1.083
2
3df = 1.880/1.083 = 1.74 ns
Bartlett Test
(different degrees of freedom)
M = ( df)nLn(S) - dfLn2
Where, S = [df.2]/(df)
2
n-1 = M/C
C = 1+{(1)/[3(n-1)]}.[(1/df)-1/ (df)]
n = number of variances
Bartlett Test
(different degrees of freedom)
df 2
Ln(2
) 1/df
9 0.909 -0.095 0.111
7 0.497 -0.699 0.1429
9 0.076 -2.577 0.1111
7
5
0.103
0.146
-2.273
-1.942
0.1429
0.2000
37 0.7080
S = [df.2]/(df) = 13.79/37 = 0.3727
(df)Ln(S) = (37)(-0.9870) = -36.519
Bartlett Test
(different degrees of freedom)
df 2
Ln(2
) 1/df
9 0.909 -0.095 0.111
7 0.497 -0.699 0.1429
9 0.076 -2.577 0.1111
7
5
0.103
0.146
-2.273
-1.942
0.1429
0.2000
37 0.7080
M = (df)Ln(S) - dfLn 2 = -36.519 -(54.472) = 17.96
C = 1+[1/(3)(4)](0.7080 - 0.0270) = 1.057
Bartlett Test
(different degrees of freedom)
S = [df.2]/(df) = 13.79/37 = 0.3727
(df)Ln(S) = (37)(=0.9870) = -36.519
M = (df)Ln(S) - dfLn 2 = -36.519 -(54.472) = 17.96
C = 1+[1/(3)(4)](0.7080 - 0.0270) = 1.057
2
3df = 17.96/1.057 = 16.99 **, 3df
Heterogeneity of Error Variance
0
10
20
30
40
50
60
70
80
Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze
Seed
Yield
Significant Bartlett Test
“What can I do where there is
significant heterogeneity of error
variances?”
Transform the raw data:
Often  ~ 
cw Binomial Distribution
where  = np and  = npq
Transform to square roots
Heterogeneity of Error Variance
0
2
4
6
8
10
Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze
SQRT[Seed
Yield]
Significant Bartlett Test
“What else can I do where there is
significant heterogeneity of error
variances?”
Transform the raw data:
Homogeneity of error variance can always
be achieved by transforming each site’s data
to the Standardized Normal Distribution
[xi-]/
Significant Bartlett Test
“What can I do where there is
significant heterogeneity of error
variances?”
Transform the raw data
Use non-parametric statistics
Analyses of Variance
Model ~ Multiple sites
Yijk =  + gi + ej + geij + Eijk
i gi = j ej = ij geij
Environments and Replicate blocks are usually
considered to be Random effects. Genotypes are
usually considered to be Fixed effects.
Analysis of Variance over sites
Source d.f. EMSq
Sites (s)
Rep w Sites (r)
Genotypes (g)
Geno x Site
Replicate error
Source d.f. EMSq
Sites (s) s-1
Rep w Sites (r) s(1-r)
Genotypes (g) g-1
Geno x Site (g-1)(s-1)
Replicate error s(r-1)(g-1)
Analysis of Variance over sites
Source d.f. EMSq
Sites (s) s-1 2
e + g2
rws + rg2
s
Rep w Sites (r) s(1-r) 2
e + g2
rws
Genotypes (g) g-1 2
e + r2
gs+ rs2
g
Geno x Site (g-1)(s-1) 2
e + r2
gs
Replicate error s(r-1)(g-1) 2
e
Analysis of Variance over sites
Yijkl = +gi+sj+yk+gsij+gyik+syjk+gsyijk+Eijkl
igi=jsj=kyk= 0
ijgsij=ikgyik=jksyij = 0
ijkgsyijk = 0
Models ~ Years and sites
Analysis of Variance
Source d.f. EMSq
Years (y) y-1 2
e+gy2
rwswy+rg2
swy+rgs2
y
Sites w Years (s) y(s-1) 2
e + g2
rwswy + rg2
swy
Rep w Sites w year (r) ys(1-r) 2
e + g2
rwswy
Genotypes (g) g-1 2
e + r2
gswy + rs2
gy + rl2
g
Geno x year (y-1)(g-1) 2
e + r2
gswy + rs2
gy
Geno x Site w Year y(g-1)(s-1) 2
e + r2
gswy
Replicate error ys(r-1)(g-1) 2
e
Interpretation
Interpretation
Look at data: diagrams and graphs
Joint regression analysis
Variance comparison analyze
Probability analysis
Multivariate transformation of residuals:
Additive Main Effects and Multiplicative
Interactions (AMMI)
Multiple Experiment Interpretation
Visual Inspection
Inter-plant competition study
Four crop species: Pea, Lentil,
Canola, Mustard
Record plant height (cm) every week
after planting
Significant species x time interaction
Plant Biomas x Time after Planting
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 17
Weeks
Height
(cm)
Plant Biomas x Time after Planting
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 17
Weeks
Height
(cm)
Pea Lentil
Mustard
Canola
Plant Biomas x Time after Planting
0
20
40
60
80
100
120
140
1 2 3 4 5 6 7 8 9 17
Weeks
Height
(cm)
Legume
Brassica
Joint Regression
Regression Revision
Glasshouse study, relationship
between time and plant biomass.
Two species: B. napus and S.
alba.
Distructive sampled each week
up to 14 weeks.
Dry weight recorded.
Dry Weight Above Ground Biomass
Wk SA BN Wk SA BN Wk SA BN
1 0.011 0.019 6 1.752 0.987 11 30.114 26.142
2 0.210 0.050 7 3.895 1.814 12 35.264 22.314
3 0.312 0.115 8 7.536 4.799 13 43.115 29.444
4 0.642 0.245 9 14.292 6.941 14 45.675 32.321
5 0.936 0.462 10 24.741 11.639
Biomass Study
0
10
20
30
40
50
0 5 10 15
Weeks after planting
Dry
weight
(g)
S. alba
B. napus
Biomass Study
(Ln Transformation)
-6
-4
-2
0
2
4
6
0 5 10 15
Weeks after planting
Dry
weight
(g)
S. alba
B. napus
B. napus
Mean x = 7.5; Mean y = 0.936
SS(x)=227.5; SS(y)=61.66; SP(x,y)=114.30
Ln(Growth) = 0.5024 x Weeks - 2.8328
se(b)= 0.039361
B. napus
Mean x = 7.5; Mean y = 0.936
SS(x)=227.5; SS(y)=61.66; SP(x,y)=114.30
Ln(Growth) = 0.5024 x Weeks - 2.8328
se(b)= 0.039361
Source df SS MS
Regression 1 57.43 57.43 ***
Residual 12 4.23 0.35
S. alba
Mean x = 7.5; Mean y = 1.435
SS(x)=227.5; SS(y)=61.03; SP(x,y)=112.10
Ln(Growth) = 0.4828 x Weeks - 2.2608
se(b)= 0.046068
S. alba
Mean x = 7.5; Mean y = 1.435
SS(x)=227.5; SS(y)=61.03; SP(x,y)=112.10
Ln(Growth) = 0.4828 x Weeks - 2.2608
se(b)= 0.046068
Source df SS MS
Regression 1 55.24 55.24 ***
Residual 12 5.79 0.48
Comparison of Regression Slopes
t - Test
[b1 - b2]
[se(b1) + se(b2)/2]
0.4928 - 0.5024
[(0.0460 + 0.0394)/2]
0.0096
0.0427145
= 0.22 ns
Joint Regression Analyses
Joint Regression Analyses
Yijk =  + gi + ej + geij + Eijk
geij = iej + ij
Yijk =  + gi + (1+i)ej + ij + Eijk
Yield
Environments
a
b
c
d
Joint Regression Example
Class notes, Table15, Page 229.
20 canola (Brassica napus)
cultivars.
Nine locations, Seed yield.
Joint Regression Example
Source df SSq MSq F
Sites 8 1125.2 140.6 8.2 **
Reps w Sites 27 462.5 17.1 11.4 ***
Cultivars 19 358.8 20.3 6.7 *
S x C 152 459.4 3.0 2.0 *
Rep Error 513 771.3 1.5
Joint Regression Example
Mo Ge Te Gr Pe Co Ka Mc Bo
Westar 22.0 48.9 28.7 11.1 14.2 54.5 44.3 22.1 25.0
Mean 19.5 52.0 32.0 13.1 15.6 56.1 47.2 21.2 25.7
Source df SSq MSq
Regression 1 1899 1899 ***
Residual 7 22 3.2
Westar = 0.94 x Mean + 0.58
Joint Regression Example
Mo Ge Te Gr Pe Co Ka Mc Bo
Bounty 17.2 54.8 32.8 15.4 19.6 60.0 47.6 22.7 28.9
Mean 19.5 52.0 32.0 13.1 15.6 56.1 47.2 21.2 25.7
Source df SSq MSq
Regression 1 2247 2247 ***
Residual 7 31 4.0
Bounty = 1.12 x Mean + 1.12
Joint Regression Example
Source df SSq MSq F
Sites 8 1125.2 140.6 8.2 **
Reps w Sites 27 462.5 17.1 11.4 ***
Cultivars 19 358.8 20.3 6.7 *
S x C 152 459.4 3.0 2.0 *
Heter of Reg 19 208.9 11.0 5.8 ***
Residual 133 250.5 1.9 1.2 ns
Rep Error 513 771.3 1.5
Joint Regression ~ Example #2
Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
A 9.9 12.1 15.0 17.7 18.2 22.6
B 12.3 13.7 14.9 16.5 17.1 17.4
C 8.4 12.0 15.7 19.5 19.9 27.2
Mean 10.2 12.6 15.2 17.9 18.4 22.4
Joint Regression
5
10
15
20
25
30
8 13 18 23 28
Site Means
Yield
Problems with Joint Regression
Non-independence - regression of
genotype values onto site means, which
are derived including the site values.
The x-axis values (site means) are
subject to errors, against the basic
regression assumption.
Sensitivity (-values) correlated with
genotype mean.
Problems with Joint Regression
Non-independence - regression of
genotype values onto site means, which
are derived including the site values.
Do not include genotype value in mean
for that regression.
Do regression onto other values other
than site means (i.e. control values).
Joint Regression ~ Example #2
Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
A 9.9 12.1 15.0 17.7 18.2 22.6
B 12.3 13.7 14.9 16.5 17.1 17.4
C 8.4 12.0 15.7 19.5 19.9 27.2
Mean for
A
10.3 12.8 15.3 18.0 18.5 22.3
Joint Regression ~ Example #2
Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
A 9.9 12.1 15.0 17.7 18.2 22.6
B 12.3 13.7 14.9 16.5 17.1 17.4
C 8.4 12.0 15.7 19.5 19.9 27.2
Control 11.0 13.4 16.3 19.0 20.5 24.3
Problems with Joint Regression
The x-axis values (site means) are
subject to errors, against the basic
regression assumption.
Sensitivity (-values) correlated
with genotype mean.
Addressing the Problems
Use genotype variance over sites
to indicate sensitivity rather than
regression coefficients.
Genotype Yield over Sites
0
10
20
30
40
50
60
Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze
Seed
Yield
‘Ark Royal’
Genotype Yield over Sites
0
10
20
30
40
50
60
Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze
Seed
Yield
‘Golden Promise’
Over Site Variance
Genotype Mean 2
g
A 20.0 (3) 24.13 (2)
B 22.0 (1) 8.11 (4)
C 21.5 (2) 19.24 (3)
D 18.0 (4) 26.05 (1)
Univariate Probability
Prediction
Over Site Variance
Genotype Mean 2
g
A 20.0 (3) 24.13 (2)
B 22.0 (1) 8.11 (4)
C 21.5 (2) 19.24 (3)
D 18.0 (4) 26.05 (1)
Univariate Probability Prediction
ƒ(µ¸A)
T

A
.
ƒ(µ¸A)


T
ƒ(AddA
T

A
.
Univariate Probability Prediction
-200
0
200
400
600
800
1000
1200
1400
500 510 520 530 540 550 560 570 580 590 600 610 620
Environmental Variation
 1  2 T
Use of Normal Distribution
Function Tables
|T – m|
g
to predict values greater than
the target (T)
|m – T|
g
to predict values less than
the target (T)
The mean (m) and environmental variance (g
2) of a
genotype is 12.0 t/ha and 16.02, respectively (so  =
4).
What is the probability that the yield of that given
genotype will exceed 14 t/ha when grown at any site
in the region chosen at random from all possible
sites.
Use of Normal Distribution
Function Tables
T – m
g
 =
14 – 12
4
=
Use of Normal Distribution
Function Tables
= 0.5
Using normal dist. tables we have the probability
from - to T is 0.6915. Actual answer is 1 – 0.6916 =
30.85 (or 38.85% of all sites in the region).
Use of Normal Distribution
Function Tables
The mean (m) and environmental variance (g
2) of a
genotype is 12.0 t/ha and 16.02, respectively (so  =
4).
What is the probability that the yield of that given
genotype will exceed 11 t/ha when grown at any site
in the region chosen at random from all possible
sites.
T – m
g
 =
11 – 12
4
=
Use of Normal Distribution
Function Tables
= -0.25
Using normal dist. tables we have (0.25) = 0.5987,
but because  is negative our answer is 1 – (1 –
0.5987) = 0.5987 or 60% of all sites in the region.
Exceed the target; and (T-m)/ positive,
then probability = 1 – table value.
Exceed the target; and (T-m)/ negative,
then probability = table value.
Less than the target; and (m-T)/ positive,
then probability = table value.
Less than target; and (m-T)/ negative, then
probability = 1 – table value.
Use of Normal Distribution
Function Tables
Univariate Probability
Genotype Mean 2
g g
A 20.0
(3)
24.13 4.91
B 22.0
(1)
8.11 2.85
C 21.5
(2)
19.24 4.38
D 18.0
(4)
26.05 5.10
Univariate Probability
Genotype Mean 2
g g T=21
A 20.0
(3)
24.13 4.91 0.43
(3)
B 22.0
(1)
8.11 2.85 0.64
(1)
C 21.5
(2)
19.24 4.38 0.54
(2)
D 18.0
(4)
26.05 5.10 0.28
(4)
Univariate Probability
Genotype Mean 2
g g T=21 T=24 T=26
A 20.0
(3)
24.13 4.91 0.43
(3)
0.21
(3)
0.11
(2)
B 22.0
(1)
8.11 2.85 0.64
(1)
0.24
(2)
0.08
(3)
C 21.5
(2)
19.24 4.38 0.54
(2)
0.28
(1)
0.15
(1)
D 18.0
(4)
26.05 5.10 0.28
(4)
0.12
(4)
0.06
(4)
Multivariate Probability Prediction
T1
-
T2
-
Tn
-
….
f(x1,x2,..., xn) dx1, dx2,..., dxn
Problems with Probability Technique
Setting suitable/appropriate target
values:
Control performance
Industry (or other) standard
Past experience
Experimental averages
Complexity of analytical
estimations where number of
variables are high:
Use of rank sums
Problems with Probability Technique
Additive Main Effects and
Multiplicative Interactions
AMMI
AMMI analysis partitions the residual
interaction effects using principal
components.
Inspection of scatter plot of first two
eigen values (PC1 and PC2) or first eigen
value onto the mean.
AMMI Analyses
Yijk =  + gi + ej + geij + Eijk
AMMI Analyses
Yijk-  - gi - ej - Eijk = geij
AMMI Analyses
Yijk-  - gi - ej - Eijk = geij
ge11 ge12 ge13 ….. ge1n
ge21 ge22 ge23 ….. ge2n
. . . ….. .
gei1 gei2 gei3 ….. gein
. . . ….. .
gek1 gek2 gek3 ….. gekn
AMMI Analysis Seed Yield
0
20
40
60
80
100
0 10 20 30 40 50
Site/Genotype Means
Eigen
value
1
G1
S4
S7 S3
S5
G4
S1
S6
G2
G3
S2
0
20
40
60
80
100
0 10 20 30 40 50
Site/Genotype Means
Eigen
value
1
G1
S4
S7 S3
S5
G4
S1
S6
G2
G3
S2
AMMI Analysis Seed Yield
0
20
40
60
80
100
0 10 20 30 40 50
Site/Genotype Means
Eigen
value
1
G1
S4
S7 S3
S5
G4
S1
S6
G2
G3
S2
AMMI Analysis Seed Yield
Time Square
Chi-Square

More Related Content

Similar to Biom-33-GxE II.ppt

How to validate your model
How to validate your modelHow to validate your model
How to validate your modelAlex Henderson
 
Complete randomized block design - Sana Jamal Salih
Complete randomized block design - Sana Jamal SalihComplete randomized block design - Sana Jamal Salih
Complete randomized block design - Sana Jamal SalihSana Salih
 
S3 - Process product optimization design experiments response surface methodo...
S3 - Process product optimization design experiments response surface methodo...S3 - Process product optimization design experiments response surface methodo...
S3 - Process product optimization design experiments response surface methodo...CAChemE
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 
2015. Jose Crossa. New developments in plant genomic prediction models.
2015. Jose Crossa. New developments in plant genomic prediction models.2015. Jose Crossa. New developments in plant genomic prediction models.
2015. Jose Crossa. New developments in plant genomic prediction models.FOODCROPS
 
General Factor Factorial Design
General Factor Factorial DesignGeneral Factor Factorial Design
General Factor Factorial DesignNoraziah Ismail
 
2 gpb 621 analysis of continuous variation
2 gpb 621 analysis of continuous variation2 gpb 621 analysis of continuous variation
2 gpb 621 analysis of continuous variationSaravananK153
 
Restrepo Huete phenocams ACEAS 140311
Restrepo Huete phenocams ACEAS 140311Restrepo Huete phenocams ACEAS 140311
Restrepo Huete phenocams ACEAS 140311Alison Specht
 
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...Manoj Sharma
 
Quantitative Analysis for Emperical Research
Quantitative Analysis for Emperical ResearchQuantitative Analysis for Emperical Research
Quantitative Analysis for Emperical ResearchAmit Kamble
 
3A_1_spatially clustered associations
3A_1_spatially clustered associations3A_1_spatially clustered associations
3A_1_spatially clustered associationsGISRUK conference
 
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...Sangmin Park
 
Teaching Population Genetics with R
Teaching Population Genetics with RTeaching Population Genetics with R
Teaching Population Genetics with RBruce Cochrane
 
Research Methodology anova
  Research Methodology anova  Research Methodology anova
Research Methodology anovaPraveen Minz
 
Analysis of Variance-ANOVA
Analysis of Variance-ANOVAAnalysis of Variance-ANOVA
Analysis of Variance-ANOVARabin BK
 

Similar to Biom-33-GxE II.ppt (20)

How to validate your model
How to validate your modelHow to validate your model
How to validate your model
 
Ch11
Ch11Ch11
Ch11
 
Presentation OCIP 2015
Presentation OCIP 2015Presentation OCIP 2015
Presentation OCIP 2015
 
How to use statistica for rsm study
How to use statistica for rsm studyHow to use statistica for rsm study
How to use statistica for rsm study
 
Complete randomized block design - Sana Jamal Salih
Complete randomized block design - Sana Jamal SalihComplete randomized block design - Sana Jamal Salih
Complete randomized block design - Sana Jamal Salih
 
S3 - Process product optimization design experiments response surface methodo...
S3 - Process product optimization design experiments response surface methodo...S3 - Process product optimization design experiments response surface methodo...
S3 - Process product optimization design experiments response surface methodo...
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
2015. Jose Crossa. New developments in plant genomic prediction models.
2015. Jose Crossa. New developments in plant genomic prediction models.2015. Jose Crossa. New developments in plant genomic prediction models.
2015. Jose Crossa. New developments in plant genomic prediction models.
 
General Factor Factorial Design
General Factor Factorial DesignGeneral Factor Factorial Design
General Factor Factorial Design
 
2 gpb 621 analysis of continuous variation
2 gpb 621 analysis of continuous variation2 gpb 621 analysis of continuous variation
2 gpb 621 analysis of continuous variation
 
Restrepo Huete phenocams ACEAS 140311
Restrepo Huete phenocams ACEAS 140311Restrepo Huete phenocams ACEAS 140311
Restrepo Huete phenocams ACEAS 140311
 
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...
Biometrical Techniques for Analysis of Genotype x Environment Interactions & ...
 
Quantitative Analysis for Emperical Research
Quantitative Analysis for Emperical ResearchQuantitative Analysis for Emperical Research
Quantitative Analysis for Emperical Research
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
 
GEODETIC Least Square with fx 991-es plus
GEODETIC Least Square with fx 991-es plusGEODETIC Least Square with fx 991-es plus
GEODETIC Least Square with fx 991-es plus
 
3A_1_spatially clustered associations
3A_1_spatially clustered associations3A_1_spatially clustered associations
3A_1_spatially clustered associations
 
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...
Griffin: Grouping Suspicious Memory-Access Patterns to Improve Understanding...
 
Teaching Population Genetics with R
Teaching Population Genetics with RTeaching Population Genetics with R
Teaching Population Genetics with R
 
Research Methodology anova
  Research Methodology anova  Research Methodology anova
Research Methodology anova
 
Analysis of Variance-ANOVA
Analysis of Variance-ANOVAAnalysis of Variance-ANOVA
Analysis of Variance-ANOVA
 

More from birhankassa

Birhan_Seminar presentation Bahir Dar .pptx
Birhan_Seminar presentation Bahir Dar .pptxBirhan_Seminar presentation Bahir Dar .pptx
Birhan_Seminar presentation Bahir Dar .pptxbirhankassa
 
Amhara regional agricultural Research institute
Amhara regional agricultural Research instituteAmhara regional agricultural Research institute
Amhara regional agricultural Research institutebirhankassa
 
molecular presentation 2.pptx
molecular presentation 2.pptxmolecular presentation 2.pptx
molecular presentation 2.pptxbirhankassa
 
Evolution of genetic variance-covariance structuer in animal.pptx
Evolution of genetic variance-covariance structuer in animal.pptxEvolution of genetic variance-covariance structuer in animal.pptx
Evolution of genetic variance-covariance structuer in animal.pptxbirhankassa
 
Breeding program options.pptx
Breeding program options.pptxBreeding program options.pptx
Breeding program options.pptxbirhankassa
 
Chapter 9_Breeding program options_Birhan.pptx
Chapter 9_Breeding program options_Birhan.pptxChapter 9_Breeding program options_Birhan.pptx
Chapter 9_Breeding program options_Birhan.pptxbirhankassa
 
Birhan_AI_status_in Amhara region.pptx
Birhan_AI_status_in Amhara region.pptxBirhan_AI_status_in Amhara region.pptx
Birhan_AI_status_in Amhara region.pptxbirhankassa
 
Hardy-Weinberg principle_Birhan Kassa.pptx
Hardy-Weinberg principle_Birhan Kassa.pptxHardy-Weinberg principle_Birhan Kassa.pptx
Hardy-Weinberg principle_Birhan Kassa.pptxbirhankassa
 
chapter_19_powerpoint.pptx
chapter_19_powerpoint.pptxchapter_19_powerpoint.pptx
chapter_19_powerpoint.pptxbirhankassa
 
chicken conservation and sustanable utilization.pdf
chicken conservation and sustanable utilization.pdfchicken conservation and sustanable utilization.pdf
chicken conservation and sustanable utilization.pdfbirhankassa
 

More from birhankassa (10)

Birhan_Seminar presentation Bahir Dar .pptx
Birhan_Seminar presentation Bahir Dar .pptxBirhan_Seminar presentation Bahir Dar .pptx
Birhan_Seminar presentation Bahir Dar .pptx
 
Amhara regional agricultural Research institute
Amhara regional agricultural Research instituteAmhara regional agricultural Research institute
Amhara regional agricultural Research institute
 
molecular presentation 2.pptx
molecular presentation 2.pptxmolecular presentation 2.pptx
molecular presentation 2.pptx
 
Evolution of genetic variance-covariance structuer in animal.pptx
Evolution of genetic variance-covariance structuer in animal.pptxEvolution of genetic variance-covariance structuer in animal.pptx
Evolution of genetic variance-covariance structuer in animal.pptx
 
Breeding program options.pptx
Breeding program options.pptxBreeding program options.pptx
Breeding program options.pptx
 
Chapter 9_Breeding program options_Birhan.pptx
Chapter 9_Breeding program options_Birhan.pptxChapter 9_Breeding program options_Birhan.pptx
Chapter 9_Breeding program options_Birhan.pptx
 
Birhan_AI_status_in Amhara region.pptx
Birhan_AI_status_in Amhara region.pptxBirhan_AI_status_in Amhara region.pptx
Birhan_AI_status_in Amhara region.pptx
 
Hardy-Weinberg principle_Birhan Kassa.pptx
Hardy-Weinberg principle_Birhan Kassa.pptxHardy-Weinberg principle_Birhan Kassa.pptx
Hardy-Weinberg principle_Birhan Kassa.pptx
 
chapter_19_powerpoint.pptx
chapter_19_powerpoint.pptxchapter_19_powerpoint.pptx
chapter_19_powerpoint.pptx
 
chicken conservation and sustanable utilization.pdf
chicken conservation and sustanable utilization.pdfchicken conservation and sustanable utilization.pdf
chicken conservation and sustanable utilization.pdf
 

Recently uploaded

Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Delhi Call girls
 
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night StandCall Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Valters Lauzums
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...amitlee9823
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...SUHANI PANDEY
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Researchmichael115558
 
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...amitlee9823
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxolyaivanovalion
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...amitlee9823
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteedamy56318795
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...amitlee9823
 

Recently uploaded (20)

Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night StandCall Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Hsr Layout ☎ 7737669865 🥵 Book Your One night Stand
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
Anomaly detection and data imputation within time series
Anomaly detection and data imputation within time seriesAnomaly detection and data imputation within time series
Anomaly detection and data imputation within time series
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
 
Predicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science ProjectPredicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science Project
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Discover Why Less is More in B2B Research
Discover Why Less is More in B2B ResearchDiscover Why Less is More in B2B Research
Discover Why Less is More in B2B Research
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Marol Naka Call On 9920725232 With Body to body massage...
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
Call Girls Indiranagar Just Call 👗 7737669865 👗 Top Class Call Girl Service B...
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts ServiceCall Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
Call Girls In Shalimar Bagh ( Delhi) 9953330565 Escorts Service
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 

Biom-33-GxE II.ppt

  • 1. Genotype x Environment Interactions Analyses of Multiple Location Trials
  • 2. Previous Class Why do researchers conduct experiments over multiple locations and multiple times? What causes genotype x environment interactions? What is the difference between a ‘true’ interaction and a scalar interaction? What environments can be considered to be controlled, partially controlled or nor controlled.
  • 3. How many environments do I need? Where should they be?
  • 4. Number of Environments Availability of planting material. Diversity of environmental conditions. Magnitude of error variances and genetic variances in any one year or location. Availability of suitable cooperators Cost of each trial ($’s and time).
  • 5. Location of Environments  Variability of environment throughout the target region. Proximity to research base.  Availability of good cooperators.  $$$’s.
  • 7. Points to Consider before Analyses Normality. Homoscalestisity (homogeneity) of error variance. Additive. Randomness.
  • 8. Points to Consider before Analyses Normality. Homoscalestisity (homogeneity) of error variance. Additive. Randomness.
  • 9. Bartlett Test (same degrees of freedom) M = df{nLn(S) - Ln2} Where, S = 2/n 2 n-1 = M/C C = 1 + (n+1)/3ndf n = number of variances, df is the df of each variance
  • 10. Bartlett Test (same degrees of freedom) df 2 Ln(2 ) 5 178 5.148 5 60 4.094 5 98 4.585 5 68 4.202 Total 404 18.081 S = 101.0; Ln(S) = 4.614
  • 11. Bartlett Test (same degrees of freedom) df 2 Ln(2 ) 5 178 5.148 5 60 4.094 5 98 4.585 5 68 4.202 Total 404 18.081 S = 100.0; Ln(S) = 4.614 M = (5)[(4)(4.614)-18.081] = 1.880, 3df C = 1 + (5)/[(3)(4)(5)] = 1.083
  • 12. Bartlett Test (same degrees of freedom) df 2 Ln(2 ) 5 178 5.148 5 60 4.094 5 98 4.585 5 68 4.202 Total 404 18.081 S = 100.0; Ln(S) = 4.614 M = (5)[(4)(4.614)-18.081] = 1.880, 3df C = 1 + (5)/[(3)(4)(5)] = 1.083 2 3df = 1.880/1.083 = 1.74 ns
  • 13. Bartlett Test (different degrees of freedom) M = ( df)nLn(S) - dfLn2 Where, S = [df.2]/(df) 2 n-1 = M/C C = 1+{(1)/[3(n-1)]}.[(1/df)-1/ (df)] n = number of variances
  • 14. Bartlett Test (different degrees of freedom) df 2 Ln(2 ) 1/df 9 0.909 -0.095 0.111 7 0.497 -0.699 0.1429 9 0.076 -2.577 0.1111 7 5 0.103 0.146 -2.273 -1.942 0.1429 0.2000 37 0.7080 S = [df.2]/(df) = 13.79/37 = 0.3727 (df)Ln(S) = (37)(-0.9870) = -36.519
  • 15. Bartlett Test (different degrees of freedom) df 2 Ln(2 ) 1/df 9 0.909 -0.095 0.111 7 0.497 -0.699 0.1429 9 0.076 -2.577 0.1111 7 5 0.103 0.146 -2.273 -1.942 0.1429 0.2000 37 0.7080 M = (df)Ln(S) - dfLn 2 = -36.519 -(54.472) = 17.96 C = 1+[1/(3)(4)](0.7080 - 0.0270) = 1.057
  • 16. Bartlett Test (different degrees of freedom) S = [df.2]/(df) = 13.79/37 = 0.3727 (df)Ln(S) = (37)(=0.9870) = -36.519 M = (df)Ln(S) - dfLn 2 = -36.519 -(54.472) = 17.96 C = 1+[1/(3)(4)](0.7080 - 0.0270) = 1.057 2 3df = 17.96/1.057 = 16.99 **, 3df
  • 17. Heterogeneity of Error Variance 0 10 20 30 40 50 60 70 80 Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze Seed Yield
  • 18. Significant Bartlett Test “What can I do where there is significant heterogeneity of error variances?” Transform the raw data: Often  ~  cw Binomial Distribution where  = np and  = npq Transform to square roots
  • 19. Heterogeneity of Error Variance 0 2 4 6 8 10 Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze SQRT[Seed Yield]
  • 20. Significant Bartlett Test “What else can I do where there is significant heterogeneity of error variances?” Transform the raw data: Homogeneity of error variance can always be achieved by transforming each site’s data to the Standardized Normal Distribution [xi-]/
  • 21. Significant Bartlett Test “What can I do where there is significant heterogeneity of error variances?” Transform the raw data Use non-parametric statistics
  • 23. Model ~ Multiple sites Yijk =  + gi + ej + geij + Eijk i gi = j ej = ij geij Environments and Replicate blocks are usually considered to be Random effects. Genotypes are usually considered to be Fixed effects.
  • 24. Analysis of Variance over sites Source d.f. EMSq Sites (s) Rep w Sites (r) Genotypes (g) Geno x Site Replicate error
  • 25. Source d.f. EMSq Sites (s) s-1 Rep w Sites (r) s(1-r) Genotypes (g) g-1 Geno x Site (g-1)(s-1) Replicate error s(r-1)(g-1) Analysis of Variance over sites
  • 26. Source d.f. EMSq Sites (s) s-1 2 e + g2 rws + rg2 s Rep w Sites (r) s(1-r) 2 e + g2 rws Genotypes (g) g-1 2 e + r2 gs+ rs2 g Geno x Site (g-1)(s-1) 2 e + r2 gs Replicate error s(r-1)(g-1) 2 e Analysis of Variance over sites
  • 27. Yijkl = +gi+sj+yk+gsij+gyik+syjk+gsyijk+Eijkl igi=jsj=kyk= 0 ijgsij=ikgyik=jksyij = 0 ijkgsyijk = 0 Models ~ Years and sites
  • 28. Analysis of Variance Source d.f. EMSq Years (y) y-1 2 e+gy2 rwswy+rg2 swy+rgs2 y Sites w Years (s) y(s-1) 2 e + g2 rwswy + rg2 swy Rep w Sites w year (r) ys(1-r) 2 e + g2 rwswy Genotypes (g) g-1 2 e + r2 gswy + rs2 gy + rl2 g Geno x year (y-1)(g-1) 2 e + r2 gswy + rs2 gy Geno x Site w Year y(g-1)(s-1) 2 e + r2 gswy Replicate error ys(r-1)(g-1) 2 e
  • 30. Interpretation Look at data: diagrams and graphs Joint regression analysis Variance comparison analyze Probability analysis Multivariate transformation of residuals: Additive Main Effects and Multiplicative Interactions (AMMI)
  • 31. Multiple Experiment Interpretation Visual Inspection Inter-plant competition study Four crop species: Pea, Lentil, Canola, Mustard Record plant height (cm) every week after planting Significant species x time interaction
  • 32. Plant Biomas x Time after Planting 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 17 Weeks Height (cm)
  • 33. Plant Biomas x Time after Planting 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 17 Weeks Height (cm) Pea Lentil Mustard Canola
  • 34. Plant Biomas x Time after Planting 0 20 40 60 80 100 120 140 1 2 3 4 5 6 7 8 9 17 Weeks Height (cm) Legume Brassica
  • 36. Regression Revision Glasshouse study, relationship between time and plant biomass. Two species: B. napus and S. alba. Distructive sampled each week up to 14 weeks. Dry weight recorded.
  • 37. Dry Weight Above Ground Biomass Wk SA BN Wk SA BN Wk SA BN 1 0.011 0.019 6 1.752 0.987 11 30.114 26.142 2 0.210 0.050 7 3.895 1.814 12 35.264 22.314 3 0.312 0.115 8 7.536 4.799 13 43.115 29.444 4 0.642 0.245 9 14.292 6.941 14 45.675 32.321 5 0.936 0.462 10 24.741 11.639
  • 38. Biomass Study 0 10 20 30 40 50 0 5 10 15 Weeks after planting Dry weight (g) S. alba B. napus
  • 39. Biomass Study (Ln Transformation) -6 -4 -2 0 2 4 6 0 5 10 15 Weeks after planting Dry weight (g) S. alba B. napus
  • 40. B. napus Mean x = 7.5; Mean y = 0.936 SS(x)=227.5; SS(y)=61.66; SP(x,y)=114.30 Ln(Growth) = 0.5024 x Weeks - 2.8328 se(b)= 0.039361
  • 41. B. napus Mean x = 7.5; Mean y = 0.936 SS(x)=227.5; SS(y)=61.66; SP(x,y)=114.30 Ln(Growth) = 0.5024 x Weeks - 2.8328 se(b)= 0.039361 Source df SS MS Regression 1 57.43 57.43 *** Residual 12 4.23 0.35
  • 42. S. alba Mean x = 7.5; Mean y = 1.435 SS(x)=227.5; SS(y)=61.03; SP(x,y)=112.10 Ln(Growth) = 0.4828 x Weeks - 2.2608 se(b)= 0.046068
  • 43. S. alba Mean x = 7.5; Mean y = 1.435 SS(x)=227.5; SS(y)=61.03; SP(x,y)=112.10 Ln(Growth) = 0.4828 x Weeks - 2.2608 se(b)= 0.046068 Source df SS MS Regression 1 55.24 55.24 *** Residual 12 5.79 0.48
  • 44. Comparison of Regression Slopes t - Test [b1 - b2] [se(b1) + se(b2)/2] 0.4928 - 0.5024 [(0.0460 + 0.0394)/2] 0.0096 0.0427145 = 0.22 ns
  • 46. Joint Regression Analyses Yijk =  + gi + ej + geij + Eijk geij = iej + ij Yijk =  + gi + (1+i)ej + ij + Eijk
  • 48. Joint Regression Example Class notes, Table15, Page 229. 20 canola (Brassica napus) cultivars. Nine locations, Seed yield.
  • 49. Joint Regression Example Source df SSq MSq F Sites 8 1125.2 140.6 8.2 ** Reps w Sites 27 462.5 17.1 11.4 *** Cultivars 19 358.8 20.3 6.7 * S x C 152 459.4 3.0 2.0 * Rep Error 513 771.3 1.5
  • 50. Joint Regression Example Mo Ge Te Gr Pe Co Ka Mc Bo Westar 22.0 48.9 28.7 11.1 14.2 54.5 44.3 22.1 25.0 Mean 19.5 52.0 32.0 13.1 15.6 56.1 47.2 21.2 25.7 Source df SSq MSq Regression 1 1899 1899 *** Residual 7 22 3.2 Westar = 0.94 x Mean + 0.58
  • 51. Joint Regression Example Mo Ge Te Gr Pe Co Ka Mc Bo Bounty 17.2 54.8 32.8 15.4 19.6 60.0 47.6 22.7 28.9 Mean 19.5 52.0 32.0 13.1 15.6 56.1 47.2 21.2 25.7 Source df SSq MSq Regression 1 2247 2247 *** Residual 7 31 4.0 Bounty = 1.12 x Mean + 1.12
  • 52. Joint Regression Example Source df SSq MSq F Sites 8 1125.2 140.6 8.2 ** Reps w Sites 27 462.5 17.1 11.4 *** Cultivars 19 358.8 20.3 6.7 * S x C 152 459.4 3.0 2.0 * Heter of Reg 19 208.9 11.0 5.8 *** Residual 133 250.5 1.9 1.2 ns Rep Error 513 771.3 1.5
  • 53. Joint Regression ~ Example #2 Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 A 9.9 12.1 15.0 17.7 18.2 22.6 B 12.3 13.7 14.9 16.5 17.1 17.4 C 8.4 12.0 15.7 19.5 19.9 27.2 Mean 10.2 12.6 15.2 17.9 18.4 22.4
  • 54. Joint Regression 5 10 15 20 25 30 8 13 18 23 28 Site Means Yield
  • 55. Problems with Joint Regression Non-independence - regression of genotype values onto site means, which are derived including the site values. The x-axis values (site means) are subject to errors, against the basic regression assumption. Sensitivity (-values) correlated with genotype mean.
  • 56. Problems with Joint Regression Non-independence - regression of genotype values onto site means, which are derived including the site values. Do not include genotype value in mean for that regression. Do regression onto other values other than site means (i.e. control values).
  • 57. Joint Regression ~ Example #2 Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 A 9.9 12.1 15.0 17.7 18.2 22.6 B 12.3 13.7 14.9 16.5 17.1 17.4 C 8.4 12.0 15.7 19.5 19.9 27.2 Mean for A 10.3 12.8 15.3 18.0 18.5 22.3
  • 58. Joint Regression ~ Example #2 Genotype Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 A 9.9 12.1 15.0 17.7 18.2 22.6 B 12.3 13.7 14.9 16.5 17.1 17.4 C 8.4 12.0 15.7 19.5 19.9 27.2 Control 11.0 13.4 16.3 19.0 20.5 24.3
  • 59. Problems with Joint Regression The x-axis values (site means) are subject to errors, against the basic regression assumption. Sensitivity (-values) correlated with genotype mean.
  • 60. Addressing the Problems Use genotype variance over sites to indicate sensitivity rather than regression coefficients.
  • 61. Genotype Yield over Sites 0 10 20 30 40 50 60 Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze Seed Yield ‘Ark Royal’
  • 62. Genotype Yield over Sites 0 10 20 30 40 50 60 Mosc Gene Tens Gran Pend Colf Kalt Mocc Boze Seed Yield ‘Golden Promise’
  • 63. Over Site Variance Genotype Mean 2 g A 20.0 (3) 24.13 (2) B 22.0 (1) 8.11 (4) C 21.5 (2) 19.24 (3) D 18.0 (4) 26.05 (1)
  • 65. Over Site Variance Genotype Mean 2 g A 20.0 (3) 24.13 (2) B 22.0 (1) 8.11 (4) C 21.5 (2) 19.24 (3) D 18.0 (4) 26.05 (1)
  • 68. -200 0 200 400 600 800 1000 1200 1400 500 510 520 530 540 550 560 570 580 590 600 610 620 Environmental Variation  1  2 T
  • 69. Use of Normal Distribution Function Tables |T – m| g to predict values greater than the target (T) |m – T| g to predict values less than the target (T)
  • 70. The mean (m) and environmental variance (g 2) of a genotype is 12.0 t/ha and 16.02, respectively (so  = 4). What is the probability that the yield of that given genotype will exceed 14 t/ha when grown at any site in the region chosen at random from all possible sites. Use of Normal Distribution Function Tables
  • 71. T – m g  = 14 – 12 4 = Use of Normal Distribution Function Tables = 0.5 Using normal dist. tables we have the probability from - to T is 0.6915. Actual answer is 1 – 0.6916 = 30.85 (or 38.85% of all sites in the region).
  • 72. Use of Normal Distribution Function Tables The mean (m) and environmental variance (g 2) of a genotype is 12.0 t/ha and 16.02, respectively (so  = 4). What is the probability that the yield of that given genotype will exceed 11 t/ha when grown at any site in the region chosen at random from all possible sites.
  • 73. T – m g  = 11 – 12 4 = Use of Normal Distribution Function Tables = -0.25 Using normal dist. tables we have (0.25) = 0.5987, but because  is negative our answer is 1 – (1 – 0.5987) = 0.5987 or 60% of all sites in the region.
  • 74. Exceed the target; and (T-m)/ positive, then probability = 1 – table value. Exceed the target; and (T-m)/ negative, then probability = table value. Less than the target; and (m-T)/ positive, then probability = table value. Less than target; and (m-T)/ negative, then probability = 1 – table value. Use of Normal Distribution Function Tables
  • 75. Univariate Probability Genotype Mean 2 g g A 20.0 (3) 24.13 4.91 B 22.0 (1) 8.11 2.85 C 21.5 (2) 19.24 4.38 D 18.0 (4) 26.05 5.10
  • 76. Univariate Probability Genotype Mean 2 g g T=21 A 20.0 (3) 24.13 4.91 0.43 (3) B 22.0 (1) 8.11 2.85 0.64 (1) C 21.5 (2) 19.24 4.38 0.54 (2) D 18.0 (4) 26.05 5.10 0.28 (4)
  • 77. Univariate Probability Genotype Mean 2 g g T=21 T=24 T=26 A 20.0 (3) 24.13 4.91 0.43 (3) 0.21 (3) 0.11 (2) B 22.0 (1) 8.11 2.85 0.64 (1) 0.24 (2) 0.08 (3) C 21.5 (2) 19.24 4.38 0.54 (2) 0.28 (1) 0.15 (1) D 18.0 (4) 26.05 5.10 0.28 (4) 0.12 (4) 0.06 (4)
  • 79. Problems with Probability Technique Setting suitable/appropriate target values: Control performance Industry (or other) standard Past experience Experimental averages
  • 80. Complexity of analytical estimations where number of variables are high: Use of rank sums Problems with Probability Technique
  • 81. Additive Main Effects and Multiplicative Interactions AMMI AMMI analysis partitions the residual interaction effects using principal components. Inspection of scatter plot of first two eigen values (PC1 and PC2) or first eigen value onto the mean.
  • 82. AMMI Analyses Yijk =  + gi + ej + geij + Eijk
  • 83. AMMI Analyses Yijk-  - gi - ej - Eijk = geij
  • 84. AMMI Analyses Yijk-  - gi - ej - Eijk = geij ge11 ge12 ge13 ….. ge1n ge21 ge22 ge23 ….. ge2n . . . ….. . gei1 gei2 gei3 ….. gein . . . ….. . gek1 gek2 gek3 ….. gekn
  • 85. AMMI Analysis Seed Yield 0 20 40 60 80 100 0 10 20 30 40 50 Site/Genotype Means Eigen value 1 G1 S4 S7 S3 S5 G4 S1 S6 G2 G3 S2
  • 86. 0 20 40 60 80 100 0 10 20 30 40 50 Site/Genotype Means Eigen value 1 G1 S4 S7 S3 S5 G4 S1 S6 G2 G3 S2 AMMI Analysis Seed Yield
  • 87. 0 20 40 60 80 100 0 10 20 30 40 50 Site/Genotype Means Eigen value 1 G1 S4 S7 S3 S5 G4 S1 S6 G2 G3 S2 AMMI Analysis Seed Yield