1 of 26

## Similar to pipe lines lec 2.pptx

hydraulics and advanced hydraulics solved tutorials
hydraulics and advanced hydraulics solved tutorialsbakhoyaagnes
ย
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowASHWINIKUMAR359
ย
UNIT-II FMM
UNIT-II FMMAravind Ra
ย
pipe lines lec 5.pdf
pipe lines lec 5.pdfamirashraf61
ย
Unit6 energy loss in pipelines
Unit6 energy loss in pipelinesMalaysia
ย
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1jntuworld
ย
PROBLEMA 3
PROBLEMA 3 yeisyynojos
ย
Examination in open channel flow
Examination in open channel flowDr. Ezzat Elsayed Gomaa
ย
Solved problems pipe flow final 1.doc
Solved problems pipe flow final 1.docDr. Ezzat Elsayed Gomaa
ย
Solved Examples in fluid mechanics final
Solved Examples in fluid mechanics finalDr. Ezzat Elsayed Gomaa
ย
Flows under Pressure in Pipes (Lecture notes 02)
Flows under Pressure in Pipes (Lecture notes 02)Shekh Muhsen Uddin Ahmed
ย
Problema 4
Problema 4yeisyynojos
ย
Answers assignment 5 open channel hydraulics-fluid mechanics
Answers assignment 5 open channel hydraulics-fluid mechanicsasghar123456
ย
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesVijay Sarathy
ย
ุญููู ูุณุงููู ูููุงุช ููุชูุญู 100 ุต
ุญููู ูุณุงููู ูููุงุช ููุชูุญู 100 ุตshaymaa17
ย
Midterm f09 solution
Midterm f09 solutionmohan sc
ย
Hydraulic Exponent for Critical flow computation
Hydraulic Exponent for Critical flow computationZeeshanSoomro7
ย
ูุญุงุถุฑุฉ ููุฏุฑูููู ููุฏุณุฉ ูุฏูู(2) 26-2-2022.pdf
ูุญุงุถุฑุฉ ููุฏุฑูููู ููุฏุณุฉ ูุฏูู(2) 26-2-2022.pdfn2002asr
ย
solved problems in hydrostatic
solved problems in hydrostatic Dr. Ezzat Elsayed Gomaa
ย

### Similar to pipe lines lec 2.pptx(20)

hydraulics and advanced hydraulics solved tutorials
hydraulics and advanced hydraulics solved tutorials
ย
Uniform flow computations in open channel flow
Uniform flow computations in open channel flow
ย
UNIT-II FMM
UNIT-II FMM
ย
pipe lines lec 5.pdf
pipe lines lec 5.pdf
ย
Unit6 energy loss in pipelines
Unit6 energy loss in pipelines
ย
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
ย
PROBLEMA 3
PROBLEMA 3
ย
Examination in open channel flow
Examination in open channel flow
ย
Solved problems pipe flow final 1.doc
Solved problems pipe flow final 1.doc
ย
Solved Examples in fluid mechanics final
Solved Examples in fluid mechanics final
ย
Flows under Pressure in Pipes (Lecture notes 02)
Flows under Pressure in Pipes (Lecture notes 02)
ย
Problema 4
Problema 4
ย
Answers assignment 5 open channel hydraulics-fluid mechanics
Answers assignment 5 open channel hydraulics-fluid mechanics
ย
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
ย
ุญููู ูุณุงููู ูููุงุช ููุชูุญู 100 ุต
ุญููู ูุณุงููู ูููุงุช ููุชูุญู 100 ุต
ย
Midterm f09 solution
Midterm f09 solution
ย
Hydraulic Exponent for Critical flow computation
Hydraulic Exponent for Critical flow computation
ย
ูุญุงุถุฑุฉ ููุฏุฑูููู ููุฏุณุฉ ูุฏูู(2) 26-2-2022.pdf
ูุญุงุถุฑุฉ ููุฏุฑูููู ููุฏุณุฉ ูุฏูู(2) 26-2-2022.pdf
ย
solved problems in hydrostatic
solved problems in hydrostatic
ย
008
008
ย

BSNL Internship Training presentation.pptx
ย
Gurgaon โก๏ธ9711147426โจCall In girls Gurgaon Sector 51 escort service
Gurgaon โก๏ธ9711147426โจCall In girls Gurgaon Sector 51 escort servicejennyeacort
ย
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
ย
Engineering Drawing section of solid
Engineering Drawing section of solidnamansinghjarodiya
ย
ย
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
ย
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
ย
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
ย
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentBharaniDharan195623
ย
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptxachiever3003
ย
Earthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
ย
ย
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
ย
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.pptbibisarnayak0
ย
Input Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
ย
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
ย
TechTACยฎ CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTACยฎ CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
ย
Crushers to screens in aggregate production
Crushers to screens in aggregate productionChinnuNinan
ย
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
ย

BSNL Internship Training presentation.pptx
BSNL Internship Training presentation.pptx
ย
Gurgaon โก๏ธ9711147426โจCall In girls Gurgaon Sector 51 escort service
Gurgaon โก๏ธ9711147426โจCall In girls Gurgaon Sector 51 escort service
ย
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
ย
Engineering Drawing section of solid
Engineering Drawing section of solid
ย
ย
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
ย
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
ย
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
ย
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managament
ย
Crystal Structure analysis and detailed information pptx
Crystal Structure analysis and detailed information pptx
ย
Earthing details of Electrical Substation
Earthing details of Electrical Substation
ย
ย
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
ย
Autonomous emergency braking system (aeb) ppt.ppt
Autonomous emergency braking system (aeb) ppt.ppt
ย
Input Output Management in Operating System
Input Output Management in Operating System
ย
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
ย
TechTACยฎ CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTACยฎ CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
ย
Crushers to screens in aggregate production
Crushers to screens in aggregate production
ย
young call girls in Green Park๐ 9953056974 ๐ escort Service
young call girls in Green Park๐ 9953056974 ๐ escort Service
ย
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
ย

### pipe lines lec 2.pptx

• 1. BASIC PRINCIPLES OF PIPE FLOW Dr/ Ahmed safwat Amir Ashraf sayed
• 2. Pipe Flow Under Siphon Action A pipeline that rises above its hydraulic gradient line is termed a siphon the pipeline between the points b and c crosses a ridge at point e. If the pipe is long, head loss due to friction is large and the form losses can be neglected. Thus, the hydraulic gradient line is a straight line that joins the water surfaces at points A and B. Pipe Flow Under Siphon Action
• 3. Pipe Flow Under Siphon Action The pressure head at any section of the pipe is represented by the vertical distance between the hydraulic gradient line and the centerline of the pipe. If the hydraulic gradient line is above the centerline of pipe: the water pressure is above atmospheric. if it is below the centerline of the pipe: the pressure is below atmospheric. Pipe Flow Under Siphon Action
• 4. Pipe Flow Under Siphon Action From Fig. 2.14 points b and c, the water pressure is atmospheric. whereas between b and c it is less than atmospheric. At the highest point e, the water pressure is the lowest. If the pressure head at point e is less than - 2.5 m, the water starts vaporizing and causes the flow to stop. Thus, no part of the pipeline should be more than 2.5 m above the hydraulic gradient line. Pipe Flow Under Siphon Action
• 5. Example 2.2A. A pumping system with different pipe fittings is shown in Fig. 2.15. Calculate residual pressure head at the end of the pipe outlet if the pump is generating an input head of 50 m at 0.1 m3 /s discharge. The CI pipe diameter ๐ท is 0.3 m. The contraction size at point 3 is 0.15 m; pipe size between points 6 and 7 is 0.15 m; and confusor outlet size ๐ = 0.15 m. The rotary valve at point 5 is fully open. Consider the following pipe lengths between points: Points 1 and 2 = 100 m, points 2 and 3 = 0.5 m; and points 3 and 4 = 0.5 m Points 4 and 6 = 400 m, points 6 and 7 = 20 m; and points 7 and 8 = 100 m
• 6. Solution Head loss between points 1 and 2. Pipe length 100 m, flow 0.1 m3 /s, and pipe diameter 0.3 m. Using Eq. (2.4b), ๐ฃ for 20โC is 1.012 ร 10โ6 m2/s, similarly using Eq. (2.4c), Reynolds number ๐ = 419,459. Using Table 2.1 for CI pipes, ๐ is 0.25 ๐ฆ๐ฆ. The friction factor ๐ is calculated using Eq. (2.6b) = 0.0197. Using Eq. 2.3b the head loss โ๐12 in pipe (1 โ 2) is ๐๐๐๐ = ๐๐๐ณ๐ธ๐ ๐๐๐๐ซ๐ = ๐ ร ๐. ๐๐๐๐ ร ๐๐๐ ร ๐. ๐๐ ๐. ๐๐๐๐๐๐ ร ๐. ๐๐ ร ๐. ๐๐ = ๐. ๐๐๐ ๐ฆ Example 2.2A continued
• 7. 2. Head loss between points 2 and 3 (a contraction transition). For ๐ท = 0.3, ๐ = 0.15, and transition length = 0.5 m, the contraction angle ๐ผ๐ can be calculated using Eq. (2.13b): ๐ผ๐ = 2tanโ1 ๐ท1 โ ๐ท2 2๐ฟ = 2tanโ1 0.3 โ 0.15 2 ร 0.5 = 0.298 radians . Using Eq. (2.13a), the form-loss coefficient is ๐๐ = 0.315๐ผ๐ 1/3 = 0.315 ร 0.2981/3 = 0.210 Using Eq. (2.12b), the head loss โ๐23 = 0.193 m. Example 2.2A continued
• 8. 3. Head loss between points 3 and 4 (an expansion transition). For ๐ = 0.15, ๐ท = 0.3, the expansion ratio ๐ = 2, and transition length = 0.5 m. Using Eq. (2.13d), the expansion angle ๐ผ๐ = 0.298 radians. Using Eq. (2.13c), the form-loss coefficient = 0.716. Using Eq. (2.12b), the head loss โ๐34 = 0.657 m. 4. Headloss between points 4 and 6. Using Eq. (2.4c), with ๐ = 1.012 ร 10โ6 m2 /s, diameter 0.3, and discharge 0.1 m3 /s, the Reynolds number = 419,459. With ๐ = 0.25 mm using Eq. (2.6b), ๐ = 0.0197. Thus, for pipe length 400 m, using Eq. (2.3b), head loss โ๐ = 2.681 m. Example 2.2A continued
• 9. Example 2.2A continued 5. Head loss at point 5 due to rotary valve (fully open). For fully open valve ๐ผ = 0. Using Eq. (2.11), form-loss coefficient ๐๐ = 0 and using Eq. (2.7b), the form loss โ๐ = 0.0 m. 6. Head loss at point 6 due to abrupt contraction. For ๐ท = 0.3 m and ๐ = 0.15 m, using Eq. (2.14b), the form-loss coefficient ๐๐ = 0.5 1 โ 0.15 0.3 2.35 = 0.402. Using Eq. (2.12b), the form loss โ๐ = 0.369 m.
• 10. Example 2.2A continued 7. Head loss in pipe between points 6 and 7. Pipe length = 20 m, pipe diameter = 0.15 m, and roughness height = 0.25 mm. Reynolds number = 838,914 and pipe friction factor ๐ = 0.0227, head loss โ๐67 = 4.930 m. 8. Head loss at point 7 (an abrupt expansion). An abrupt expansion from 0.15 m pipe size to 0.30 m. Using Eq. (2.14a), ๐๐ = 1 and using Eq. (2.12b), โ๐ = 0.918 m.
• 11. Example 2.2A continued Head loss in pipe between points 7 and 8. Pipe length = 100 m, pipe diameter = 0.30 m, and roughness height = 0.25 mm. Reynolds number = 423,144 and pipe friction factor ๐ = 0.0197. Head loss โ๐78 = 0.670 m. Head loss at outlet point 8 (confusor outlet). Using Eq. (2.17), the form-loss coefficient ๐๐ = 4.5 ๐ท ๐ โ 3.5 = 4.5 ร 0.30 0.15 โ 3.5 = 5.5. Using Eq. (2.12 b), โ๐ = 0.560 m. Total head loss hL = 0.670 + 0.193 + 0.657 + 2.681 + 0.369 + 0 + 4.930 + 0.918 + 0.670 + 0.560 = 11.648 m: Thus, the residual pressure at the end of the pipe outlet = 50 - 11.648 = 38.352 m
• 12. Example 2.2B. Design an cxpansion for the pipc diametcrs 1.0 m and 2.0 m over a distance of 2 m for Fig. 2.9. Solution Equation (2.13e) is used for the calculation of optimal transition profile. The geometry profile is ๐ท1 = 1.0 m, ๐ท2 = 2.0 m, and ๐ฟ = 2.0 m. Substituting various values of ๐ฅ, the corresponding values of ๐ท using Eq. (2.13e) and with linear expansion were computed and are tabulated in Table 2.3. ๐ฅ ๐ท (optimal) ๐ท (linear) 0.0 1.000 1.000 0.2 1.019 1.100 0.4 1.078 1.200 0.6 1.180 1.300 0.8 1.326 1.400 1.0 1.500 1.500 1.2 1.674 1.600 1.4 1.820 1.700 1.6 1.922 1.800 1.8 1.981 1.900 2.0 2.000 2.000 TABLE 2.3. Pipe Transition Computations ๐ versus ๐ซ
• 13. 2.3. PIPE FLOW PROBLEMS Nodal Head Problem Discharge Problem Diameter Problem Analysis problem Design and ansysis problem Analysis problem
• 14. 2.3.1.Nodal Head Problem In the nodal head problem, the known quantities are ๐ฟ, ๐ท, โ๐ฟ, ๐, ๐, ๐ฃ, and ๐๐. Using Eqs. (2.2b) and (2.7b), the nodal head โ2 (as shown in Fig. 2.1) is obtained as ๐๐ = ๐๐ + ๐๐ โ ๐๐ โ ๐๐ + ๐๐ณ ๐ซ ๐๐ธ๐ ๐๐๐๐ซ๐ . (2:20)
• 15. 2.3.2. Discharge Problem For a long pipeline, form losses can be neglected. Thus, in this case the known quantities are ๐ฟ, ๐ท, โ๐, ๐, and ๐. Swamee and Jain (1976) gave the following solution for turbulent flow through such a pipeline: Equation (2.21a) is exact. For laminar flow, the Hagen-Poiseuille equation gives the discharge as ๐ธ = โ๐. ๐๐๐๐ซ๐ ๐๐ซ ๐๐ ๐ณ ๐ฅ ๐ ๐บ ๐. ๐๐ซ + ๐. ๐๐๐ ๐ซ ๐๐ซ ๐๐ ๐ณ ๐ธ = ๐๐๐ซ๐ ๐๐ ๐๐๐๐๐ณ . (2:21a) (2:21b) For laminar flow
• 16. Swamee and Swamee (2008) gave the following equation for pipe discharge that is valid under laminar, transition, and turbulent flow conditions: ๐ธ = ๐ซ๐ ๐๐ซ ๐๐ ๐ณ ๐๐๐๐ ๐๐ซ ๐๐ซ ๐๐ ๐ณ ๐ ๐ +๐. ๐๐๐ ๐๐๐๐ ๐ซ ๐๐ซ ๐๐ ๐ณ ๐ โ ๐ฅ ๐ ๐บ ๐. ๐๐ซ + ๐. ๐๐๐๐ ๐ซ ๐๐ซ ๐๐ ๐ณ โ๐ โ๐.๐๐ Equation (2.21c) is almost exact as the maximum error in the equation is 0.1%. ๐ธ = (2:21c)
• 17. 2.3.3. Diameter Problem In this problem. the known quantities are L.h_f,ฮต,Q. and v. For a pumping main, head loss is not known, and one has to select the optimal value of head loss by minimizing the cost. This has been dealt with in Chapter 6. However, for turbulent flow in a long gravity main, Swamee and Jain (1976) obtained the following solution for the pipe diameter: ๐ซ = ๐. ๐๐ ๐บ๐.๐๐ ๐ณ๐ธ๐ ๐๐๐ ๐.๐๐ + ๐๐ธ๐.๐ ๐ณ ๐๐๐ ๐.๐ ๐.๐๐ (2:22a)
• 18. In general, the errors involved in Eq. (2.22a) are less than 1.5%. However, the maximum error occurring near transition range is about 3%. For laminar flow, the Hagen Poiseuille equation gives the diameter as ๐ซ = ๐๐๐๐๐ธ๐ณ ๐๐๐๐ ๐.๐๐ (2:22b) 2.3.3. Diameter Problem
• 19. Swamee and Swamee (2008) gave the following equation for pipe diameter that is valid under laminar, transition, and turbulent flow conditions Equation (2.22c) yields ๐ท within 2.75%. However, close to transition range, the error is around 4%. ๐ซ = ๐. ๐๐ ๐๐๐. ๐๐ ๐๐ณ๐ธ ๐๐๐ ๐.๐๐ + ๐บ๐.๐๐ ๐ณ๐ธ๐ ๐๐๐ ๐.๐๐ + ๐๐ธ๐.๐ ๐ณ ๐๐๐ ๐.๐ ๐.๐๐ (2:22c)
• 20. Example 2.3. As shown in Fig. 2.16, a discharge of 0.1 m3 /s flows through a CI pipe main of 1000 m in length having a pipe diameter 0.3 m. A sluice valve of 0.3 m size is placed close to point B. The elevations of points A and B are 10 m and 5 m, respectively. Assume water temperature as 20C. Calculate: (A) Terminal pressure h2 at point B and head loss in the pipe if terminal pressure h1 at point A is 25 m. (B) The discharge in the pipe if the head loss is 10 m. (C) The CI gravity main diameter if the head loss in the pipe is 10 m and a discharge of 0.1 m3 /s flows in the pipe.
• 21.
• 22. solution A) The terminal pressure h2 at point B can be calculated using Eq. (2.20). The friction factor f can be calculated applying Eq. (2.6a) and the roughness height of CI pipe ยผ 0.25 mm is obtained from Table 2.1. The form-loss coefficient for sluice valve from Table 2.2 is 0.15. The viscosity of water at 208C can be calculated using Eq. (2.4b). The coefficient of surface resistance depends on the Reynolds number R of the flow: ๐น = ๐๐ธ ๐๐๐ซ = ๐๐๐, ๐๐๐. Thus, substituting values in Eq. (2.6a), the friction factor ๐ = ๐๐ ๐ ๐ + ๐. ๐ ๐ฅ ๐ ๐บ ๐. ๐๐ซ + ๐. ๐๐ ๐๐.๐ โ ๐๐๐๐ ๐ ๐ โ๐๐ ๐.๐๐๐ = ๐. ๐๐๐๐
• 23. solution Using Eq- (2.20), the terminal head โ2 at point ๐ต is ๐๐ = ๐๐ + ๐๐ โ ๐๐ โ ๐๐ + ๐๐ณ ๐ซ ๐๐ธ๐ ๐๐๐๐ซ๐ ๐๐ = ๐๐ + ๐๐ โ ๐ โ ๐. ๐๐ + ๐. ๐๐๐๐ ร ๐๐๐๐ ๐. ๐ ๐ ร ๐. ๐๐ ๐. ๐๐๐๐๐๐ ร ๐. ๐๐ ร ๐. ๐๐ ๐๐ = = ๐๐ โ (๐. ๐๐๐ + ๐. ๐๐๐) = ๐๐. ๐๐๐ ๐ฆ.
• 24. = ๐ธ = โ๐. ๐๐๐๐ซ๐ ๐๐ซ ๐๐ ๐ณ ๐ฅ ๐ ๐บ ๐. ๐๐ซ + ๐. ๐๐๐ ๐ซ ๐๐ซ๐ ๐ณ = = โ๐. ๐๐๐ ร ๐. ๐๐ ๐. ๐๐ ร (๐๐ ๐๐๐๐ ๐ฅ ๐ ๐. ๐๐ ร ๐๐โ๐ ๐. ๐ ร ๐. ๐ . = = = ๐. ๐๐๐ ๐๐ ๐ solution (B) If the total head loss in the pipe is predecided equal to 10 m, the discharge in Cl pipe of size 0.3 m can be calculated using Eq. ( 2.21a ): + ๐. ๐๐ ร ๐. ๐๐๐ ร ๐๐โ๐ ๐. ๐ ) ๐. ๐๐ ร ๐. ๐ ร (๐๐ ๐๐๐๐
• 25. solution (C) Using Eq. (2.22a), the gravity main diameter for preselected head loss of 10 m and known pipe discharge 0.1 m3 /s is ๐ซ = ๐. ๐๐ ๐บ๐.๐๐ ๐ณ๐ธ๐ ๐๐๐ ๐.๐๐ + ๐๐ธ๐.๐ ๐ณ ๐๐๐ ๐.๐ ๐.๐๐ = ๐. ๐๐ ๐. ๐๐๐๐๐๐.๐๐ ๐๐๐๐ ร ๐. ๐๐ ๐. ๐๐ ร ๐๐ ๐.๐๐ + ๐. ๐๐๐ ร ๐๐โ๐ = ร ๐. ๐๐.๐ ๐๐๐๐ ๐. ๐๐ ร ๐๐ ๐.๐ ๐.๐๐ = = Also, if head loss is considered = 6.72 m, the pipe diameter is 0.306 m and flow is 0.1 m3 /s. = ๐. ๐๐๐ ๐ฆ.
Current LanguageEnglish
Espaรฑol
Portugues
Franรงais
Deutsche
ยฉ 2024 SlideShare from Scribd