SlideShare a Scribd company logo
1 of 6
Download to read offline
A non-Euclidean model in the unit disk
A non-Euclidean model in the unit disk, a set of Euclidean theorems
A non-Euclidean model is presented in this paper. Main goal of
paper is to show that how non-Euclidean model in the unit disk
can lead us to a set of Euclidean theorems.
A non-Euclidean model in the unit disk
Page 1
Abstract
A non-Euclidean model is presented in this paper. Main goal of paper is to show that how non-Euclidean model
in the unit disk can lead us to a set of Euclidean theorems.
Keywords
Hyperbolic geometry, Poincare disk model, parallel angle, unit disk
Introduction
The Poincare disk model is a geometric model that represents the hyperbolic geometry in the unit disk. At first
Poincare defined his model in the unit disk as follows:
1- Each point inside the unit circle is an ordinary point of model.
2- Each point on the unit circle is an ideal point of model.
3- Each line (Poincare-line or p-line) of model is part of a circle that has two properties
3-a) cut the unit circle perpendicular.
3-b) is inside the unit circle. (See fig.1)
psi
D
B
A
C
F
E
G
H
K
90°
Fig.1- Three p-lines GH, GK and EF and also a psi-line CD are shown
A non-Euclidean model in the unit disk
Page 2
Fig.2- Two p-lines and angle between them at their intersection point
4- Angle between two p-lines is equal to angle between two circles (that represent lines) at their
intersection point.(See fig.2)
5- Distance between two ordinary points A and B is defined as logarithm of cross ratio as follows:
AB= Ln (AB, FE) 1
Where E and F are ideal points of a p-line that passes through points A and B
Then Poincare proved that the hyperbolic geometry and his model are equivalent geometrically. In other words
if a theorem is valid in his model then it is valid in the hyperbolic geometry and vice versa.
Now let develop the Poincare disk model via change cut angle between p-line and the unit circle. Assume that
ψ-model is a model that their lines are ψ-lines. A ψ-line (psi-line in fig.1) cut the unit circle at angle of ψ. Now
you may define a ψ-model as follows:
-Each point inside the unit circle is an ordinary point of model.
-Each point on the unit circle is an ideal point of model.
-Each line (ψ-line) of model is part of a circle so that has two properties:
a) It cut the unit circle at angle of ψ.
b) It is inside the unit circle.
A non-Euclidean model in the unit disk
Page 3
-Angle between two ψ-lines is equal to angle between two circles (that represent lines) at their
intersection points.
-Distance between two ordinary points A and B is defined as logarithm of cross ratio as follows:
AB= Ln (AB, CD) 1
C and D are ideal points of a ψ-line that passes through points A and B (See fig.1)
Simple calculation yields:
(AB, CD) =
1+tan 𝜓.tan (𝑑 cos 𝜓)
1−tan 𝜓.tan (𝑑 cos 𝜓)
2
“d” is Euclidean distance of AB when A is located at the center of the unit disk. (See fig.1)
Let concentrate on a special model named zero-model. It means that all lines of zero-model are tangent to the
unit disk internally. Note that all lines of zero-model cut the unit disk at just one point. We are interested in
theorems that should be proved in this beautiful model.
First we accept that in the unit disk:
- For any two ordinary points A, B there is a unique parallel angle that may be defined as in the Poincare
model.
- For any four ordinary points A, B, C and D we can say that:
AB=CD if and only if parallel angle (See fig.3) of AB is equal to parallel angle of CD
psi
B
A
B
A S
psi
S
Fig.3- Definition of parallel angle at point B (Right angle at A, parallel angle at B, AS and BS are boundary-
parallel)
A number of theorems in the zero-model are listed as follows (without proof):
A non-Euclidean model in the unit disk
Page 4
1- Theorem 1: Parallel angle of two ordinary points is unique. (Note that four parallel angles exist,
because in fig.3 one may draw AS and BS so that right angle is at B and parallel angle at A. Also two
lines may pass through points A and B)
2- Theorem 2: Zero-rectangle exists.
3- Theorem 3: Two zero-lines that have one ideal point in common are equi-distance.
4- Theorem 4: One Euclidean circle passes through vertices of a zero-rectangle.
5- Theorem 5: There are two ideal points Q, T for any two ordinary points A, B (See fig.5) so that
absolute[cross ratio of (AB,QT)]=1.
6- Theorem 6: Given a zero-rectangle (ABCD). (See fig.5). So we have four ideal points (S, Q, R and T).
Absolute of cross ratio of these ideal points is equal to 1.
7- Theorem 7: Each zero-circle is Euclidean circle. These circles have distinct centers.
8- Theorem 8: Triangle inequality is valid. (Note that distance between two ordinary points is defined
according to the equation-1)
9- Given three ψ-lines, find the unit circle. (See fig.4) This is the Apollonius-problem in its general form.
All of these theorems should be proved geometrically. They are really right!!!
C1
C3
C2
W1
W3
W2
CC
Fig.4- Apollonius problem in general form may be translated in language of ψ-model.
These theorems should be translated in language of Euclidean geometry.
A non-Euclidean model in the unit disk
Page 5
Theorem 1: Two ellipses A and B have a foci “O” in common. Also assume that their constant value is equal.
These A and B ellipses cut each other in points “P” and “Q” and have distinct foci A and B respectively. Select
arbitrary point M on the line of PQ and draw lines from it to points A and B until cut the ellipses A and B at M
and N respectively. If OM and ON cut ellipses A and B at points X and Y respectively. Prove that three lines AX,
BY and PQ have one point in common. It is sufficient that prove the problem for Poincare half-plane. (See fig.5)
Some theorems mentioned above are valid in any ψ-model for example theorem 8. Pure geometric proof for
theorem 8 may be very beautiful since I have not found it yet!
Problem 9: Apollonius-problem: Given three circles (C1, C2, C3 in fig.4), find a circle (C in fig.4) that cut
them at angle of ψ.
A simple solution for problem-9 is to find a conformal mapping (for example Mobius mapping) so that three
contact points of a circle (that is tangent to all three given circles) are mapped in form of right-hand figure
symmetrically. So the right-hand unit disk is obtained. Inverse Mobius mapping of right-hand unit disk gives the
left-hand unit disk.
D
C
BA
S
Q
R
T
Fig.5- Apollonius problem in general form may be translated in language of ψ-model.

More Related Content

What's hot

Math - analytic geometry
Math - analytic geometryMath - analytic geometry
Math - analytic geometryimmortalmikhel
 
BCA_MATHEMATICS-I_Unit-III
BCA_MATHEMATICS-I_Unit-IIIBCA_MATHEMATICS-I_Unit-III
BCA_MATHEMATICS-I_Unit-IIIRai University
 
03 analytical geometry
03 analytical geometry03 analytical geometry
03 analytical geometryMurad Kasasbeh
 
5.13.2 Area of Regular Polygons and Composite Shapes
5.13.2 Area of Regular Polygons and Composite Shapes5.13.2 Area of Regular Polygons and Composite Shapes
5.13.2 Area of Regular Polygons and Composite Shapessmiller5
 
Mathematics compendium for class ix
Mathematics compendium for class ixMathematics compendium for class ix
Mathematics compendium for class ixAPEX INSTITUTE
 
1.2 Ruler Postulates
1.2 Ruler Postulates1.2 Ruler Postulates
1.2 Ruler PostulatesDee Black
 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootHarish Chandra Rajpoot
 
Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1roszelan
 
Rule book -_complete (2)
Rule book -_complete (2)Rule book -_complete (2)
Rule book -_complete (2)palomadiaz16
 
Hyperbola (Advanced Algebra)
Hyperbola (Advanced Algebra)Hyperbola (Advanced Algebra)
Hyperbola (Advanced Algebra)Lydelle Saringan
 
Module 5 geometry of shape and size
Module 5 geometry of shape and sizeModule 5 geometry of shape and size
Module 5 geometry of shape and sizedionesioable
 
Module 1 geometric relations
Module 1   geometric relationsModule 1   geometric relations
Module 1 geometric relationsdionesioable
 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Harish Chandra Rajpoot
 
Lecture #1 analytic geometry
Lecture #1 analytic geometryLecture #1 analytic geometry
Lecture #1 analytic geometryDenmar Marasigan
 
basic geometrical ideas
basic geometrical ideasbasic geometrical ideas
basic geometrical ideaspoojabindal20
 

What's hot (19)

Math - analytic geometry
Math - analytic geometryMath - analytic geometry
Math - analytic geometry
 
BCA_MATHEMATICS-I_Unit-III
BCA_MATHEMATICS-I_Unit-IIIBCA_MATHEMATICS-I_Unit-III
BCA_MATHEMATICS-I_Unit-III
 
03 analytical geometry
03 analytical geometry03 analytical geometry
03 analytical geometry
 
5.13.2 Area of Regular Polygons and Composite Shapes
5.13.2 Area of Regular Polygons and Composite Shapes5.13.2 Area of Regular Polygons and Composite Shapes
5.13.2 Area of Regular Polygons and Composite Shapes
 
Mathematics compendium for class ix
Mathematics compendium for class ixMathematics compendium for class ix
Mathematics compendium for class ix
 
1.2 Ruler Postulates
1.2 Ruler Postulates1.2 Ruler Postulates
1.2 Ruler Postulates
 
Hcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometryHcr's derivations of 2 d geometry
Hcr's derivations of 2 d geometry
 
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. RajpootMathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
Mathematical derivations of some important formula in 2D-Geometry H.C. Rajpoot
 
Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1Math(F4) Circle Iii 8.1
Math(F4) Circle Iii 8.1
 
Rule book -_complete (2)
Rule book -_complete (2)Rule book -_complete (2)
Rule book -_complete (2)
 
Module 1 circles
Module 1   circlesModule 1   circles
Module 1 circles
 
Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10
 
Conic sections
Conic sectionsConic sections
Conic sections
 
Hyperbola (Advanced Algebra)
Hyperbola (Advanced Algebra)Hyperbola (Advanced Algebra)
Hyperbola (Advanced Algebra)
 
Module 5 geometry of shape and size
Module 5 geometry of shape and sizeModule 5 geometry of shape and size
Module 5 geometry of shape and size
 
Module 1 geometric relations
Module 1   geometric relationsModule 1   geometric relations
Module 1 geometric relations
 
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
Mathematical analysis of sphere resting in the vertex of polyhedron, filletin...
 
Lecture #1 analytic geometry
Lecture #1 analytic geometryLecture #1 analytic geometry
Lecture #1 analytic geometry
 
basic geometrical ideas
basic geometrical ideasbasic geometrical ideas
basic geometrical ideas
 

Viewers also liked

แบบฟร์อมรับสมัคร
แบบฟร์อมรับสมัครแบบฟร์อมรับสมัคร
แบบฟร์อมรับสมัครJatupon Panjoi
 
นโยบาย สพฐ 2556
นโยบาย สพฐ 2556นโยบาย สพฐ 2556
นโยบาย สพฐ 2556Duangnapa Inyayot
 
Ponte al 100 llega a internos en cereso de Pachuca, Hidalgo
Ponte al 100 llega a internos en cereso de Pachuca, HidalgoPonte al 100 llega a internos en cereso de Pachuca, Hidalgo
Ponte al 100 llega a internos en cereso de Pachuca, HidalgoPonteal100
 
Remote sensing by abhishek mahajan
Remote sensing by abhishek mahajanRemote sensing by abhishek mahajan
Remote sensing by abhishek mahajanAbhishek Mahajan
 
Outlet a precio libre: bandas y rollos
Outlet a precio libre: bandas y rollosOutlet a precio libre: bandas y rollos
Outlet a precio libre: bandas y rollosEtorki S.L.
 
การใชงานอีเมล์ ในระบบ google app for edu
การใชงานอีเมล์ ในระบบ google app for eduการใชงานอีเมล์ ในระบบ google app for edu
การใชงานอีเมล์ ในระบบ google app for eduDuangnapa Inyayot
 
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.org
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.orgเกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.org
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.orgDuangnapa Inyayot
 
การสร้างเกมส์ง่าย ๆ ด้วย Kahoot .it
การสร้างเกมส์ง่าย  ๆ ด้วย Kahoot .itการสร้างเกมส์ง่าย  ๆ ด้วย Kahoot .it
การสร้างเกมส์ง่าย ๆ ด้วย Kahoot .itDuangnapa Inyayot
 
การสืบค้นข้อมูลประเภทข้อความ
การสืบค้นข้อมูลประเภทข้อความการสืบค้นข้อมูลประเภทข้อความ
การสืบค้นข้อมูลประเภทข้อความเทวัญ ภูพานทอง
 
การสืบค้นข้อมูลประเภทรูปภาพ
การสืบค้นข้อมูลประเภทรูปภาพการสืบค้นข้อมูลประเภทรูปภาพ
การสืบค้นข้อมูลประเภทรูปภาพเทวัญ ภูพานทอง
 

Viewers also liked (13)

A non-Euclidean model
A non-Euclidean modelA non-Euclidean model
A non-Euclidean model
 
Lms & MOOCs surapon
Lms & MOOCs suraponLms & MOOCs surapon
Lms & MOOCs surapon
 
แบบฟร์อมรับสมัคร
แบบฟร์อมรับสมัครแบบฟร์อมรับสมัคร
แบบฟร์อมรับสมัคร
 
นโยบาย สพฐ 2556
นโยบาย สพฐ 2556นโยบาย สพฐ 2556
นโยบาย สพฐ 2556
 
Ponte al 100 llega a internos en cereso de Pachuca, Hidalgo
Ponte al 100 llega a internos en cereso de Pachuca, HidalgoPonte al 100 llega a internos en cereso de Pachuca, Hidalgo
Ponte al 100 llega a internos en cereso de Pachuca, Hidalgo
 
Remote sensing by abhishek mahajan
Remote sensing by abhishek mahajanRemote sensing by abhishek mahajan
Remote sensing by abhishek mahajan
 
Outlet a precio libre: bandas y rollos
Outlet a precio libre: bandas y rollosOutlet a precio libre: bandas y rollos
Outlet a precio libre: bandas y rollos
 
เครื่องมือค้นหา (Search engine)
เครื่องมือค้นหา (Search engine)เครื่องมือค้นหา (Search engine)
เครื่องมือค้นหา (Search engine)
 
การใชงานอีเมล์ ในระบบ google app for edu
การใชงานอีเมล์ ในระบบ google app for eduการใชงานอีเมล์ ในระบบ google app for edu
การใชงานอีเมล์ ในระบบ google app for edu
 
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.org
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.orgเกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.org
เกียรติบัตร พื้นฐานการเขียนโปรแกรม จาก code.org
 
การสร้างเกมส์ง่าย ๆ ด้วย Kahoot .it
การสร้างเกมส์ง่าย  ๆ ด้วย Kahoot .itการสร้างเกมส์ง่าย  ๆ ด้วย Kahoot .it
การสร้างเกมส์ง่าย ๆ ด้วย Kahoot .it
 
การสืบค้นข้อมูลประเภทข้อความ
การสืบค้นข้อมูลประเภทข้อความการสืบค้นข้อมูลประเภทข้อความ
การสืบค้นข้อมูลประเภทข้อความ
 
การสืบค้นข้อมูลประเภทรูปภาพ
การสืบค้นข้อมูลประเภทรูปภาพการสืบค้นข้อมูลประเภทรูปภาพ
การสืบค้นข้อมูลประเภทรูปภาพ
 

Similar to A non-Euclidean model (20)

C1 g9-s1-t7-2
C1 g9-s1-t7-2C1 g9-s1-t7-2
C1 g9-s1-t7-2
 
Case study on circles
Case study on circlesCase study on circles
Case study on circles
 
ANECDOTAL RECORDS.pptx
ANECDOTAL RECORDS.pptxANECDOTAL RECORDS.pptx
ANECDOTAL RECORDS.pptx
 
Circles IX
Circles IXCircles IX
Circles IX
 
circles-131126094958-phpapp01.pdf
circles-131126094958-phpapp01.pdfcircles-131126094958-phpapp01.pdf
circles-131126094958-phpapp01.pdf
 
Geometrical drawing engineering drawings
Geometrical drawing engineering drawingsGeometrical drawing engineering drawings
Geometrical drawing engineering drawings
 
Sol72
Sol72Sol72
Sol72
 
Sol72
Sol72Sol72
Sol72
 
Plano Numérico
Plano NuméricoPlano Numérico
Plano Numérico
 
Ellipse.pptx
Ellipse.pptxEllipse.pptx
Ellipse.pptx
 
Circles
CirclesCircles
Circles
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Module 3 plane coordinate geometry
Module 3 plane coordinate geometryModule 3 plane coordinate geometry
Module 3 plane coordinate geometry
 
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
 
Math14 lesson 1
Math14 lesson 1Math14 lesson 1
Math14 lesson 1
 
Circles
CirclesCircles
Circles
 
ellipse
ellipseellipse
ellipse
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Sharygin ,Problems in plane geometry
 Sharygin ,Problems in plane geometry Sharygin ,Problems in plane geometry
Sharygin ,Problems in plane geometry
 
Conic_Sections_Hyperbolas FCIT compat.ppt
Conic_Sections_Hyperbolas FCIT compat.pptConic_Sections_Hyperbolas FCIT compat.ppt
Conic_Sections_Hyperbolas FCIT compat.ppt
 

A non-Euclidean model

  • 1. A non-Euclidean model in the unit disk A non-Euclidean model in the unit disk, a set of Euclidean theorems A non-Euclidean model is presented in this paper. Main goal of paper is to show that how non-Euclidean model in the unit disk can lead us to a set of Euclidean theorems.
  • 2. A non-Euclidean model in the unit disk Page 1 Abstract A non-Euclidean model is presented in this paper. Main goal of paper is to show that how non-Euclidean model in the unit disk can lead us to a set of Euclidean theorems. Keywords Hyperbolic geometry, Poincare disk model, parallel angle, unit disk Introduction The Poincare disk model is a geometric model that represents the hyperbolic geometry in the unit disk. At first Poincare defined his model in the unit disk as follows: 1- Each point inside the unit circle is an ordinary point of model. 2- Each point on the unit circle is an ideal point of model. 3- Each line (Poincare-line or p-line) of model is part of a circle that has two properties 3-a) cut the unit circle perpendicular. 3-b) is inside the unit circle. (See fig.1) psi D B A C F E G H K 90° Fig.1- Three p-lines GH, GK and EF and also a psi-line CD are shown
  • 3. A non-Euclidean model in the unit disk Page 2 Fig.2- Two p-lines and angle between them at their intersection point 4- Angle between two p-lines is equal to angle between two circles (that represent lines) at their intersection point.(See fig.2) 5- Distance between two ordinary points A and B is defined as logarithm of cross ratio as follows: AB= Ln (AB, FE) 1 Where E and F are ideal points of a p-line that passes through points A and B Then Poincare proved that the hyperbolic geometry and his model are equivalent geometrically. In other words if a theorem is valid in his model then it is valid in the hyperbolic geometry and vice versa. Now let develop the Poincare disk model via change cut angle between p-line and the unit circle. Assume that ψ-model is a model that their lines are ψ-lines. A ψ-line (psi-line in fig.1) cut the unit circle at angle of ψ. Now you may define a ψ-model as follows: -Each point inside the unit circle is an ordinary point of model. -Each point on the unit circle is an ideal point of model. -Each line (ψ-line) of model is part of a circle so that has two properties: a) It cut the unit circle at angle of ψ. b) It is inside the unit circle.
  • 4. A non-Euclidean model in the unit disk Page 3 -Angle between two ψ-lines is equal to angle between two circles (that represent lines) at their intersection points. -Distance between two ordinary points A and B is defined as logarithm of cross ratio as follows: AB= Ln (AB, CD) 1 C and D are ideal points of a ψ-line that passes through points A and B (See fig.1) Simple calculation yields: (AB, CD) = 1+tan 𝜓.tan (𝑑 cos 𝜓) 1−tan 𝜓.tan (𝑑 cos 𝜓) 2 “d” is Euclidean distance of AB when A is located at the center of the unit disk. (See fig.1) Let concentrate on a special model named zero-model. It means that all lines of zero-model are tangent to the unit disk internally. Note that all lines of zero-model cut the unit disk at just one point. We are interested in theorems that should be proved in this beautiful model. First we accept that in the unit disk: - For any two ordinary points A, B there is a unique parallel angle that may be defined as in the Poincare model. - For any four ordinary points A, B, C and D we can say that: AB=CD if and only if parallel angle (See fig.3) of AB is equal to parallel angle of CD psi B A B A S psi S Fig.3- Definition of parallel angle at point B (Right angle at A, parallel angle at B, AS and BS are boundary- parallel) A number of theorems in the zero-model are listed as follows (without proof):
  • 5. A non-Euclidean model in the unit disk Page 4 1- Theorem 1: Parallel angle of two ordinary points is unique. (Note that four parallel angles exist, because in fig.3 one may draw AS and BS so that right angle is at B and parallel angle at A. Also two lines may pass through points A and B) 2- Theorem 2: Zero-rectangle exists. 3- Theorem 3: Two zero-lines that have one ideal point in common are equi-distance. 4- Theorem 4: One Euclidean circle passes through vertices of a zero-rectangle. 5- Theorem 5: There are two ideal points Q, T for any two ordinary points A, B (See fig.5) so that absolute[cross ratio of (AB,QT)]=1. 6- Theorem 6: Given a zero-rectangle (ABCD). (See fig.5). So we have four ideal points (S, Q, R and T). Absolute of cross ratio of these ideal points is equal to 1. 7- Theorem 7: Each zero-circle is Euclidean circle. These circles have distinct centers. 8- Theorem 8: Triangle inequality is valid. (Note that distance between two ordinary points is defined according to the equation-1) 9- Given three ψ-lines, find the unit circle. (See fig.4) This is the Apollonius-problem in its general form. All of these theorems should be proved geometrically. They are really right!!! C1 C3 C2 W1 W3 W2 CC Fig.4- Apollonius problem in general form may be translated in language of ψ-model. These theorems should be translated in language of Euclidean geometry.
  • 6. A non-Euclidean model in the unit disk Page 5 Theorem 1: Two ellipses A and B have a foci “O” in common. Also assume that their constant value is equal. These A and B ellipses cut each other in points “P” and “Q” and have distinct foci A and B respectively. Select arbitrary point M on the line of PQ and draw lines from it to points A and B until cut the ellipses A and B at M and N respectively. If OM and ON cut ellipses A and B at points X and Y respectively. Prove that three lines AX, BY and PQ have one point in common. It is sufficient that prove the problem for Poincare half-plane. (See fig.5) Some theorems mentioned above are valid in any ψ-model for example theorem 8. Pure geometric proof for theorem 8 may be very beautiful since I have not found it yet! Problem 9: Apollonius-problem: Given three circles (C1, C2, C3 in fig.4), find a circle (C in fig.4) that cut them at angle of ψ. A simple solution for problem-9 is to find a conformal mapping (for example Mobius mapping) so that three contact points of a circle (that is tangent to all three given circles) are mapped in form of right-hand figure symmetrically. So the right-hand unit disk is obtained. Inverse Mobius mapping of right-hand unit disk gives the left-hand unit disk. D C BA S Q R T Fig.5- Apollonius problem in general form may be translated in language of ψ-model.