SlideShare a Scribd company logo
1 of 94
Download to read offline
Genetic Information
Transfer
1
DNA RNA protein
transcription translation
replication
reverse
transcription
Central dogma
2
• Replication: synthesis of daughter
DNA from parental DNA
• Transcription: synthesis of RNA using
DNA as the template
• Translation: protein synthesis using
mRNA molecules as the template
• Reverse transcription: synthesis of
DNA using RNA as the template
3
DNA
Replication
4
Section 1
General Concepts of
DNA Replication
DNA replication
• A reaction in which daughter DNAs are
synthesized using the parental DNAs as
the template.
• Transferring the genetic information to the
descendant generation with a high fidelity
replication
parental DNA
daughter DNA6
Daughter strand synthesis
• Chemical formulation:
• The nature of DNA replication is a
series of 3´- 5´phosphodiester bond
formation catalyzed by a group of
enzymes.
7
The DNA backbone
• Putting the DNA
backbone together
– refer to the 3′ and 5′ ends of
the DNA
OH
O
PO4
base
CH2
O
base
O
P
O
C
O
–
O
CH2
1′
2′
4′
5′
1′
2′
3′
3′
4′
5′
Phosphodiester bond formation
9
Template: double stranded DNA
Substrate: dNTP
Primer: short RNA fragment with a
free 3´-OH end
Enzyme: DNA-dependent DNA
polymerase (DDDP),
other enzymes,
protein factor
DNA replication system
10
Characteristics of replication
 Semi-conservative replication
 Bidirectional replication
 Semi-continuous replication
 High fidelity
11
§1.1 Semi-Conservative Replication
12
Semiconservative replication
Half of the parental DNA molecule is
conserved in each new double helix,
paired with a newly synthesized
complementary strand. This is called
semiconservative replication
13
Semiconservative replication
14
Experiment of DNA semiconservative replication
"Heavy" DNA(15
N)
grow in 14
N
medium
The first
generation
grow in 14
N
medium
The second
generation
15
Significance
The genetic information is ensured to be
transferred from one generation to the
next generation with a high fidelity.
16
§1.2 Bidirectional Replication
• Replication starts from unwinding the
dsDNA at a particular point (called
origin), followed by the synthesis on
each strand.
• The parental dsDNA and two newly
formed dsDNA form a Y-shape
structure called replication fork.
17
3'
5'
5'
3'
5'
3'
5'
3'
direction of
replication
Replication fork
18
Bidirectional replication
• Once the dsDNA is opened at the
origin, two replication forks are
formed spontaneously.
• These two replication forks move in
opposite directions as the syntheses
continue.
19
Bidirectional replication
20
Replication of prokaryotes
The replication
process starts
from the origin,
and proceeds
in two opposite
directions. It is
named θ
replication.
21
Replication of eukaryotes
• Chromosomes of eukaryotes have
multiple origins.
• The space between two adjacent
origins is called the replicon, a
functional unit of replication.
22
origins of DNA replication (every ~150 kb)
23
§1.3 Semi-continuous Replication
The daughter strands on two template
strands are synthesized differently since
the replication process obeys the
principle that DNA is synthesized from
the 5´ end to the 3´end.
24
5'
3'
3'
5'
5'
direction of unwinding
3'
On the template having the 3´- end, the
daughter strand is synthesized
continuously in the 5’-3’ direction. This
strand is referred to as the leading
strand.
Leading strand
25
Semi-continuous replication
26
• Many DNA fragments are synthesized
sequentially on the DNA template
strand having the 5´- end. These DNA
fragments are called Okazaki
fragments. They are 1000 – 2000 nt
long for prokaryotes and 100-150 nt
long for eukaryotes.
• The daughter strand consisting of
Okazaki fragments is called the
lagging strand.
Okazaki fragments
27
Continuous synthesis of the leading
strand and discontinuous synthesis of
the lagging strand represent a unique
feature of DNA replication. It is
referred to as the semi-continuous
replication.
Semi-continuous replication
28
Section 2
Enzymology
of DNA Replication
Enzymes and protein factors
protein Mr # function
Dna A protein 50,000 1 recognize origin
Dna B protein 300,000 6 open dsDNA
Dna C protein 29,000 1 assist Dna B binding
DNA pol Elongate the DNA
strands
Dna G protein 60,000 1 synthesize RNA primer
SSB 75,600 4 single-strand binding
DNA topoisomerase 400,000 4 release supercoil
constraint
30
• The first DNA-
dependent DNA
polymerase (short for
DNA-pol I) was
discovered in 1958 by
Arthur Kornberg who
received Nobel Prize in
physiology or medicine
in 1959.
§2.1 DNA Polymerase
DNA-pol of prokaryotes
31
• Later, DNA-pol II and DNA-pol III
were identified in experiments using
mutated E.coli cell line.
• All of them possess the following
biological activity.
1. 5′→3′ polymerizing
2. exonuclease
32
DNA-pol of E. coli
33
DNA-pol I
• Mainly
responsible for
proofreading
and filling the
gaps, repairing
DNA damage
34
Klenow fragment
• small fragment (323 AA): having 5´→3´
exonuclease activity
• large fragment (604 AA): called Klenow
fragment, having DNA polymerization
and 3´→5´exonuclease activity
N end C end
caroid
DNA-pol Ⅰ
35
DNA-pol II
• Temporary functional when DNA-pol I
and DNA-pol III are not functional
• Still capable for doing synthesis on
the damaged template
• Participating in DNA repairing
36
DNA-pol III
• A heterodimer enzyme composed of
ten different subunits
• Having the highest polymerization
activity (105
nt/min)
• The true enzyme responsible for the
elongation process
37
Structure of DNA-pol III
α : has 5´→ 3´
polymerizing activity
ε : has 3´→ 5´
exonuclease activity
and plays a key role to
ensure the replication
fidelity.
θ: maintain
heterodimer structure
38
39
40
DNA-pol of eukaryotes
DNA-pol δ: elongation DNA-pol III
DNA-pol α: initiate replication
and synthesize primers
DnaG,
primase
DNA-pol β: replication with
low fidelity
DNA-pol γ: polymerization in
mitochondria
DNA-pol ε: proofreading and
filling gap
DNA-pol I
repairing
41
§2.2 Primase
• Also called DnaG
• Primase is able to synthesize primers
using free NTPs as the substrate and
the ssDNA as the template.
• Primers are short RNA fragments of a
several decades of nucleotides long.
42
43
• Primers provide free 3´-OH groups to
react with the α-P atom of dNTP to
form phosphoester bonds.
• Primase, DnaB, DnaC and an origin
form a primosome complex at the
initiation phase.
44
§2.3 Helicase
• Also referred to as DnaB.
• It opens the double strand DNA with
consuming ATP.
• The opening process with the
assistance of DnaA and DnaC
45
§2.4 SSB protein
• Stand for single strand DNA binding
protein
• SSB protein maintains the DNA
template in the single strand form in
order to
• prevent the dsDNA formation;
• protect the vulnerable ssDNA from
nucleases.
46
§2.5 Topoisomerase
• Opening the dsDNA will create
supercoil ahead of replication forks.
• The supercoil constraint needs to be
released by topoisomerases.
47
48
• The interconversion of topoisomers
of dsDNA is catalyzed by a
topoisomerase in a three-step
process:
• Cleavage of one or both strands
of DNA
• Passage of a segment of DNA
through this break
• Resealing of the DNA break
49
• Also called ω-protein in prokaryotes.
• It cuts a phosphoester bond on one
DNA strand, rotates the broken DNA
freely around the other strand to relax
the constraint, and reseals the cut.
Topoisomerase I (topo I)
50
• It is named gyrase in prokaryotes.
• It cuts phosphoester bonds on both
strands of dsDNA, releases the
supercoil constraint, and reforms the
phosphoester bonds.
• It can change dsDNA into the
negative supercoil state with
consumption of ATP.
Topoisomerase II (topo II)
51
52
3'
5'
5'
3'
RNAase
P
OH
3'
5'
5'
3'
DNA polymerase
P
3'
5'
5'
3'
dNTP
DNA ligase
3'
5'
5'
3'
ATP
§2.6 DNA Ligase
53
• Connect two adjacent ssDNA strands
by joining the 3´-OH of one DNA
strand to the 5´-P of another DNA
strand.
• Sealing the nick in the process of
replication, repairing, recombination,
and splicing.
54
§2.7 Replication Fidelity
• Replication based on the principle of
base pairing is crucial to the high
accuracy of the genetic information
transfer.
• Enzymes use two mechanisms to
ensure the replication fidelity.
– Proofreading and real-time correction
– Base selection
55
• DNA-pol I has the function to correct
the mismatched nucleotides.
• It identifies the mismatched
nucleotide, removes it using the 3´- 5´
exonuclease activity, add a correct
base, and continues the replication.
Proofreading and correction
56
3´→5´
exonuclease
activity
excise mismatched
nuleotides
5´→3´
exonuclease
activity
cut primer or excise
mutated segment
C T T C A G G A
G A A G T C C G G C G
5' 3'
3' 5'
Exonuclease functions
57
Section 3
DNA Replication
Process
• Initiation: recognize the starting point,
separate dsDNA, primer synthesis, …
• Elongation: add dNTPs to the existing
strand, form phosphoester bonds,
correct the mismatch bases, extending
the DNA strand, …
• Termination: stop the replication
Sequential actions
59
• The replication starts at a particular
point called origin.
• The origin of E. coli, ori C, is at the
location of 82.
• The structure of the origin is 248 bp
long and AT-rich.
§3.1 Replication of prokaryotes
a. Initiation
60
Genome of E. coli
61
• Three 13 bp consensus sequences
• Two pairs of anti-consensus repeats
Structure of ori C
62
Formation of preprimosome
63
• DnaA recognizes ori C.
• DnaB and DnaC join the DNA-DnaA
complex, open the local AT-rich
region, and move on the template
downstream further to separate
enough space.
• DnaA is replaced gradually.
• SSB protein binds the complex to
stabilize ssDNA.
Formation of replication fork
64
• Primase joins and forms a complex
called primosome.
• Primase starts the synthesis of
primers on the ssDNA template using
NTP as the substrates in the 5´- 3´
direction at the expense of ATP.
• The short RNA fragments provide free
3´-OH groups for DNA elongation.
Primer synthesis
65
• The supercoil constraints are
generated ahead of the replication
forks.
• Topoisomerase binds to the dsDNA
region just before the replication
forks to release the supercoil
constraint.
• The negatively supercoiled DNA
serves as a better template than the
positively supercoiled DNA.
Releasing supercoil constraint
66
Dna A
Dna B
Dna C
DNA topomerase
5'
3'
3'
5'
primase
Primosome complex
67
• dNTPs are continuously connected to
the primer or the nascent DNA chain
by DNA-pol III.
• The core enzymes (α 、、 and θ )
catalyze the synthesis of leading and
lagging strands, respectively.
• The nature of the chain elongation is
the series formation of the
phosphodiester bonds.
b. Elongation
68
69
• The synthesis
direction of the
leading strand is
the same as that of
the replication fork.
• The synthesis
direction of the
latest Okazaki
fragment is also the
same as that of the
replication fork.
70
71
• Primers on Okazaki fragments are
digested by RNase.
• The gaps are filled by DNA-pol I in the
5´→3´direction.
• The nick between the 5´end of one
fragment and the 3´end of the next
fragment is sealed by ligase.
Lagging strand synthesis
72
3'
5'
5'
3'
RNAase
P
OH
3'
5'
5'
3'
DNA polymerase
P
3'
5'
5'
3'
dNTP
DNA ligase
3'
5'
5'
3'
ATP
73
• The replication of E. coli is
bidirectional from one origin, and the
two replication forks must meet at
one point called ter at 32.
• All the primers will be removed, and
all the fragments will be connected
by DNA-pol I and ligase.
c. Termination
74
§3.2 Replication of Eukaryotes
• DNA replication is closely related
with cell cycle.
• Multiple origins on one chromosome,
and replications are activated in a
sequential order rather than
simultaneously.
75
Cell cycle
76
• The eukaryotic origins are shorter
than that of E. coli.
• Requires DNA-pol α (primase
activity) and DNA-pol δ (polymerase
activity and helicase activity).
• Needs topoisomerase and replication
factors (RF) to assist.
Initiation
77
• DNA replication and nucleosome
assembling occur simultaneously.
• Overall replication speed is
compatible with that of prokaryotes.
b. Elongation
78
3'
5'
5'
3'
3'
5'
5'
3'
connection of discontinuous
3'
5'
5'
3'
3'
5'
5'
3'
segment
c. Termination
79
• The terminal structure of eukaryotic
DNA of chromosomes is called
telomere.
• Telomere is composed of terminal
DNA sequence and protein.
• The sequence of typical telomeres is
rich in T and G.
• The telomere structure is crucial to
keep the termini of chromosomes in
the cell from becoming entangled and
sticking to each other.
Telomere
80
• The eukaryotic cells use telomerase to
maintain the integrity of DNA telomere.
• The telomerase is composed of
telomerase RNA
telomerase association protein
telomerase reverse transcriptase
• It is able to synthesize DNA using RNA
as the template.
Telomerase
81
82
• Telomerase may play important
roles is cancer cell biology and in
cell aging.
Significance of Telomerase
83
Section 4
Other Replication Modes
§4.1 Reverse Transcription
• The genetic information carrier of
some biological systems is ssRNA
instead of dsDNA (such as ssRNA
viruses).
• The information flow is from RNA to
DNA, opposite to the normal process.
• This special replication mode is called
reverse transcription.
85
Viral infection of RNA virus
86
Reverse transcription
Reverse transcription is a process in
which ssRNA is used as the template
to synthesize dsDNA.
87
Process of Reverse transcription
• Synthesis of ssDNA complementary
to ssRNA, forming a RNA-DNA
hybrid.
• Hydrolysis of ssRNA in the RNA-DNA
hybrid by RNase activity of reverse
transcriptase, leaving ssDNA.
• Synthesis of the second ssDNA using
the left ssDNA as the template,
forming a DNA-DNA duplex. 88
89
Reverse transcriptase
Reverse transcriptase is the enzyme
for the reverse transcription. It has
activity of three kinds of enzymes:
• RNA-dependent DNA polymerase
• RNase
• DNA-dependent DNA polymerase
90
Significance of RT
• An important discovery in life science
and molecular biology
• RNA plays a key role just like DNA in
the genetic information transfer and
gene expression process.
• RNA could be the molecule
developed earlier than DNA in
evolution.
• RT is the supplementary to the 91
Significance of RT
• This discovery enriches the
understanding about the cancer-
causing theory of viruses. (cancer
genes in RT viruses, and HIV having
RT function)
• Reverse transcriptase has become a
extremely important tool in molecular
biology to select the target genes.
92
§4.2 Rolling Circle Replication
5'
3'
5'
3'
5'
3'
93
§4.3 D-loop Replication
94

More Related Content

Similar to replication-131220144801-phpapp01 (1).pdf

DNA replication and repair
DNA replication and repairDNA replication and repair
DNA replication and repairNirajan Shrestha
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotesDIPAK SINGH
 
Dna replication lgis
Dna replication lgisDna replication lgis
Dna replication lgisZahid Azeem
 
DNA replication (1).ppt
DNA replication (1).pptDNA replication (1).ppt
DNA replication (1).pptAshok Kumar LP
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotesBIYYANI SUMAN
 
DNA Replication- General Concepts of DNA Replication.ppt
DNA Replication- General Concepts of DNA Replication.pptDNA Replication- General Concepts of DNA Replication.ppt
DNA Replication- General Concepts of DNA Replication.pptcomsats university Islamabad
 
Chapter 8 microbial genetics
Chapter 8 microbial geneticsChapter 8 microbial genetics
Chapter 8 microbial geneticsBilalHoushaymi
 
Dna replication in prokaroytes and in eukaryotes
Dna replication in prokaroytes and in eukaryotesDna replication in prokaroytes and in eukaryotes
Dna replication in prokaroytes and in eukaryotesRAJASEKHAR SRUNGARAPU
 
DNA Replication
DNA ReplicationDNA Replication
DNA ReplicationSanjai
 
PROKARYOTIC DNA REPLICATION PRESENTATION
PROKARYOTIC DNA REPLICATION PRESENTATIONPROKARYOTIC DNA REPLICATION PRESENTATION
PROKARYOTIC DNA REPLICATION PRESENTATIONTahmina Anam
 
DNA REPLICATION.ppt
DNA REPLICATION.pptDNA REPLICATION.ppt
DNA REPLICATION.pptMelissaMona1
 
Lecture 4. Replication 27 Aug 21.ppt
Lecture 4. Replication 27 Aug 21.pptLecture 4. Replication 27 Aug 21.ppt
Lecture 4. Replication 27 Aug 21.pptDr Vishnu Kumar
 
Replication
ReplicationReplication
ReplicationDhanya G
 
DNA replication.pptx
DNA replication.pptxDNA replication.pptx
DNA replication.pptxKomalAcharya6
 

Similar to replication-131220144801-phpapp01 (1).pdf (20)

DNA , the molecular basis of inheritance
DNA , the molecular basis of inheritanceDNA , the molecular basis of inheritance
DNA , the molecular basis of inheritance
 
DNA replication and repair
DNA replication and repairDNA replication and repair
DNA replication and repair
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotes
 
DNA replication
DNA replicationDNA replication
DNA replication
 
Dna replication lgis
Dna replication lgisDna replication lgis
Dna replication lgis
 
DNA replication (1).ppt
DNA replication (1).pptDNA replication (1).ppt
DNA replication (1).ppt
 
DNA replication.ppt
DNA replication.pptDNA replication.ppt
DNA replication.ppt
 
Dna replication in prokaryotes
Dna replication in prokaryotesDna replication in prokaryotes
Dna replication in prokaryotes
 
DNA Replication- General Concepts of DNA Replication.ppt
DNA Replication- General Concepts of DNA Replication.pptDNA Replication- General Concepts of DNA Replication.ppt
DNA Replication- General Concepts of DNA Replication.ppt
 
Chapter 8 microbial genetics
Chapter 8 microbial geneticsChapter 8 microbial genetics
Chapter 8 microbial genetics
 
Dna replication in prokaroytes and in eukaryotes
Dna replication in prokaroytes and in eukaryotesDna replication in prokaroytes and in eukaryotes
Dna replication in prokaroytes and in eukaryotes
 
DNA Replication
DNA ReplicationDNA Replication
DNA Replication
 
DNA Replication process lecture 2.pptx
DNA Replication process lecture 2.pptxDNA Replication process lecture 2.pptx
DNA Replication process lecture 2.pptx
 
PROKARYOTIC DNA REPLICATION PRESENTATION
PROKARYOTIC DNA REPLICATION PRESENTATIONPROKARYOTIC DNA REPLICATION PRESENTATION
PROKARYOTIC DNA REPLICATION PRESENTATION
 
DNA REPLICATION.ppt
DNA REPLICATION.pptDNA REPLICATION.ppt
DNA REPLICATION.ppt
 
DNA Replication
DNA ReplicationDNA Replication
DNA Replication
 
Lecture 4. Replication 27 Aug 21.ppt
Lecture 4. Replication 27 Aug 21.pptLecture 4. Replication 27 Aug 21.ppt
Lecture 4. Replication 27 Aug 21.ppt
 
Replication
ReplicationReplication
Replication
 
Eukaryotic replication
Eukaryotic replicationEukaryotic replication
Eukaryotic replication
 
DNA replication.pptx
DNA replication.pptxDNA replication.pptx
DNA replication.pptx
 

More from YoGeshSharma834784

Microteaching- a way of teaching at gross root level
Microteaching- a way of teaching at gross root levelMicroteaching- a way of teaching at gross root level
Microteaching- a way of teaching at gross root levelYoGeshSharma834784
 
micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.YoGeshSharma834784
 
transgenic plants and their role in crop improvement
transgenic plants and their role in crop improvementtransgenic plants and their role in crop improvement
transgenic plants and their role in crop improvementYoGeshSharma834784
 
Apomixis–Definition,Types and practical applications.pptx
Apomixis–Definition,Types and practical applications.pptxApomixis–Definition,Types and practical applications.pptx
Apomixis–Definition,Types and practical applications.pptxYoGeshSharma834784
 
pcr and its applications in biotechnology
pcr and its applications in biotechnologypcr and its applications in biotechnology
pcr and its applications in biotechnologyYoGeshSharma834784
 
polmerase chain reaction and its applications
polmerase chain reaction and its applicationspolmerase chain reaction and its applications
polmerase chain reaction and its applicationsYoGeshSharma834784
 
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresis
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresisVBC-321_BLOTTING_TECHNIQUES and gel electrophoresis
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresisYoGeshSharma834784
 
cloning vectors and their role in genetic engineering
cloning vectors and their role in genetic engineeringcloning vectors and their role in genetic engineering
cloning vectors and their role in genetic engineeringYoGeshSharma834784
 
Gel Electorphoresis and its use in separation of DNA
Gel Electorphoresis and its use in separation of DNAGel Electorphoresis and its use in separation of DNA
Gel Electorphoresis and its use in separation of DNAYoGeshSharma834784
 
ccotton plant description, botany, utility
ccotton plant description, botany, utilityccotton plant description, botany, utility
ccotton plant description, botany, utilityYoGeshSharma834784
 
12 Production of Haploid Plants through androgenesis and gynogensis
12 Production of Haploid Plants through androgenesis and gynogensis12 Production of Haploid Plants through androgenesis and gynogensis
12 Production of Haploid Plants through androgenesis and gynogensisYoGeshSharma834784
 
4.2 Micropropagation-Concept and techniques3.pptx
4.2 Micropropagation-Concept and techniques3.pptx4.2 Micropropagation-Concept and techniques3.pptx
4.2 Micropropagation-Concept and techniques3.pptxYoGeshSharma834784
 
TEACHING PLAN- with all planned lesson for your career growth
TEACHING PLAN- with all planned lesson for your career growthTEACHING PLAN- with all planned lesson for your career growth
TEACHING PLAN- with all planned lesson for your career growthYoGeshSharma834784
 
Nucleus - Structure and function of nucleolus
Nucleus - Structure and function of nucleolusNucleus - Structure and function of nucleolus
Nucleus - Structure and function of nucleolusYoGeshSharma834784
 
plant tissue culture technique and importance
plant tissue culture technique and importanceplant tissue culture technique and importance
plant tissue culture technique and importanceYoGeshSharma834784
 
Protoplast fusion and formation of hybrid and cybrid
Protoplast fusion and formation of hybrid and cybridProtoplast fusion and formation of hybrid and cybrid
Protoplast fusion and formation of hybrid and cybridYoGeshSharma834784
 
Translation- formation of protein from mRNA
Translation- formation of protein from mRNATranslation- formation of protein from mRNA
Translation- formation of protein from mRNAYoGeshSharma834784
 
linkage and recombination.pptx
linkage and recombination.pptxlinkage and recombination.pptx
linkage and recombination.pptxYoGeshSharma834784
 

More from YoGeshSharma834784 (20)

Microteaching- a way of teaching at gross root level
Microteaching- a way of teaching at gross root levelMicroteaching- a way of teaching at gross root level
Microteaching- a way of teaching at gross root level
 
micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.micropropagation- a very useful technology in plant tissue culture.
micropropagation- a very useful technology in plant tissue culture.
 
transgenic plants and their role in crop improvement
transgenic plants and their role in crop improvementtransgenic plants and their role in crop improvement
transgenic plants and their role in crop improvement
 
Apomixis–Definition,Types and practical applications.pptx
Apomixis–Definition,Types and practical applications.pptxApomixis–Definition,Types and practical applications.pptx
Apomixis–Definition,Types and practical applications.pptx
 
pcr and its applications in biotechnology
pcr and its applications in biotechnologypcr and its applications in biotechnology
pcr and its applications in biotechnology
 
polmerase chain reaction and its applications
polmerase chain reaction and its applicationspolmerase chain reaction and its applications
polmerase chain reaction and its applications
 
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresis
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresisVBC-321_BLOTTING_TECHNIQUES and gel electrophoresis
VBC-321_BLOTTING_TECHNIQUES and gel electrophoresis
 
cloning vectors and their role in genetic engineering
cloning vectors and their role in genetic engineeringcloning vectors and their role in genetic engineering
cloning vectors and their role in genetic engineering
 
Gel Electorphoresis and its use in separation of DNA
Gel Electorphoresis and its use in separation of DNAGel Electorphoresis and its use in separation of DNA
Gel Electorphoresis and its use in separation of DNA
 
ccotton plant description, botany, utility
ccotton plant description, botany, utilityccotton plant description, botany, utility
ccotton plant description, botany, utility
 
12 Production of Haploid Plants through androgenesis and gynogensis
12 Production of Haploid Plants through androgenesis and gynogensis12 Production of Haploid Plants through androgenesis and gynogensis
12 Production of Haploid Plants through androgenesis and gynogensis
 
4.2 Micropropagation-Concept and techniques3.pptx
4.2 Micropropagation-Concept and techniques3.pptx4.2 Micropropagation-Concept and techniques3.pptx
4.2 Micropropagation-Concept and techniques3.pptx
 
TEACHING PLAN- with all planned lesson for your career growth
TEACHING PLAN- with all planned lesson for your career growthTEACHING PLAN- with all planned lesson for your career growth
TEACHING PLAN- with all planned lesson for your career growth
 
Nucleus - Structure and function of nucleolus
Nucleus - Structure and function of nucleolusNucleus - Structure and function of nucleolus
Nucleus - Structure and function of nucleolus
 
plant tissue culture technique and importance
plant tissue culture technique and importanceplant tissue culture technique and importance
plant tissue culture technique and importance
 
Protoplast fusion and formation of hybrid and cybrid
Protoplast fusion and formation of hybrid and cybridProtoplast fusion and formation of hybrid and cybrid
Protoplast fusion and formation of hybrid and cybrid
 
Translation- formation of protein from mRNA
Translation- formation of protein from mRNATranslation- formation of protein from mRNA
Translation- formation of protein from mRNA
 
chromosomal aberrations.ppt
chromosomal aberrations.pptchromosomal aberrations.ppt
chromosomal aberrations.ppt
 
mutations.pptx
mutations.pptxmutations.pptx
mutations.pptx
 
linkage and recombination.pptx
linkage and recombination.pptxlinkage and recombination.pptx
linkage and recombination.pptx
 

Recently uploaded

Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckHajeJanKamps
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation SlidesKeppelCorporation
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...lizamodels9
 
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...Khaled Al Awadi
 
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCRsoniya singh
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creationsnakalysalcedo61
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdfOrient Homes
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechNewman George Leech
 
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756dollysharma2066
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Serviceankitnayak356677
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessAggregage
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiMalviyaNagarCallGirl
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Roomdivyansh0kumar0
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth MarketingShawn Pang
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncrdollysharma2066
 

Recently uploaded (20)

Pitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deckPitch Deck Teardown: NOQX's $200k Pre-seed deck
Pitch Deck Teardown: NOQX's $200k Pre-seed deck
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
 
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In.../:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
/:Call Girls In Indirapuram Ghaziabad ➥9990211544 Independent Best Escorts In...
 
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
 
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Hauz Khas 🔝 Delhi NCR
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
Marketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet CreationsMarketing Management Business Plan_My Sweet Creations
Marketing Management Business Plan_My Sweet Creations
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdf
 
RE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman LeechRE Capital's Visionary Leadership under Newman Leech
RE Capital's Visionary Leadership under Newman Leech
 
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756
Call Girls In ⇛⇛Chhatarpur⇚⇚. Brings Offer Delhi Contact Us 8377877756
 
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts ServiceVip Female Escorts Noida 9711199171 Greater Noida Escorts Service
Vip Female Escorts Noida 9711199171 Greater Noida Escorts Service
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
 
Sales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for SuccessSales & Marketing Alignment: How to Synergize for Success
Sales & Marketing Alignment: How to Synergize for Success
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
 
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130  Available With RoomVIP Kolkata Call Girl Howrah 👉 8250192130  Available With Room
VIP Kolkata Call Girl Howrah 👉 8250192130 Available With Room
 
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
Tech Startup Growth Hacking 101  - Basics on Growth MarketingTech Startup Growth Hacking 101  - Basics on Growth Marketing
Tech Startup Growth Hacking 101 - Basics on Growth Marketing
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / NcrCall Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
Call Girls in DELHI Cantt, ( Call Me )-8377877756-Female Escort- In Delhi / Ncr
 

replication-131220144801-phpapp01 (1).pdf

  • 2. DNA RNA protein transcription translation replication reverse transcription Central dogma 2
  • 3. • Replication: synthesis of daughter DNA from parental DNA • Transcription: synthesis of RNA using DNA as the template • Translation: protein synthesis using mRNA molecules as the template • Reverse transcription: synthesis of DNA using RNA as the template 3
  • 5. Section 1 General Concepts of DNA Replication
  • 6. DNA replication • A reaction in which daughter DNAs are synthesized using the parental DNAs as the template. • Transferring the genetic information to the descendant generation with a high fidelity replication parental DNA daughter DNA6
  • 7. Daughter strand synthesis • Chemical formulation: • The nature of DNA replication is a series of 3´- 5´phosphodiester bond formation catalyzed by a group of enzymes. 7
  • 8. The DNA backbone • Putting the DNA backbone together – refer to the 3′ and 5′ ends of the DNA OH O PO4 base CH2 O base O P O C O – O CH2 1′ 2′ 4′ 5′ 1′ 2′ 3′ 3′ 4′ 5′
  • 10. Template: double stranded DNA Substrate: dNTP Primer: short RNA fragment with a free 3´-OH end Enzyme: DNA-dependent DNA polymerase (DDDP), other enzymes, protein factor DNA replication system 10
  • 11. Characteristics of replication  Semi-conservative replication  Bidirectional replication  Semi-continuous replication  High fidelity 11
  • 13. Semiconservative replication Half of the parental DNA molecule is conserved in each new double helix, paired with a newly synthesized complementary strand. This is called semiconservative replication 13
  • 15. Experiment of DNA semiconservative replication "Heavy" DNA(15 N) grow in 14 N medium The first generation grow in 14 N medium The second generation 15
  • 16. Significance The genetic information is ensured to be transferred from one generation to the next generation with a high fidelity. 16
  • 17. §1.2 Bidirectional Replication • Replication starts from unwinding the dsDNA at a particular point (called origin), followed by the synthesis on each strand. • The parental dsDNA and two newly formed dsDNA form a Y-shape structure called replication fork. 17
  • 19. Bidirectional replication • Once the dsDNA is opened at the origin, two replication forks are formed spontaneously. • These two replication forks move in opposite directions as the syntheses continue. 19
  • 21. Replication of prokaryotes The replication process starts from the origin, and proceeds in two opposite directions. It is named θ replication. 21
  • 22. Replication of eukaryotes • Chromosomes of eukaryotes have multiple origins. • The space between two adjacent origins is called the replicon, a functional unit of replication. 22
  • 23. origins of DNA replication (every ~150 kb) 23
  • 24. §1.3 Semi-continuous Replication The daughter strands on two template strands are synthesized differently since the replication process obeys the principle that DNA is synthesized from the 5´ end to the 3´end. 24
  • 25. 5' 3' 3' 5' 5' direction of unwinding 3' On the template having the 3´- end, the daughter strand is synthesized continuously in the 5’-3’ direction. This strand is referred to as the leading strand. Leading strand 25
  • 27. • Many DNA fragments are synthesized sequentially on the DNA template strand having the 5´- end. These DNA fragments are called Okazaki fragments. They are 1000 – 2000 nt long for prokaryotes and 100-150 nt long for eukaryotes. • The daughter strand consisting of Okazaki fragments is called the lagging strand. Okazaki fragments 27
  • 28. Continuous synthesis of the leading strand and discontinuous synthesis of the lagging strand represent a unique feature of DNA replication. It is referred to as the semi-continuous replication. Semi-continuous replication 28
  • 30. Enzymes and protein factors protein Mr # function Dna A protein 50,000 1 recognize origin Dna B protein 300,000 6 open dsDNA Dna C protein 29,000 1 assist Dna B binding DNA pol Elongate the DNA strands Dna G protein 60,000 1 synthesize RNA primer SSB 75,600 4 single-strand binding DNA topoisomerase 400,000 4 release supercoil constraint 30
  • 31. • The first DNA- dependent DNA polymerase (short for DNA-pol I) was discovered in 1958 by Arthur Kornberg who received Nobel Prize in physiology or medicine in 1959. §2.1 DNA Polymerase DNA-pol of prokaryotes 31
  • 32. • Later, DNA-pol II and DNA-pol III were identified in experiments using mutated E.coli cell line. • All of them possess the following biological activity. 1. 5′→3′ polymerizing 2. exonuclease 32
  • 33. DNA-pol of E. coli 33
  • 34. DNA-pol I • Mainly responsible for proofreading and filling the gaps, repairing DNA damage 34
  • 35. Klenow fragment • small fragment (323 AA): having 5´→3´ exonuclease activity • large fragment (604 AA): called Klenow fragment, having DNA polymerization and 3´→5´exonuclease activity N end C end caroid DNA-pol Ⅰ 35
  • 36. DNA-pol II • Temporary functional when DNA-pol I and DNA-pol III are not functional • Still capable for doing synthesis on the damaged template • Participating in DNA repairing 36
  • 37. DNA-pol III • A heterodimer enzyme composed of ten different subunits • Having the highest polymerization activity (105 nt/min) • The true enzyme responsible for the elongation process 37
  • 38. Structure of DNA-pol III α : has 5´→ 3´ polymerizing activity ε : has 3´→ 5´ exonuclease activity and plays a key role to ensure the replication fidelity. θ: maintain heterodimer structure 38
  • 39. 39
  • 40. 40
  • 41. DNA-pol of eukaryotes DNA-pol δ: elongation DNA-pol III DNA-pol α: initiate replication and synthesize primers DnaG, primase DNA-pol β: replication with low fidelity DNA-pol γ: polymerization in mitochondria DNA-pol ε: proofreading and filling gap DNA-pol I repairing 41
  • 42. §2.2 Primase • Also called DnaG • Primase is able to synthesize primers using free NTPs as the substrate and the ssDNA as the template. • Primers are short RNA fragments of a several decades of nucleotides long. 42
  • 43. 43
  • 44. • Primers provide free 3´-OH groups to react with the α-P atom of dNTP to form phosphoester bonds. • Primase, DnaB, DnaC and an origin form a primosome complex at the initiation phase. 44
  • 45. §2.3 Helicase • Also referred to as DnaB. • It opens the double strand DNA with consuming ATP. • The opening process with the assistance of DnaA and DnaC 45
  • 46. §2.4 SSB protein • Stand for single strand DNA binding protein • SSB protein maintains the DNA template in the single strand form in order to • prevent the dsDNA formation; • protect the vulnerable ssDNA from nucleases. 46
  • 47. §2.5 Topoisomerase • Opening the dsDNA will create supercoil ahead of replication forks. • The supercoil constraint needs to be released by topoisomerases. 47
  • 48. 48
  • 49. • The interconversion of topoisomers of dsDNA is catalyzed by a topoisomerase in a three-step process: • Cleavage of one or both strands of DNA • Passage of a segment of DNA through this break • Resealing of the DNA break 49
  • 50. • Also called ω-protein in prokaryotes. • It cuts a phosphoester bond on one DNA strand, rotates the broken DNA freely around the other strand to relax the constraint, and reseals the cut. Topoisomerase I (topo I) 50
  • 51. • It is named gyrase in prokaryotes. • It cuts phosphoester bonds on both strands of dsDNA, releases the supercoil constraint, and reforms the phosphoester bonds. • It can change dsDNA into the negative supercoil state with consumption of ATP. Topoisomerase II (topo II) 51
  • 52. 52
  • 54. • Connect two adjacent ssDNA strands by joining the 3´-OH of one DNA strand to the 5´-P of another DNA strand. • Sealing the nick in the process of replication, repairing, recombination, and splicing. 54
  • 55. §2.7 Replication Fidelity • Replication based on the principle of base pairing is crucial to the high accuracy of the genetic information transfer. • Enzymes use two mechanisms to ensure the replication fidelity. – Proofreading and real-time correction – Base selection 55
  • 56. • DNA-pol I has the function to correct the mismatched nucleotides. • It identifies the mismatched nucleotide, removes it using the 3´- 5´ exonuclease activity, add a correct base, and continues the replication. Proofreading and correction 56
  • 57. 3´→5´ exonuclease activity excise mismatched nuleotides 5´→3´ exonuclease activity cut primer or excise mutated segment C T T C A G G A G A A G T C C G G C G 5' 3' 3' 5' Exonuclease functions 57
  • 59. • Initiation: recognize the starting point, separate dsDNA, primer synthesis, … • Elongation: add dNTPs to the existing strand, form phosphoester bonds, correct the mismatch bases, extending the DNA strand, … • Termination: stop the replication Sequential actions 59
  • 60. • The replication starts at a particular point called origin. • The origin of E. coli, ori C, is at the location of 82. • The structure of the origin is 248 bp long and AT-rich. §3.1 Replication of prokaryotes a. Initiation 60
  • 61. Genome of E. coli 61
  • 62. • Three 13 bp consensus sequences • Two pairs of anti-consensus repeats Structure of ori C 62
  • 64. • DnaA recognizes ori C. • DnaB and DnaC join the DNA-DnaA complex, open the local AT-rich region, and move on the template downstream further to separate enough space. • DnaA is replaced gradually. • SSB protein binds the complex to stabilize ssDNA. Formation of replication fork 64
  • 65. • Primase joins and forms a complex called primosome. • Primase starts the synthesis of primers on the ssDNA template using NTP as the substrates in the 5´- 3´ direction at the expense of ATP. • The short RNA fragments provide free 3´-OH groups for DNA elongation. Primer synthesis 65
  • 66. • The supercoil constraints are generated ahead of the replication forks. • Topoisomerase binds to the dsDNA region just before the replication forks to release the supercoil constraint. • The negatively supercoiled DNA serves as a better template than the positively supercoiled DNA. Releasing supercoil constraint 66
  • 67. Dna A Dna B Dna C DNA topomerase 5' 3' 3' 5' primase Primosome complex 67
  • 68. • dNTPs are continuously connected to the primer or the nascent DNA chain by DNA-pol III. • The core enzymes (α 、、 and θ ) catalyze the synthesis of leading and lagging strands, respectively. • The nature of the chain elongation is the series formation of the phosphodiester bonds. b. Elongation 68
  • 69. 69
  • 70. • The synthesis direction of the leading strand is the same as that of the replication fork. • The synthesis direction of the latest Okazaki fragment is also the same as that of the replication fork. 70
  • 71. 71
  • 72. • Primers on Okazaki fragments are digested by RNase. • The gaps are filled by DNA-pol I in the 5´→3´direction. • The nick between the 5´end of one fragment and the 3´end of the next fragment is sealed by ligase. Lagging strand synthesis 72
  • 74. • The replication of E. coli is bidirectional from one origin, and the two replication forks must meet at one point called ter at 32. • All the primers will be removed, and all the fragments will be connected by DNA-pol I and ligase. c. Termination 74
  • 75. §3.2 Replication of Eukaryotes • DNA replication is closely related with cell cycle. • Multiple origins on one chromosome, and replications are activated in a sequential order rather than simultaneously. 75
  • 77. • The eukaryotic origins are shorter than that of E. coli. • Requires DNA-pol α (primase activity) and DNA-pol δ (polymerase activity and helicase activity). • Needs topoisomerase and replication factors (RF) to assist. Initiation 77
  • 78. • DNA replication and nucleosome assembling occur simultaneously. • Overall replication speed is compatible with that of prokaryotes. b. Elongation 78
  • 80. • The terminal structure of eukaryotic DNA of chromosomes is called telomere. • Telomere is composed of terminal DNA sequence and protein. • The sequence of typical telomeres is rich in T and G. • The telomere structure is crucial to keep the termini of chromosomes in the cell from becoming entangled and sticking to each other. Telomere 80
  • 81. • The eukaryotic cells use telomerase to maintain the integrity of DNA telomere. • The telomerase is composed of telomerase RNA telomerase association protein telomerase reverse transcriptase • It is able to synthesize DNA using RNA as the template. Telomerase 81
  • 82. 82
  • 83. • Telomerase may play important roles is cancer cell biology and in cell aging. Significance of Telomerase 83
  • 85. §4.1 Reverse Transcription • The genetic information carrier of some biological systems is ssRNA instead of dsDNA (such as ssRNA viruses). • The information flow is from RNA to DNA, opposite to the normal process. • This special replication mode is called reverse transcription. 85
  • 86. Viral infection of RNA virus 86
  • 87. Reverse transcription Reverse transcription is a process in which ssRNA is used as the template to synthesize dsDNA. 87
  • 88. Process of Reverse transcription • Synthesis of ssDNA complementary to ssRNA, forming a RNA-DNA hybrid. • Hydrolysis of ssRNA in the RNA-DNA hybrid by RNase activity of reverse transcriptase, leaving ssDNA. • Synthesis of the second ssDNA using the left ssDNA as the template, forming a DNA-DNA duplex. 88
  • 89. 89
  • 90. Reverse transcriptase Reverse transcriptase is the enzyme for the reverse transcription. It has activity of three kinds of enzymes: • RNA-dependent DNA polymerase • RNase • DNA-dependent DNA polymerase 90
  • 91. Significance of RT • An important discovery in life science and molecular biology • RNA plays a key role just like DNA in the genetic information transfer and gene expression process. • RNA could be the molecule developed earlier than DNA in evolution. • RT is the supplementary to the 91
  • 92. Significance of RT • This discovery enriches the understanding about the cancer- causing theory of viruses. (cancer genes in RT viruses, and HIV having RT function) • Reverse transcriptase has become a extremely important tool in molecular biology to select the target genes. 92
  • 93. §4.2 Rolling Circle Replication 5' 3' 5' 3' 5' 3' 93